Laccase-Catalyzed Green Synthesis and Cytotoxic Activity of Novel Pyrimidobenzothiazoles and Catechol Thioethers

H. T. Abdel-Mohsen,^a J. Conrad,^b K. Harms,^c D. Nohr^d and U. Beifuss*^b

^{*a*}Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Cairo, Egypt.

^bBioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstr. 30, Stuttgart, D-70599, Germany.

^cFachbereich Chemie, Universität Marburg, Hans-Meerwein-Str. 4, D-35032 Marburg, Germany.

^{*d*}Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstr. 30, Stuttgart, D-70599, Germany.

*Corresponding author; E-mail: <u>ubeifuss@uni-hohenheim.de</u>; Fax: (+49) 711 459 22951; Tel: (+49) 711 459 22171.

Electronic Supplementary Information

Contents Page 1. NMR Spectra of compounds 2a-i, 3a-h, 4a-d,g, 5a-k (Figures 1-29). 2 2. Molecular structure and crystal data of 3f and 5a (Figures 30, 31; Tables 1-31 14) 2.1. Molecular structures and crystal data of 7,8-dihydroxy-4*H*-2-trifluoromethylpyrimido[2,1-*b*]benzothiazol-4-one (**3f**) 31 2.2. Molecular structure and crystal data of 39 2-(4,5-dihydroxy-2-methylphenylthio)-6-methylpyrimidin-4(3*H*)-one (5a) 3. 47 Greenness of the laccase-catalyzed reactions 3.1. Calculation of the E-factor, atom economy, TON and TOF of the laccase-catalyzed domino reaction between 1a and 2e 47 3.2. Calculation of the E-factor, atom economy, TON and TOF of the laccase-catalyzed domino reaction between 1b and 2i 48 4. Determination of the activity of laccase from Agaricus bisporus 50 5. IC₅₀ graphs of the tested compounds against HepG2 cell line (Figures 32-46) 50 6. References 57

1. NMR spectra of compounds 2a-i, 3a-h, 4a-d,g, 5a-k (Figures 1-29)

2,3-Dihydro-6-methyl-2-thioxopyrimidin-4(1*H*)-one (2a)

Fig. 1 ¹H NMR (300 MHz) spectrum of **2a** in DMSO- d_6

Fig. 2 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **2b** in DMSO- d_6

2,3-Dihydro-6-propyl-2-thioxopyrimidin-4(1*H*)-one (2c)

Fig. 3 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of 2c in DMSO- d_6

2,3-Dihydro-6-isopropyl-2-thioxopyrimidin-4(1*H*)-one (2d)

Fig. 4 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of 2d in DMSO- d_{6}

Fig. 5 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of **2e** in DMSO- d_6

Fig. 6 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **2f** in DMSO- d_6

2,3-Dihydro-5,6-dimethyl-2-thioxopyrimidin-4(1*H*)-one (2g)

Fig. 7 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of 2g in DMSO- d_6

Fig. 8 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **2h** in DMSO- d_6

Fig. 9 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of 2i in DMSO- d_6

7,8-Dihydroxy-4*H*-2-methyl-pyrimido[2,1-*b*]benzothiazol-4-one (3a) and 7,8-dihydroxy-2*H*-4-methyl-pyrimido[2,1-*b*]benzothiazol-2-one (4a)

Fig. 10 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 3a and 4a in DMSO- d_6

7,8-Dihydroxy-4*H*-2-ethyl-pyrimido[2,1-*b*]benzothiazol-4-one (3b) and 7,8-dihydroxy-2*H*-4-ethyl-pyrimido[2,1-*b*]benzothiazol-2-one (4b).

Fig. 11 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 3b and 4b in DMSO- d_{6}

7,8-Dihydroxy-4*H*-2-propyl-pyrimido[2,1-*b*]benzothiazol-4-one (3c) and 7,8-dihydroxy-2*H*-4-propyl-pyrimido[2,1-*b*]benzothiazol-2-one (4c)

Fig. 12 ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 3c and 4c in DMSO- d_6

7,8-Dihydroxy-4*H*-2-isopropyl-pyrimido[2,1-*b*]benzothiazol-4-one (3d) and 7,8dihydroxy-2*H*-4-isopropyl-pyrimido[2,1-*b*]benzothiazol-2-one (4d)

Fig. 13 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 3d and 4d in DMSO- d_6

Fig. 14 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of 3d in DMSO- d_{6}

Fig. 15 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 3e in DMSO- d_6

Fig. 16 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of **3f** in DMSO- d_6

7,8-Dihydroxy-4*H*-2,3-dimethyl-pyrimido[2,1-*b*]benzothiazol-4-one (3g) and 7,8dihydroxy-2*H*-3,4-dimethyl-pyrimido[2,1-*b*]benzothiazol-2-one (4g)

Fig. 17 ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 3g and 4g in DMSO- d_6

7,8-Dihydroxy-4*H*-3-methyl-2-trifluoromethyl-pyrimido[2,1-*b*]benzothiazol-4-one (3h)

Fig. 18 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of **3h** in DMSO- d_6

Fig. 19 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 5a in pyridine- d_5

2-(4,5-Dihydroxy-2-methylphenylthio)-6-propylpyrimidin-4(3*H*)-one (5b)

Fig. 20 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **5b** in pyridine- d_5

Fig. 21 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **5c** in pyridine- d_5

2-(4,5-Dihydroxy-2-methylphenylthio)-6-*tert*-butylpyrimidin-4(3*H*)-one (5d)

Fig. 22 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of **5d** in pyridine- d_5

2-(4,5-Dihydroxy-2-methylphenylthio)-5,6-dimethylpyrimidin-4(3H)-one (5e)

Fig. 23 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 5e in pyridine- d_5

Fig. 24 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of **5f** in pyridine- d_5

Fig. 25 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of **5g** in pyridine- d_5

Fig. 26 1 H (300 MHz) and 13 C (75 MHz) NMR spectra of 5h in pyridine- d_5

2-(2-Ethyl-4,5-dihydroxyphenylthio)-5,6-dimethylpyrimidin-4(3*H*)-one (5i)

Fig. 27 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of **5i** in pyridine- d_5

2-(4,5-Dihydroxy-2-methylphenylthio)-6,7-dihydro-3*H*-cyclopenta[*d*]pyrimidin-4(5*H*)one (5j)

Fig. 28 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 5j in pyridine- d_5

2-(2-Ethyl-4,5-dihydroxyphenylthio)-6,7-dihydro-3*H*-cyclopenta[*d*]pyrimidin-4(5*H*)-one (5k)

Fig. 29 ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 5k in pyridine- d_5

- 2. Molecular structures and crystal data of 3f and 5a (Figures 30, 31; Tables 1-12)
- 2.1. Molecular structure and crystal data of 7,8-dihydroxy-4*H*-2trifluoromethylpyrimido[2,1-*b*]benzothiazol-4-one (3f)

Fig. 30 Molecular structure of 7,8-dihydroxy-4*H*-2-trifluoromethyl-pyrimido[2,1-b]benzothiazol-4-one (**3f**), derived from X-ray crystal structure analysis. Thermal ellipsoids are drawn at the 50% level. Broken lines indicate hydrogen bond contacts.

Table 1. Crystal data and structure refinement for 3f.

Crystal data

Identification code Habitus, colour Crystal size Crystal system Space group Unit cell dimensions

Volume Cell determination Empirical formula Moiety formula Formula weight Density (calculated) Absorption coefficient F(000)

Data collection:

Diffractometer type Wavelength Temperature Theta range for data collection Index ranges Data collection software Cell refinement software Data reduction software

Solution and refinement:

Reflections collected Independent reflections Completeness to theta = 25.242° Observed reflections Reflections used for refinement Absorption correction Max. and min. transmission Largest diff. peak and hole Solution Refinement Treatment of hydrogen atoms Programs used

Data / restraints / parameters Goodness-of-fit on F² R index (all data) R index conventional [I>2sigma(I)] CCDC No.

3f

- needle, colourless 0.40 x 0.06 x 0.04 mm³ Monoclinic $P2_1/c$ Z = 4a = 6.5438(4) Å $\alpha = 90^{\circ}$. b = 13.1859(7) Å $\beta = 93.862(2)^{\circ}$. c = 12.5014(7) Å $\gamma = 90^{\circ}$. 1076.24(11) Å³ 9932 peaks with Theta 2.2 to 25.2°. $C_{11} H_5 F_3 N_2 O_3 S$ C11 H5 F3 N2 O3 S 302.23 1.865 Mg/m³ 0.354 mm⁻¹ 608
- Bruker D8 QUEST area detector 0.71073 Å 100(2) K 2.248 to 25.294°. -7<=h<=7, -15<=k<=15, -14<=l<=14 APEX3 (Bruker AXS Inc., 2015)^[1] SAINT V8.35A (Bruker AXS Inc., 2015)^[2] SAINT V8.35A (Bruker AXS Inc., 2015)

29062 1953 [R(int) = 0.0424]100.0 % $1760[I > 2\sigma(I)]$ 1953 Semi-empirical from equivalents^[3] 0.99 and 0.93 0.308 and -0.300 e.Å-3 Direct methods Full-matrix least-squares on F² CH calculated positions, constr. ref., OH located, isotr. ref. XT V2014/1 (Bruker AXS Inc., 2014)^[4] SHELXL-2014/7 (Sheldrick, 2014)^[5] DIAMOND (Crystal Impact)^[6] ShelXle (Hübschle, Sheldrick, Dittrich, 2011)^[7] 1953 / 0 / 189 1.048 wR2 = 0.0691R1 = 0.02801514742

	X	у	Z	U(eq)	Occupancy
 F1	0.78608(16)	0.65192(8)	0.86814(9)	0.0199(3)	1
01	0.23096(17)	0.53534(9)	0.60531(9)	0.0111(3)	1
C1	0.3956(2)	0.50284(12)	0.64513(13)	0.0091(3)	1
C2	0.5208(3)	0.54876(13)	0.72984(13)	0.0103(4)	1
F2	0.79903(18)	0.50637(9)	0.94638(8)	0.0260(3)	1
F3	1.03202(15)	0.54882(8)	0.84132(8)	0.0171(2)	1
C3	0.7034(3)	0.50762(13)	0.76242(13)	0.0099(3)	1
N4	0.7843(2)	0.42160(11)	0.72207(11)	0.0101(3)	1
C5	0.6681(2)	0.37833(12)	0.64534(13)	0.0088(3)	1
S6	0.74119(6)	0.26897(3)	0.58172(3)	0.01109(13)	1
C7	0.5157(3)	0.27104(13)	0.49852(13)	0.0096(3)	1
C8	0.4574(3)	0.20102(13)	0.41909(13)	0.0108(3)	1
09	0.2100(2)	0.14335(9)	0.28729(10)	0.0134(3)	1
C9	0.2659(3)	0.21057(13)	0.36611(13)	0.0099(3)	1
O10	-0.05252(18)	0.29090(10)	0.33795(10)	0.0123(3)	1
C10	0.1337(3)	0.28956(13)	0.39319(13)	0.0093(3)	1
C11	0.1931(3)	0.36061(12)	0.47093(13)	0.0088(3)	1
C12	0.3873(3)	0.35064(12)	0.52288(13)	0.0085(3)	1
N13	0.4795(2)	0.41299(10)	0.60534(11)	0.0077(3)	1
C14	0.8325(3)	0.55413(14)	0.85443(14)	0.0131(4)	1

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **3f**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F1-C14	1.338(2)	<u>C7-C</u> 8	1.390(2)
01-C1	1.233(2)	C7-C12	1.391(2)
C1-N13	1.411(2)	C8-C9	1.383(2)
C1-C2	1.429(2)	С8-Н8	0.9500
C2-C3	1.350(2)	09-C9	1.357(2)
C2-H2	0.9500	O9-H9	0.82(2)
F2-C14	1.342(2)	C9-C10	1.410(2)
F3-C14	1.328(2)	O10-C10	1.359(2)
C3-N4	1.363(2)	O10-H10	0.83(3)
C3-C14	1.511(2)	C10-C11	1.387(2)
N4-C5	1.314(2)	C11-C12	1.394(2)
C5-N13	1.378(2)	C11-H11	0.9500
C5-S6	1.7298(17)	C12-N13	1.421(2)
S6-C7	1.7473(17)		
01 01 112	120 01/15	00.00.010	101 10(15)
01-C1-N13	120.01(15)	09-09-010	121.12(15)
01-C1-C2	126.41(15)	C8-C9-C10	120.21(15)
N13-C1-C2	113.56(14)	C10-O10-H10	109.1(17)
C3-C2-C1	120.32(16)	010-C10-C11	123.16(15)
С3-С2-Н2	119.8	010-C10-C9	115.54(15)
С1-С2-Н2	119.8	C11-C10-C9	121.30(15)
C2-C3-N4	125.51(16)	C10-C11-C12	117.83(15)
C2-C3-C14	120.33(15)	C10-C11-H11	121.1
N4-C3-C14	114.10(15)	C12-C11-H11	121.1
C5-N4-C3	114.31(14)	C7-C12-C11	120.95(15)
N4-C5-N13	125.52(15)	C7-C12-N13	111.24(14)
N4-C5-S6	122.25(13)	C11-C12-N13	127.78(15)
N13-C5-S6	112.23(12)	C5-N13-C1	120.74(14)
C5-S6-C7	90.69(8)	C5-N13-C12	113.42(14)
C8-C7-C12	121.11(16)	C1-N13-C12	125.83(14)
C8-C7-S6	126.51(13)	F3-C14-F1	107.47(14)
C12-C7-S6	112.32(13)	F3-C14-F2	107.43(14)
C9-C8-C7	118.55(15)	F1-C14-F2	106.91(14)
С9-С8-Н8	120.7	F3-C14-C3	112.87(14)
С7-С8-Н8	120.7	F1-C14-C3	111.61(14)
С9-О9-Н9	111.3(16)	F2-C14-C3	110.27(14)
09-C9-C8	118.66(15)		

Table 3. Bond lengths [Å] and angles [°] for $\mathbf{3f}$.

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
	0.0193(6)	0.0174(6)	0.0224(6)	-0.0111(5)	-0.0037(4)	0.0025(4)
01	0.0102(6)	0.0099(6)	0.0128(6)	-0.0014(5)	-0.0017(5)	0.0031(5)
C1	0.0100(8)	0.0080(8)	0.0095(8)	0.0027(6)	0.0032(6)	-0.0011(7)
C2	0.0135(9)	0.0086(8)	0.0089(8)	-0.0004(6)	0.0019(7)	-0.0011(7)
F2	0.0294(6)	0.0372(7)	0.0106(5)	0.0068(5)	-0.0055(5)	-0.0140(5)
F3	0.0104(5)	0.0188(6)	0.0215(6)	-0.0049(4)	-0.0029(4)	-0.0014(4)
C3	0.0117(8)	0.0100(8)	0.0081(8)	0.0024(6)	0.0025(6)	-0.0024(7)
N4	0.0102(7)	0.0098(7)	0.0102(7)	0.0023(6)	-0.0004(6)	-0.0006(6)
C5	0.0084(8)	0.0078(8)	0.0102(8)	0.0030(6)	0.0017(6)	0.0002(6)
S6	0.0087(2)	0.0099(2)	0.0144(2)	-0.00193(16)	-0.00161(16)	0.00288(16)
C7	0.0075(8)	0.0102(8)	0.0113(8)	0.0020(7)	0.0010(6)	0.0006(6)
C8	0.0104(8)	0.0084(8)	0.0139(8)	-0.0009(7)	0.0029(7)	0.0019(7)
O9	0.0101(7)	0.0134(6)	0.0162(6)	-0.0078(5)	-0.0013(5)	0.0011(5)
C9	0.0130(8)	0.0090(8)	0.0082(8)	-0.0007(6)	0.0035(6)	-0.0023(7)
O10	0.0102(6)	0.0117(6)	0.0144(6)	-0.0048(5)	-0.0033(5)	0.0045(5)
C10	0.0082(8)	0.0101(8)	0.0096(8)	0.0027(6)	0.0013(6)	-0.0003(6)
C11	0.0100(8)	0.0072(8)	0.0094(8)	0.0008(6)	0.0031(6)	0.0013(6)
C12	0.0100(8)	0.0071(8)	0.0087(8)	0.0009(6)	0.0025(6)	-0.0020(6)
N13	0.0073(7)	0.0078(7)	0.0080(7)	0.0005(5)	0.0006(5)	-0.0001(5)
C14	0.0136(9)	0.0144(9)	0.0111(8)	0.0004(7)	0.0000(7)	-0.0015(7)

Table 4. Anisotropic displacement parameters (Å²) for **3f**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)	Occupancy
H2	0.4753	0.6085	0.7634	0.012	1
H8	0.5471	0.1478	0.4016	0.013	1
H9	0.086(4)	0.1426(17)	0.2747(18)	0.024(6)	1
H10	-0.114(4)	0.3434(19)	0.3529(19)	0.029(6)	1
H11	0.1044	0.4143	0.4882	0.011	1

Table 5. Hydrogen coordinates and isotropic displacement parameters (Å²) for **3f**.

Table 6. Torsion angles [°] for 3f.

01-C1-C2-C3	-176.67(16)	
N13-C1-C2-C3	1.9(2)	
C1-C2-C3-N4	-1.0(3)	
C1-C2-C3-C14	-177.95(15)	
C2-C3-N4-C5	0.0(2)	
C14-C3-N4-C5	177.04(14)	
C3-N4-C5-N13	0.1(2)	
C3-N4-C5-S6	179.43(12)	
N4-C5-S6-C7	-178.61(14)	
N13-C5-S6-C7	0.83(13)	
C5-S6-C7-C8	-179.59(16)	
C5-S6-C7-C12	-2.47(13)	
C12-C7-C8-C9	-1.6(2)	
S6-C7-C8-C9	175.34(13)	
C7-C8-C9-O9	178.89(15)	
C7-C8-C9-C10	-0.4(2)	
09-C9-C10-O10	2.1(2)	
C8-C9-C10-O10	-178.64(15)	
09-C9-C10-C11	-177.59(15)	
C8-C9-C10-C11	1 6(2)	
010-C10-C11-C12	179 35(15)	
C9-C10-C11-C12	-1 0(2)	
C8-C7-C12-C11	23(2)	
S6-C7-C12-C11	-175.04(13)	
C8-C7-C12-N13	-179.27(15)	
S6-C7-C12-N13	3 43(17)	
C10-C11-C12-C7	-1 0(2)	
C10-C11-C12-N13	-179 15(15)	
N4-C5-N13-C1	1 0(2)	
S6-C5-N13-C1	-17842(11)	
N4-C5-N13-C12	-179 60(15)	
S6-C5-N13-C12	0.97(17)	
01-C1-N13-C5	176 78(15)	
C2-C1-N13-C5	-19(2)	
01-C1-N13-C12	-2 5(2)	
C2-C1-N13-C12	17879(14)	
C7-C12-N13-C5	-2.84(19)	
C11_C12_N13_C5	175 50(16)	
C7_C12_N13_C1	175.50(10) 176.51(14)	
C11 C12 N13 C1	5 1(3)	
$C_{2}C_{3}C_{14}F_{3}$	-144 19(16)	
N4-C3-C14-F3	-1	
$C_2 C_3 C_1 4 F_1$	-23 0(2)	
N4-C3-C14-F1	15973(14)	
$C_2 - C_3 - C_1 - F_2$	95 66(10)	
N4-C3-C14-F2	-81 60(18)	
117-03-014-12	-01.00(10)	

Symmetry transformations used to generate equivalent atoms:

Table 7	Hydrogen	bonds	for 3f	⊺[Å and	ୀ
rable /.	riyurogen	oonus	101 51	[11 and	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O9-H9N4#1	0.82(2)	2.21(2)	2.9755(19)	157(2)
O10-H10O1#2	0.83(3)	1.86(3)	2.6884(17)	175(2)

Symmetry transformations used to generate equivalent atoms: #1 x-1,-y+1/2,z-1/2 #2 -x,-y+1,-z+1

2.2. Molecular structure and crystal data of 2-(4,5-dihydroxy-2-methylphenylthio)-6methylpyrimidin-4(3*H*)-one (5a)

Fig. 31 Molecular structure of 2-(4,5-dihydroxy-2-methylphenylthio)-6-methylpyrimidin-4(3H)-one (**5a**), derived from X-ray crystal structure analysis. Thermal ellipsoids are drawn at the 50% level. Broken lines indicate hydrogen bond contacts.

Table 8. Crystal data and structure refinement for 5a.

Crystal data

Identification code Habitus, colour Crystal size Crystal system Space group Unit cell dimensions

Volume Cell determination Empirical formula Moiety formula Formula weight Density (calculated) Absorption coefficient F(000)

Data collection:

Diffractometer type Wavelength Temperature Theta range for data collection Index ranges Data collection software Cell refinement software Data reduction software

Solution and refinement:

Reflections collected Independent reflections Completeness to theta = 25.242° Observed reflections Reflections used for refinement Absorption correction Max. and min. transmission Largest diff. peak and hole Solution Refinement Treatment of hydrogen atoms Programs used

Data / restraints / parameters Goodness-of-fit on F² R index (all data) R index conventional [I>2sigma(I)] CCDC No.

5a

block, colourless 0.40 x 0.26 x 0.20 mm³ Triclinic P-1 Z = 2a = 8.4440(3) Å $\alpha = 68.729(1)^{\circ}$. b = 8.4669(3) Å $\beta = 86.391(1)^{\circ}$. c = 9.6137(4) Å $\gamma = 64.332(1)^{\circ}$. 573.66(4) Å³ 9901 peaks with Theta 2.7 to 33.2° . $C_{12} H_{12} N_2 O_3 S$ $C_{12}\,H_{12}\,N_2\,O_3\,S$ 264.30 1.530 Mg/m³ 0.284 mm⁻¹ 276

Bruker D8 QUEST area detector 0.71073 Å 100(2) K 2.288 to 33.229°. -13<=h<=13, -13<=k<=13, -14<=l<=14 APEX3 (Bruker AXS Inc., 2015)^[1] SAINT V8.35A (Bruker AXS Inc., 2015)^[2,2] SAINT V8.35A (Bruker AXS Inc., 2015)

22332 4377 [R(int) = 0.0224]99.9 % $3984[I > 2\sigma(I)]$ 4377 Semi-empirical from equivalents^[3] 0.95 and 0.91 0.539 and -0.299 e.Å-3 Direct methods Full-matrix least-squares on F² CH calc. positions, "riding", NH, OH located, isotr. ref. XT V2014/1 (Bruker AXS Inc., 2014)^[4] SHELXL-2014/7 (Sheldrick, 2014)^[5] DIAMOND (Crystal Impact)^[6] ShelXle (Hübschle, Sheldrick, Dittrich, 2011)^[7] 4377 / 0 / 177 1.054 wR2 = 0.0824R1 = 0.02981514742

	X	у	Z	U(eq)	Occupancy
<u>S1</u>	0.41233(3)	0.54768(3)	0.28578(2)	0.01138(6)	1
C1	0.23770(11)	0.20824(12)	0.59525(10)	0.01045(14)	1
01	0.07620(9)	0.21856(10)	0.63398(8)	0.01579(13)	1
C2	0.39471(11)	0.05585(11)	0.67876(9)	0.00933(14)	1
02	0.37530(9)	-0.08080(9)	0.79761(7)	0.01249(12)	1
C3	0.55632(11)	0.05345(11)	0.63915(9)	0.00990(14)	1
C4	0.56848(11)	0.19758(12)	0.51462(9)	0.00965(14)	1
C5	0.41022(11)	0.34745(11)	0.43296(9)	0.00955(14)	1
C6	0.24593(11)	0.35417(12)	0.47391(10)	0.01108(14)	1
C7	0.74732(11)	0.18589(13)	0.47509(10)	0.01395(16)	1
C8	0.29570(11)	0.56442(11)	0.13139(9)	0.00953(14)	1
N9	0.17496(10)	0.74255(10)	0.04995(8)	0.01037(13)	1
O10	-0.02494(9)	0.95533(9)	-0.15454(7)	0.01350(12)	1
C10	0.08040(11)	0.78815(12)	-0.08284(9)	0.01079(14)	1
C11	0.11335(12)	0.63007(12)	-0.12192(10)	0.01218(15)	1
C12	0.23319(11)	0.45298(12)	-0.03297(9)	0.01093(14)	1
N13	0.32850(10)	0.41954(10)	0.09437(8)	0.01066(13)	1
C14	0.27281(13)	0.28265(13)	-0.06889(11)	0.01555(16)	1

Table 9. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **5a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S1-C8	1.7617(9)	C7-H7B	0.9800
S1-C5	1.7774(8)	C7-H7C	0.9800
C1-O1	1.3647(10)	C8-N13	1.3108(11)
C1-C6	1.3823(12)	C8-N9	1.3560(10)
C1-C2	1.4027(11)	N9-C10	1.3856(11)
O1-H1	0.831(19)	N9-H9	0.912(16)
C2-O2	1.3611(10)	O10-C10	1.2444(10)
C2-C3	1.3870(11)	C10-C11	1.4280(12)
O2-H2	0.840(19)	C11-C12	1.3666(12)
C3-C4	1.4022(11)	C11-H11	0.9500
C3-H3	0.9500	C12-N13	1.3790(11)
C4-C5	1.3973(11)	C12-C14	1.4966(12)
C4-C7	1.5034(12)	C14-H14A	0.9800
C5-C6	1.4007(12)	C14-H14B	0.9800
C6-H6	0.9500	C14-H14C	0.9800
C7-H7A	0.9800		
C8-S1-C5	102.94(4)	H7A-C7-H7C	109.5
01-C1-C6	119.07(7)	H7B-C7-H7C	109.5
01-C1-C2	121.36(7)	N13-C8-N9	123.01(8)
C6-C1-C2	119.54(8)	N13-C8-S1	123.08(6)
C1-O1-H1	109.2(13)	N9-C8-S1	113.84(6)
O2-C2-C3	124.31(7)	C8-N9-C10	122.76(8)
O2-C2-C1	115.95(7)	C8-N9-H9	119.8(10)
C3-C2-C1	119.73(7)	C10-N9-H9	117.3(10)
С2-О2-Н2	110.0(13)	O10-C10-N9	119.63(8)
C2-C3-C4	121.86(7)	O10-C10-C11	126.06(8)
С2-С3-Н3	119.1	N9-C10-C11	114.29(7)
C4-C3-H3	119.1	C12-C11-C10	120.14(8)
C5-C4-C3	117.29(7)	C12-C11-H11	119.9
C5-C4-C7	123.11(7)	C10-C11-H11	119.9
C3-C4-C7	119.61(7)	C11-C12-N13	122.28(8)
C4-C5-C6	121.48(7)	C11-C12-C14	122.29(8)
C4-C5-S1	120.24(6)	N13-C12-C14	115.41(8)
C6-C5-S1	117.95(6)	C8-N13-C12	117.41(7)
C1-C6-C5	120.07(7)	C12-C14-H14A	109.5
C1-C6-H6	120.0	C12-C14-H14B	109.5
C5-C6-H6	120.0	H14A-C14-H14B	109.5
С4-С7-Н7А	109.5	C12-C14-H14C	109.5
С4-С7-Н7В	109.5	H14A-C14-H14C	109.5
H7A-C7-H7B	109.5	H14B-C14-H14C	109.5
C4-C7-H7C	109.5		

Table 10. Bond lengths [Å] and angles $[\circ]$ for **5a**.

Symmetry transformations used to generate equivalent atoms:

		U	U^{33}	U^{23}	U^{13}	U^{12}
S 1	0.01445(10)	0.00889(9)	0.01001(9)	-0.00115(7)	-0.00091(7)	-0.00610(7)
C1	0.0088(3)	0.0084(3)	0.0116(3)	-0.0029(3)	0.0011(3)	-0.0023(3)
01	0.0092(3)	0.0103(3)	0.0199(3)	0.0006(2)	0.0022(2)	-0.0025(2)
C2	0.0102(3)	0.0071(3)	0.0084(3)	-0.0022(3)	0.0004(2)	-0.0023(3)
O2	0.0115(3)	0.0079(3)	0.0114(3)	0.0007(2)	0.0013(2)	-0.0019(2)
C3	0.0088(3)	0.0086(3)	0.0090(3)	-0.0024(3)	-0.0008(2)	-0.0015(3)
C4	0.0094(3)	0.0101(3)	0.0087(3)	-0.0036(3)	0.0001(3)	-0.0035(3)
C5	0.0106(3)	0.0076(3)	0.0087(3)	-0.0019(3)	0.0001(3)	-0.0034(3)
C6	0.0094(3)	0.0078(3)	0.0115(3)	-0.0013(3)	-0.0004(3)	-0.0015(3)
C7	0.0104(3)	0.0161(4)	0.0133(4)	-0.0034(3)	0.0008(3)	-0.0056(3)
C8	0.0100(3)	0.0074(3)	0.0089(3)	-0.0013(3)	0.0015(2)	-0.0032(3)
N9	0.0117(3)	0.0066(3)	0.0096(3)	-0.0016(2)	0.0004(2)	-0.0023(2)
O10	0.0135(3)	0.0082(3)	0.0120(3)	-0.0003(2)	-0.0007(2)	-0.0014(2)
C10	0.0105(3)	0.0095(3)	0.0095(3)	-0.0015(3)	0.0013(3)	-0.0035(3)
C11	0.0141(3)	0.0110(3)	0.0095(3)	-0.0029(3)	0.0003(3)	-0.0046(3)
C12	0.0127(3)	0.0101(3)	0.0097(3)	-0.0037(3)	0.0027(3)	-0.0050(3)
N13	0.0119(3)	0.0077(3)	0.0102(3)	-0.0026(2)	0.0011(2)	-0.0030(2)
C14	0.0201(4)	0.0125(4)	0.0157(4)	-0.0077(3)	0.0030(3)	-0.0067(3)

Table 11. Anisotropic displacement parameters (Å²) for **5a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	у	Z	U(eq)	Occupancy
H1	0.090(2)	0.116(3)	0.700(2)	0.038(5)	1
H2	0.471(3)	-0.180(3)	0.825(2)	0.038(5)	1
H3	0.6617	-0.0487	0.6981	0.012	1
H6	0.1400	0.4591	0.4182	0.013	1
H7A	0.7616	0.1864	0.3730	0.021	1
H7B	0.8395	0.0690	0.5461	0.021	1
H7C	0.7575	0.2946	0.4804	0.021	1
H9	0.148(2)	0.836(2)	0.0855(18)	0.027(4)	1
H11	0.0518	0.6480	-0.2099	0.015	1
H14A	0.2587	0.1861	0.0184	0.023	1
H14B	0.3946	0.2323	-0.0938	0.023	1
H14C	0.1911	0.3180	-0.1547	0.023	1

Table 12. Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **5a**.

01-C1-C2-O2	1.19(12)
C6-C1-C2-O2	179.16(8)
01-C1-C2-C3	-177.74(8)
C6-C1-C2-C3	0.23(13)
O2-C2-C3-C4	179.49(8)
C1-C2-C3-C4	-1.67(13)
C2-C3-C4-C5	1.42(12)
C2-C3-C4-C7	-178.82(8)
C3-C4-C5-C6	0.24(12)
C7-C4-C5-C6	-179.50(8)
C3-C4-C5-S1	173.42(6)
C7-C4-C5-S1	-6.33(12)
C8-S1-C5-C4	125.72(7)
C8-S1-C5-C6	-60.87(8)
01-C1-C6-C5	179.41(8)
C2-C1-C6-C5	1.40(13)
C4-C5-C6-C1	-1.65(13)
S1-C5-C6-C1	-174.98(7)
C5-S1-C8-N13	-47.87(8)
C5-S1-C8-N9	135.24(6)
N13-C8-N9-C10	-2.52(13)
S1-C8-N9-C10	174.37(6)
C8-N9-C10-O10	-177.97(8)
C8-N9-C10-C11	3.47(12)
O10-C10-C11-C12	179.95(8)
N9-C10-C11-C12	-1.60(12)
C10-C11-C12-N13	-1.27(13)
C10-C11-C12-C14	-179.92(8)
N9-C8-N13-C12	-0.56(12)
S1-C8-N13-C12	-177.16(6)
C11-C12-N13-C8	2.41(12)
C14-C12-N13-C8	-178.85(8)

Table 13. Torsion angles [°] for 5a.

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
01-H102	0.831(19)	2.269(18)	2.7091(9)	113.4(15)
O1-H1O10#1	0.831(19)	2.083(19)	2.8236(9)	148.2(17)
O2-H2N13#2	0.840(19)	1.906(19)	2.7407(10)	172.4(18)
N9-H9O10#3	0.912(16)	1.950(17)	2.8386(10)	164.3(15)

Table 14. Hydrogen bonds for $\mathbf{5a}$ [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z+1 #2 -x+1,-y,-z+1 #3 -x,-y+2,-z

3. Greenness of the laccase-catalyzed reactions

3.1. Calculation of the E-factor, atom economy, TON and TOF of the laccase-catalyzed domino reaction between 1a and 2e

Yield of 3e = 97%

Calculation of the E-factor^[8]

Total amount of the reactants (taking into account a loss of 10% of the solvent used) = 64 mg + 92 mg + 10 mg + 157.8 mg + 62.86 mg + 378.8 mg + 14.4 mg = 779.86 mg.Amount of the final product = 140 mg.Amount of waste = 779.86 - 140 = 639.86 mgE-factor = Amount of waste [kg]/Amount of product [kg] = $639.86/140 = 4.57 \text{ kg kg}^{-1}$.

Calculation of the atom economy^[9]

The atom economy of the reaction was calculated according to the following equation:

% Atom economy = $100 \times \frac{\text{Molecular weight of the desired product}}{\text{Molecular weight of all reactants}}$.

Atom economy = $100 \times 290/310 = 94\%$

Calculation of TON

Molecular weight of laccase from *A. bisporus* = 96 000 g/mol.^[10] Specific activity of the laccase = 1.2 U/mg. 12 U Laccase corresponds to 10 mg, ie $1.0417 \times 10^{-7} \text{ mol} = 1.0417 \times 10^{-4} \text{ mmol}$. TON = Amount of the substrate consumed [mmol] / Amount of catalyst [mmol]. TON = $0.485 \text{ [mmol]} / 1.0417 \times 10^{-4} \text{ [mmol]} = 4656$.

Calculation of TOF

TOF = $\frac{\text{TON}}{\text{Time}}$. TOF = 4656 / 16 h = **291 h**⁻¹.

3.2. Calculation of the E-factor, atom economy, TON and TOF of the laccase-catalyzed domino reaction between 1b and 2i

Yield of 5j = 90%

Calculation of the E-factor^[8]

Total amount of the reactants (taking into account a loss of 10% of the solvent used) = 72 mg + 84 mg + 10 mg + 157.8 mg + 62.86 mg + 378.8 mg + 14.4 mg = 779.86 mg.Amount of the final product = 130 mg.Amount of waste = 779.86 - 130 = 649.86 mg

E-factor = Amount of waste [kg]/Amount of product [kg] = $649.86/130 = 5.00 \text{ kg kg}^{-1}$.

Calculation of the atom economy^[9]

The atom economy of the reaction was calculated according to the following equation:

% Atom economy = $100 \times \frac{\text{Molecular weight of the desired product}}{\text{Molecular weight of all reactants}}$

Atom economy = $100 \times 290/308 = 94\%$

Calculation of TON

Molecular weight of laccase from A. *bisporus* = 96 000 g/mol.^[10]

Specific activity of the laccase = 1.2 U/mg.

12 U Laccase corresponds to 10 mg, ie 1.0417×10^{-7} mol = 1.0417×10^{-4} mmol.

TON = Amount of the substrate consumed [mmol] / Amount of catalyst [mmol].

TON = 0.45 [mmol] / 1.0417×10^{-4} [mmol] = **4320**.

Calculation of TOF

TOF = $\frac{\text{TON}}{\text{Time}}$. TOF = 4320 / 14 h = **308.57 h**⁻¹.

4. Determination of the activity of laccase from Agaricus bisporus

According to ref. 11 a 0.1 M solution of ABTS (0.3 mL) in 0.2 M phosphate buffer (pH 6) was diluted with 0.2 M phosphate buffer (2.6 mL, pH 6) and treated with a solution of laccase in the same buffer (0.1 mL). The change in absorption was followed *via* UV-spectroscopy ($\lambda = 414$ nm). One unit was defined as the amount of laccase that converts 1 µmol of ABTS per minute at pH 6 at rt.

5. IC₅₀ graphs of the tested compounds against HepG2 cell line (Figures 32-46)

Fig. 32 IC₅₀ graph of 3d

Fig. 33 IC₅₀ graph of 3e

Fig. 34 IC_{50} graph of 3f

Fig. 35 IC₅₀ graph of 5a

Fig. 36 IC_{50} graph of 5b

Fig. 37 IC₅₀ graph of 5c

Fig. 38 IC₅₀ graph of 5d

Fig. 39 IC₅₀ graph of 5e

Fig. 40 IC_{50} graph of 5f

Fig. 41 IC_{50} graph of 5g

Fig. 42 IC₅₀ graph of 5h

Fig. 43 IC_{50} graph of 5i

Fig. 44 IC₅₀ graph of 5j

Fig. 45 IC₅₀ graph of 5k

Fig. 46 IC₅₀ graph of Doxorubicin

6. References

- [1] APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.
- [2] SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.
- [3] SADABS. Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- [4] G. M. Sheldrick, Acta Cryst. A, 2015, **71**, 3.
- [5] G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3
- [6] K. Brandenburg, *Diamond Crystal and Molecular Structure Visualization*, Crystal Impact Dr. H.
 Putz and Dr. K. Brandenburg GbR, Bonn, Germany, 2014.
- [7] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281.
- [8] (a) R. A. Sheldon, Green Chem., 2007, 9, 1273; (b) R. A. Sheldon, Chemtech., 1994, 38; (c) R. A. Sheldon, Chem. Ind., 1997, 12.
- [9] B. M. Trost, Angew. Chem., Int. Ed., 1995, 34, 259.
- [10] P. Baldrian, *FEMS Microbiol Rev.*, 2006, **30**, 215.
- [11] S. Nicotra, A. Intra, G. Ottolina, S. Riva and B. Danieli, *Tetrahedron: Asymmetry*, 2004, 15, 2927.