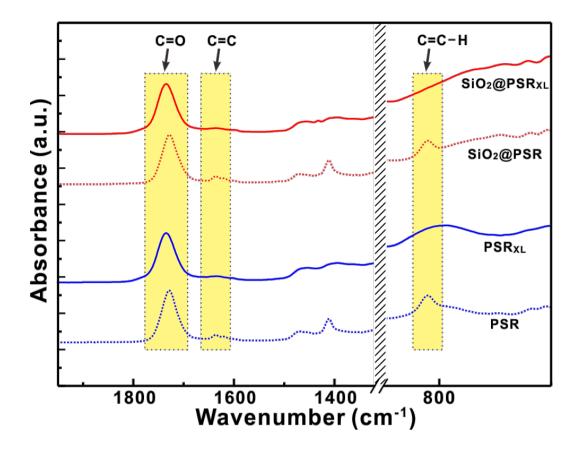
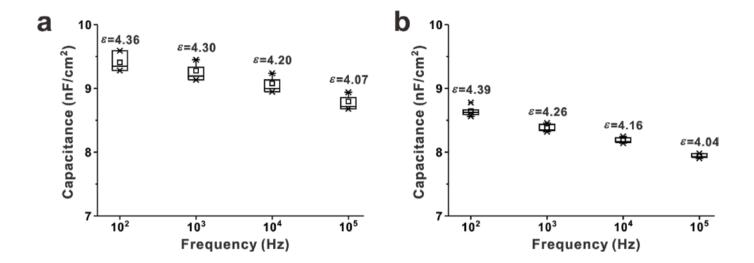
Supporting Information


Dually Crosslinkable SiO₂@Polysiloxane Core-Shell Nanoparticles for Flexible Gate Dielectric Insulators

Eunkyung Lee^{a,c}, Jiyoung Jung^a, Ajeong Choi^a, Xavier Bulliard^a, Jung-Hwa Kim^b, Youngjun Yun^a, Jooyoung Kim^a, Jeongil Park^a, Sangyoon Lee^a, Youngjong Kang^{*c}


^a Material research center, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea.

^b Platform Technology Lab, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea.

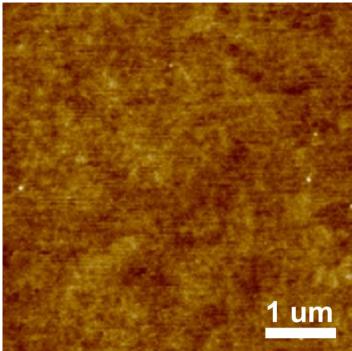

^c Department of Chemistry, Research Institute for Natural Sciences, Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 133-791, Korea e-mail: youngikang@hanyang.ac.kr

Figure S1. FT-IR spectra of PSR, PSR_{XL}, SiO₂@PSR and SiO₂@PSR_{XL}. The peaks at 1637 cm⁻¹ and 810 cm⁻¹ assigned to ethylene group of MPTS disappeared after photo-crosslinking process, while the carbonyl peak at 1727 cm⁻¹ was slightly shifted to 1733 cm⁻¹ with the same intensity.

Figure S2. The changes of capacitance and dielectric constant as a function of frequency for the MIM devices based on a) PSR_{XL} and b) $SiO_2@PSR_{XL}$. The layer thickness of PSR_{XL} and $SiO_2@PSR_{XL}$ was 4100 Å and 4500 Å, respectively.

Figure S3. AFM micrograph of SiO₂@PSR_{XL} film coated on a glass substrate. The RMS roughness is 4.5 Å.