# **Electronic supporting information**

# Dipolar vinyl sulfur fluorescent dyes. Synthesis and photophysics of sulfides, sulfoxides and sulfones based $D-\pi$ -A compounds

Matias Monçalves,<sup>a</sup> Gabriel M. Zanotto,<sup>d</sup> Josene M. Toldo,<sup>d</sup> Daniel S. Rampon,<sup>c</sup> Paulo H. Schneider,<sup>b</sup> Paulo F. B Gonçalves,<sup>d</sup> Fabiano S. Rodembusch<sup>\*b</sup> and Claudio C. Silveira<sup>\*a</sup>

<sup>a</sup>Departamento de Química, Universidade Federal de Santa Maria. Santa Maria, CEP 97105-900, RS, Brazil. Fax: +55 (55) 3220-8754; E-mail: silveira@quimica.ufsm.br

<sup>b</sup>Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500. CEP 91501-970 Porto Alegre-RS, Brazil. Fax: +55 51 33087204; Tel: +55 51 33087204; E-mail: fabiano.rodembusch@ufrgs.br

<sup>c</sup>Universidade Federal do Paraná, Departamento de Química, Laboratório de Polímeros e Catálise. CEP 81531-980 Curitiba, PR, Brazil

<sup>d</sup>Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves, 9500, CP 15003, CEP 91501-970 Porto Alegre-RS, Brazil.

## **Table of Contents**

| Synthesis of starting materials | 2 |
|---------------------------------|---|
| Additional Computational Data   | 3 |
| Characterization Data           | 8 |

### Synthesis of starting materials

#### Synthesis of diethyl (hydroxymethyl)phosphonate (M1)



Dimethyl hydrogenophosphonate (25.7 mL, 200 mmol) was added to a flask containing paraformaldehyde (7.2 g, 240 mmol), potassium carbonate (1.38 g, 10 mmol) and ethanol (150 mL), under an atmosphere of argon. The reaction mixture was heated to 70°C and stirring was maintained for 5 h.

After this time, the reaction was filtered and the solvent were removed under reduced pressure to afford colorless oil. Yield: 100 %. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 1.34$  (t, J = 7.1 Hz, 6H), 3.91 (d,  $J_{P-H} = 5.9$  Hz, 2H), 4.17 (m, J = 7.4 Hz, 4H), 4.5 (s, 1H) ppm.

#### Synthesis of (diethoxyphosphoryl)methyl 4-methylbenzenesulfonate (M2)



To a solution of diethyl (hydroxymethyl)phosphonate **M1** (16.8 g, 100 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (150 mL), under an atmosphere of argon, was added triethylamine (20 mL, 144 mmol) dropwise at 0°C. The reaction mixture was stirred 30 min at room temp., cooled to 0°C, and *p*-tosyl chloride

(20.52 g, 108 mmol) was added. The reaction was kept at 0°C for 30 min and then 24 h at room temperature. After this time, the reaction mixture was filtered and extracted. The organic layer was dried (MgSO<sub>4</sub>), and the solvent was removed under reduced pressure. Purification by flash column chromatography (silica gel; using 5:95 to 30:70, v/v, EtOAc/hexanes) gave the product as colorless oil. Yield: 60 %. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 1.32$  (*t*, *J* = 7.6 Hz, 6H), 2.46 (*s*, 3H), 4.08-4.22 (*m*, 4H), 4.18 (*d*, *J*<sub>P-H</sub> = 9.9 Hz, 2H), 7.38 (*d*, *J* = 8.6 Hz, 2H), 7.8 (*d*, *J* = 8.3 Hz, 2H) ppm.





**Figure ESI1.** HOMO for **P1-P6** dyes. Calculated at CAM-B3LYP level in 1,4-dioxane, dichloromethane, ethanol and acetonitrile.



**Figure ESI2.** LUMO for **P1-P6** dyes. Calculated at CAM-B3LYP level in 1,4-dioxane, dichloromethane, ethanol and acetonitrile.

|            |         |                 | PBE   | 1PBE           |        |                 | CAM  | -B3LYP         |        | Experimental    |                |  |
|------------|---------|-----------------|-------|----------------|--------|-----------------|------|----------------|--------|-----------------|----------------|--|
| Dye        | Solvent | $\lambda_{abs}$ | E%    | $\lambda_{em}$ | Е%     | $\lambda_{abs}$ | E%   | $\lambda_{em}$ | Е%     | $\lambda_{abs}$ | $\lambda_{em}$ |  |
|            | DIO     | 368.38          | -4.65 | 450.76         | -8.36  | 329.48          | 6.40 | 412.13         | 0.93   | 352             | 416            |  |
| <b>D</b> 4 | DCM     | 368.47          | -4.09 | 464.20         | -6.22  | 329.55          | 6.91 | 427.03         | 2.28   | 354             | 437            |  |
| PI         | Ethanol | 367.65          | -5.04 | 468.46         | -7.94  | 328.86          | 6.04 | 431.32         | 0.62   | 350             | 434            |  |
|            | ACN     | 367.41          | -5.58 | 469.38         | -3.85  | 328.67          | 5.55 | 432.10         | 4.40   | 348             | 452            |  |
|            | DIO     | 373.62          | -4.07 | 485.68         | -7.93  | 331.40          | 7.69 | 385.44         | 14.35  | 359             | 450            |  |
| D2         | DCM     | 374.82          | -2.97 | 483.18         | -0.04  | 332.02          | 8.79 | 406.52         | 15.83  | 364             | 483            |  |
| P3         | EtOH    | 374.15          | -2.51 | 481.95         | 4.75   | 331.41          | 9.20 | 412.41         | 18.50  | 365             | 506            |  |
|            | ACN     | 373.92          | -4.16 | 480.81         | 4.03   | 331.22          | 7.74 | 413.55         | 17.45  | 359             | 501            |  |
|            | DIO     | 395.01          | -5.06 | 531.38         | -13.30 | 343.22          | 8.72 | 399.18         | 14.89  | 376             | 469            |  |
| D <i>5</i> | DCM     | 400.10          | -4.74 | 513.92         | -1.17  | 346.09          | 9.40 | 419.16         | 17.49  | 382             | 508            |  |
| P5         | EtOH    | 400.12          | -5.85 | 512.54         | 2.19   | 345.73          | 8.54 | 425.34         | 20.28  | 378             | 524            |  |
|            | ACN     | 400.21          | -6.72 | 521.62         | 2.50   | 345.86          | 7.77 | 426.51         | 18.83  | 375             | 535            |  |
|            | DIO     | 395.99          | -6.74 | 484.75         | -13.26 | 353.89          | 4.61 | 447.20         | -4.49  | 371             | 428            |  |
| D)         | DCM     | 396.96          | -7.29 | 509.93         | -17.23 | 354.26          | 4.25 | 471.19         | -8.32  | 370             | 435            |  |
| 1 4        | EtOH    | 395.83          | -7.86 | 517.05         | -19.41 | 353.27          | 4.08 | 478.55         | -10.52 | 367             | 433            |  |
|            | ACN     | 395.49          | -7.47 | 518.34         | -17.54 | 352.99          | 3.74 | 479.90         | -8.82  | 368             | 441            |  |
|            | DIO     | 384.42          | -6.19 | 443.92         | -6.46  | 350.03          | 3.31 | 420.35         | -0.80  | 362             | 417            |  |
| D4         | DCM     | 384.81          | -4.28 | 468.42         | -8.43  | 350.23          | 5.09 | 445.13         | -3.04  | 369             | 432            |  |
| <b>Г4</b>  | EtOH    | 383.83          | -4.02 | 475.80         | -7.16  | 349.31          | 5.34 | 452.56         | -1.93  | 369             | 444            |  |
|            | ACN     | 383.54          | -6.54 | 477.21         | -10.21 | 349.04          | 3.04 | 453.96         | -4.84  | 360             | 433            |  |
|            | DIO     | 402.93          | -8.61 | 451.92         | -5.10  | 362.32          | 2.34 | 428.24         | 0.41   | 371             | 430            |  |
| <b>D</b> 6 | DCM     | 406.21          | -9.20 | 468.06         | -4.24  | 364.70          | 1.96 | 458.29         | -2.07  | 372             | 449            |  |
| 10         | EtOH    | 405.65          | -9.64 | 490.49         | -7.80  | 363.99          | 1.62 | 467.70         | -2.79  | 370             | 455            |  |
|            | ACN     | 405.41          | -9.57 | 492.18         | -8.17  | 363.74          | 1.69 | 469.48         | -3.18  | 370             | 455            |  |

**Table ESI1.** Calculated photophysical data of the **P1–P6** dyes. The  $\lambda_{abs}$  is the absorption maxima (nm),  $\lambda_{em}$  is the emission maxima. E% is the relative error compared to experimental values, on the right.

DIO = 1,4-dioxane, DCM=dichloromethane, ACN=acetonitrile.

**Table ESI2.** Theoretical structural data of **P1, P3, and P5** molecules in different organic solvents, where the bond lengths (**r**) are presented in Å and angles (**a**) and dihedral angles (**d**) are given in degrees. Geometries for  $S_0$  and  $S_1$  calculated with CAM-B3LYP/cc-pVDZ. The representative equilibrium structures are plotted at the same level using 1,4-dioxane as solvent. The ground state structures are given on the left and first excited state structures are given on the right. In 1,4-dioxane, the structural data is also given with PBE1PBE at the same level (marked with a \*).

|           |         |       | 3.<br>2.<br>3. |        | 3      | the second | Ř     | 2     | the states |      |       |        |       |       |       |  |
|-----------|---------|-------|----------------|--------|--------|------------|-------|-------|------------|------|-------|--------|-------|-------|-------|--|
| Dve       | Solvent |       |                |        | SO     |            |       |       | S1         |      |       |        |       |       |       |  |
| Dyc       |         | d1    | d2             | d3     | a1     | r1         | r2    | r3    | d1         | d2   | d3    | a1     | r1    | r2    | r3    |  |
|           | DIO*    | 33.02 | 0.67           | 100.86 | 96.66  | 1.340      | 1.797 | 1.819 | 49.47      | 2.16 | 19.68 | 106.56 | 1.391 | 1.739 | 1.780 |  |
|           | DIO     | 42.09 | 4.30           | 88.04  | 103.10 | 1.338      | 1.768 | 1.791 | 41.89      | 2.80 | 26.51 | 106.52 | 1.388 | 1.727 | 1.782 |  |
| <b>P1</b> | DCM     | 42.32 | 3.80           | 88.09  | 103.26 | 1.338      | 1.768 | 1.791 | 42.90      | 2.64 | 27.54 | 106.70 | 1.403 | 1.727 | 1.785 |  |
|           | ACN     | 42.35 | 3.94           | 88.10  | 103.30 | 1.338      | 1.768 | 1.791 | 43.29      | 2.56 | 27.90 | 106.75 | 1.404 | 1.727 | 1.786 |  |
|           | EtOH    | 42.34 | 3.91           | 88.09  | 103.30 | 1.338      | 1.768 | 1.791 | 43.24      | 2.58 | 27.85 | 106.74 | 1.404 | 1.727 | 1.786 |  |

 $d1 = C_1 - N - C_7 - C_8 / \ d2 = C_{11} - C_{10} - C_{13} - C_{14} / \ d3 = C_{14} - S - C_{15} - C_{16} / \ a1 = C_{14} - S - C_{15} / \ r1 = C_{13} - C_{14} / \ r2 = C_{14} - S / \ r3 = S - C_{15} .$ 

|       |      | 19 11 II |
|-------|------|----------|
| 22    |      | 14-5     |
| D     | 15   | 10       |
| 1 per | 1.30 |          |
| 20    |      |          |





| Dve | Solvent |       |      |       | <b>S0</b> |       |       | S1    |       |      |       |        |       |       |       |
|-----|---------|-------|------|-------|-----------|-------|-------|-------|-------|------|-------|--------|-------|-------|-------|
| Dyc | Sorvent | d1    | d2   | d3    | a1        | r1    | r2    | r3    | d1    | d2   | d3    | a1     | r1    | r2    | r3    |
|     | DIO*    | 31.72 | 1.12 | 95.86 | 103.99    | 1.343 | 1.766 | 1.792 | 28.18 | 2.71 | 84.06 | 101.22 | 1.381 | 1.757 | 1.835 |
| Р3  | DIO     | 46.27 | 1.01 | 81.93 | 97.07     | 1.333 | 1.803 | 1.820 | 35.13 | 0.21 | 78.05 | 99.72  | 1.375 | 1.770 | 1.835 |
|     | DCM     | 47.06 | 1.24 | 82.19 | 97.31     | 1.333 | 1.801 | 1.837 | 38.48 | 0.68 | 72.98 | 101.05 | 1.383 | 1.761 | 1.837 |
|     | ACN     | 47.34 | 1.53 | 82.34 | 97.39     | 1.333 | 1.081 | 1.837 | 39.21 | 0.41 | 72.15 | 101.32 | 1.385 | 1.759 | 1.837 |
|     | EtOH    | 47.30 | 1.46 | 82.30 | 97.38     | 1.333 | 1.801 | 1.837 | 39.09 | 0.45 | 72.34 | 101.28 | 1.385 | 1.760 | 1.837 |





| Dye | Solvent |       |      |       | S0     |       |       | S1    |       |      |       |        |       |       |       |
|-----|---------|-------|------|-------|--------|-------|-------|-------|-------|------|-------|--------|-------|-------|-------|
| Dyc | Solvent | d1    | d2   | d3    | a1     | r1    | r2    | r3    | d1    | d2   | d3    | a1     | r1    | r2    | r3    |
| Р5  | DIO*    | 58.95 | 1.04 | 89.33 | 102.95 | 1.344 | 1.756 | 1.786 | 65.35 | 0.34 | 88.81 | 107.18 | 1.410 | 1.728 | 1.740 |
|     | DIO     | 48.45 | 0.56 | 85.96 | 104.35 | 1.337 | 1.770 | 1.793 | 34.09 | 0,25 | 88.27 | 105.33 | 1.377 | 1.737 | 1.798 |
|     | DCM     | 49.49 | 0.99 | 86.45 | 104.79 | 1.338 | 1.767 | 1.791 | 37.08 | 0,20 | 88.43 | 106.20 | 1.384 | 1.730 | 1.797 |
|     | ACN     | 49.94 | 1.35 | 86.74 | 104.95 | 1.338 | 1.766 | 1.790 | 38.06 | 0,37 | 88.49 | 106.51 | 1.386 | 1.728 | 1.797 |
|     | EtOH    | 49.88 | 1.30 | 86.68 | 104.92 | 1.338 | 1.766 | 1.791 | 37.91 | 0,34 | 88.47 | 106.46 | 1.386 | 1.728 | 1.797 |

**Table ESI3.** Theoretical structural data of **P2, P4, and P6** molecules in different organic solvents, where the bond lengths (**r**) are presented in Å and angles (**a**) and dihedral angles (**d**) are given in degrees. Geometries for S0 and S1 calculated with CAM-B3LYP/ cc-pVDZ. The representative equilibrium structures are plotted at the same level using 1,4-dioxane as solvent. The ground state structures are given on the left and first excited state structures are given on the right. In 1,4-dioxane, the structural data is also given with PBE1PBE at the same level (marked with a \*).

| $15 \begin{array}{c} 14 \\ 16 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$ |             |       |       |        |           |       |       |      |       |        |         | Ę,    | Ţ.    | - for a |       |
|--------------------------------------------------------------------------|-------------|-------|-------|--------|-----------|-------|-------|------|-------|--------|---------|-------|-------|---------|-------|
| Dye                                                                      | Solvent     |       |       |        | <b>S0</b> |       |       | S1   |       |        |         |       |       |         |       |
|                                                                          |             | d1    | d2    | d3     | a1        | r1    | r2    | r3   | d1    | d2     | d3      | a1    | r1    | r2      | r3    |
|                                                                          | DIO*        | 26.64 | 93.21 | 102.86 | 1.345     | 1.757 | 1.786 | 8.97 | 32.18 | 106.50 | 1.385   | 1.732 | 1.767 | 26.64   | 93.21 |
|                                                                          | DIO         | 30.40 | 89.76 | 102.93 | 1.339     | 1.766 | 1.791 | 7.01 | 44.04 | 106.20 | 1.382   | 1.734 | 1.781 | 30.40   | 89.76 |
| P2                                                                       | DCM         | 29.37 | 89.25 | 103.10 | 1.339     | 1.766 | 1.791 | 5.91 | 50.95 | 106.04 | 1.383   | 1.733 | 1.784 | 29.37   | 89.25 |
|                                                                          | ACN         | 28.99 | 88.87 | 103.15 | 1.339     | 1.766 | 1.792 | 5.55 | 53.22 | 105.95 | 1.383   | 1.733 | 1.784 | 28.99   | 88.87 |
|                                                                          | <b>EtOH</b> | 29.05 | 88.05 | 103 15 | 1 3 3 0   | 1 766 | 1 702 | 5 60 | 52.83 | 105.07 | 1 3 8 3 | 1 733 | 1 784 | 20.05   | 88.05 |

 $d1 = C_{10} - C_{9} - C_{17} - C_{18} / d2 = C_{18} - S - C_{19} - C_{24} / a1 = C_{18} - S - C_{19} / r1 = C_{17} - C_{18} / r2 = C_{18} - S / r3 = S - C_{19}.$ 

| 14       | "The   |
|----------|--------|
| 16 11 11 | 15 5 0 |
| 4CS      | 17     |
| · 7 8    |        |





| Dve | Solvent |       |       |       | <b>S0</b> |       |       | S1   |       |       |       |       |       |       |       |
|-----|---------|-------|-------|-------|-----------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Dyc | Solvent | d1    | d2    | d3    | a1        | r1    | r2    | r3   | d1    | d2    | d3    | a1    | r1    | r2    | r3    |
|     | DIO*    | 23.53 | 82.31 | 96.36 | 1.338     | 1.799 | 1.819 | 4.58 | 82.21 | 98.82 | 1.371 | 1.769 | 1.828 | 23.53 | 82.31 |
| P4  | DIO     | 25.20 | 82.46 | 96.88 | 1.333     | 1.804 | 1.820 | 3.45 | 81.12 | 98.28 | 1.364 | 1.782 | 1.828 | 25.20 | 82.46 |
|     | DCM     | 24.32 | 82.72 | 97.04 | 1.333     | 1.802 | 1.819 | 3.20 | 81.57 | 98.60 | 1.366 | 1.780 | 1.827 | 24.32 | 82.72 |
|     | ACN     | 23.72 | 82.50 | 97.09 | 1.333     | 1.802 | 1.819 | 3.12 | 81.77 | 98.67 | 1.367 | 1.780 | 1.827 | 23.72 | 82.50 |
|     | EtOH    | 23.83 | 82.55 | 97.08 | 1.333     | 1.802 | 1.819 | 3.13 | 81.76 | 98.66 | 1.367 | 1.780 | 1.827 | 23.83 | 82.55 |
|     |         |       |       |       |           |       |       |      |       |       |       |       |       |       |       |



| Dye | Solvent |       | <b>S0</b> |        |       |       |       |      |       |        | S1    |       |       |       |       |  |  |  |  |
|-----|---------|-------|-----------|--------|-------|-------|-------|------|-------|--------|-------|-------|-------|-------|-------|--|--|--|--|
| 290 | Sorrent | d1    | d2        | d3     | a1    | r1    | r2    | r3   | d1    | d2     | d3    | a1    | r1    | r2    | r3    |  |  |  |  |
| P6  | DIO*    | 15.86 | 95.89     | 103.75 | 1.342 | 1.770 | 1.791 | 2.05 | 87.01 | 103.84 | 1.373 | 1.746 | 1.789 | 15.86 | 95.89 |  |  |  |  |
|     | DIO     | 18.27 | 84.49     | 104.21 | 1.336 | 1.774 | 1.792 | 1.60 | 86.56 | 104.57 | 1.369 | 1.750 | 1.794 | 18.27 | 84.49 |  |  |  |  |
|     | DCM     | 16.25 | 84.75     | 104.59 | 1.337 | 1.771 | 1.790 | 0.43 | 87.26 | 105.34 | 1.373 | 1.744 | 1.793 | 16.25 | 84.75 |  |  |  |  |
|     | ACN     | 16.08 | 84.98     | 104.75 | 1.337 | 1.771 | 1.789 | 0.47 | 87.59 | 105.63 | 1.375 | 1.742 | 1.793 | 16.08 | 84.98 |  |  |  |  |
|     | EtOH    | 16.09 | 84.93     | 104.73 | 1.337 | 1.771 | 1.789 | 0.46 | 87.52 | 105.59 | 1.375 | 1.742 | 1.793 | 16.09 | 84.93 |  |  |  |  |

## **Characterization Data**

Spectra data for compound P1



Figure ESI3. <sup>1</sup>H NMR spectra of P1.



Figure ESI4. <sup>13</sup>C NMR spectra of P1.



Figure ESI5. IR spectra of P1.

Spectra data for compound P3







Figure ESI7. <sup>13</sup>C NMR spectra of P3.



Figure ESI8. IR spectra of P3.

Spectra data for compound P5



Figure ESI10. <sup>13</sup>C NMR spectra of P5.



Figure ESI11. IR spectra of P5.

Spectra data for compound P2



Figure ESI13. <sup>13</sup>C NMR spectra of P2.



Figure ESI14. IR spectra of P2.

Spectra data for compound P4



Figure ESI16. <sup>13</sup>C NMR spectra of P4.



Figure ESI17. IR spectra of P4.

Spectra data for compound P6



Figure ESI19. <sup>13</sup>C NMR spectra of P6.



Figure ESI20. IR spectra of P6.