

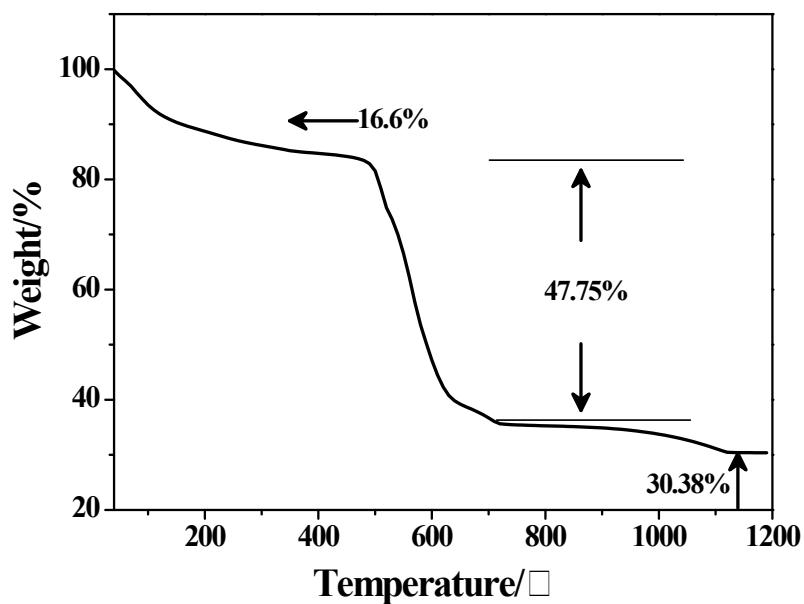
Supporting Information

for

**Solvent free mechanochemical synthesis of Eu³⁺ complex
and its luminescent sensing for trace water and
temperature**

Daqing Yang, Zhiqiang Li, Liang He, Yuchen Deng and Yige Wang^{*}

School of Chemical Engineering and Technology


Hebei University of Technology

GuangRong Dao 8, Hongqiao Distric, Tianjin 300130 (China)

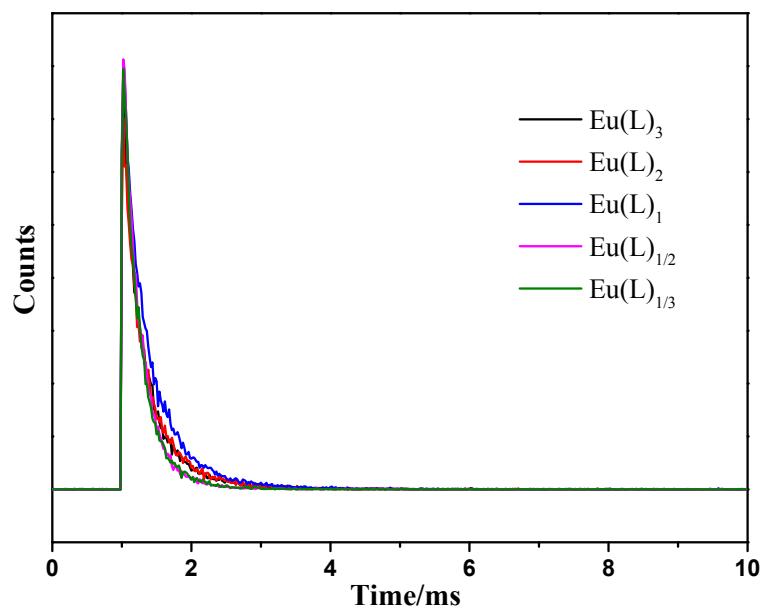

E-mail: wangyige@hebut.edu.cn

Table of Contents

Fig. S1 TG analysis of 1:1 Eu(L) complex	S3
Fig. S2 Luminescence decay curves of Eu(L) _n measured at 613 nm and well-fitted by a mono-exponential function	S3
Table S1 The variable intensity ratio R and luminescence decay time with the increasing water content in anhydrous ether	S3
Table S2 The calibration equations of Eu(L) ₁ in different organic solvents with increasing amount of water	S4
Table S3 The variable intensity ratio R and luminescence decay time with the increasing water content in anhydrous THF	S4
Table S4 The calibration equations of Eu(L) ₁ within the temperature ranging from 80-300 K and the temperature in heating cooling process from 300-420 K and cooling process from 400-300 K	S4
Fig. S3 Temperature dependence of the relative sensitivity values for Eu(L) ₁ within the temperatures range 80-300 K and 300-420 K	S5

Fig. S1 TG analysis of 1:1 Eu(L) complex.

Fig. S2 Luminescence decay curves of Eu(L)_n measured at 613 nm and well-fitted by a mono-exponential function.

Table S1. The variable intensity ratio R and luminescence decay time with the increasing water content in anhydrous ether.

	Ether	0.1%	0.2%	0.3%	0.5%	1%	2%	3%	5%
R	2.68	2.46	2.14	1.71	1.62	1.56	1.43	1.32	1.16
τ [ms]	0.24	0.22	0.21	0.19	0.8	0.17	0.16	0.13	0.10

Table S2. The calibration equations of Eu(L)₁ in different organic solvents with increasing amount of water.

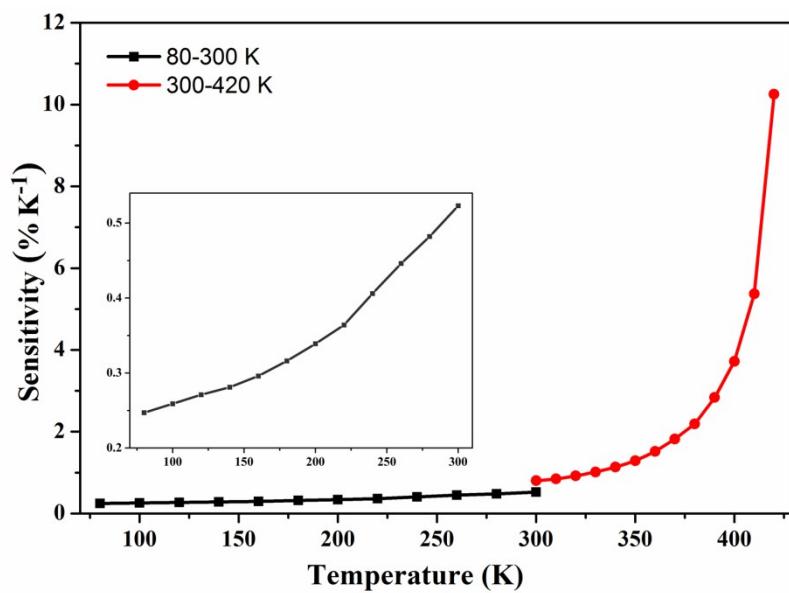

Solvents	Range of v (%)	Calibration equations	R ²
ether	0%-0.3%	R=-3.23v+2.73	0.993
ether	0.5%-5%	R=-0.11v+1.67	0.993
THF	0%-5%	R=-0.33v+2.92	0.995

Table S3. The variable intensity ratio **R** and luminescence decay time with the increasing water content in anhydrous THF.

	THF	0.1%	0.3%	0.5%	1%	2%	3%	5%
R	2.94	2.90	2.83	2.73	2.61	2.26	1.84	1.30
τ [ms]	0.27	0.26	0.26	0.24	0.22	0.19	0.18	0.15

Table S4. The calibration equations of Eu(L)₁ within the temperature ranging from 80-300 K and the temperature in heating cooling process from 300-420 K and cooling process from 400-300 K.

Range of T (K)	Calibration equations	R ²	S (% K ⁻¹)
80-300	$T_1 = 491.1 - 405I_1$	0.995	0.24%
300-420	$T_2 = 427.4 - 125I_2$	0.998	0.77%
400-300	$T_3 = 409.4 - 167I_3$	0.998	0.59%

Fig. S3 Temperature dependence of the relative sensitivity values for Eu(L)₁ within the temperatures range 80-300 K and 300-420 K.