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A comprehensive simulation model based on the Boltzmann transport equation and the Callaway 

model1 for thermal conductivity was presented in the article to calculate the thermoelectric 

characteristics of both AlxGa1-xAs. and GaxIn1-xP materials. The details of our computational 

approach for AlxGa1-xAs can be found in ref. [2]. Here we describe our attempts and results to 

model the thermoelectric properties of GaxIn1-xP. We optimized our model by fitting the empirical 

data of Hall electron mobility versus temperature and carrier concentration [3,4,5] as well as 

thermal conductivity versus both composition and temperature [6,7,8,9]. The resulted set of 

material parameters were used for both electrical and thermal properties calculations. Therefore, 

the model parameters were validated based on the main transport quantities. The input data to the 

model calculations were the band structure parameters, doping concentration, the range of 

temperature, and the composition. All calculations were based on three conduction energy bands. 

The determined model parameters for GaxIn1-xP are given in Tables I and II.  

The values of the band related properties are given in Table I. These parameters were kept constant 

in all the calculations versus composition, carrier concentration and temperature. The second sets 

of parameters which are lattice dependent and directly affect the lattice thermal conductivity are 

presented in Table II. The primary step in our calculations is proving the robust evidences about 

reliability of our model to accurately predict the thermoelectric properties of GaxIn1-xP system and 

to obtain a satisfactory fit of the experimental data. In order to show this reliability, we made an 

effort to fit the previously reported data for GaxIn1-xP material including Hall electron mobility 

versus composition, thermal conductivity versus temperature, and thermal conductivity versus 

composition.  

Figure S1-(a, b) present the experimental and calculated electron mobility versus temperature (for 

different doping concentrations) and doping concentration (at different temperatures) for InP, GaP, 
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and GaxIn1-xP. Figure S1-(c) depicts the experimental and calculated thermal conductivity versus 

temperature for GaP and GaxIn1-xP. Figure S1-(d) illustrates the thermal conductivity of GaxIn1-xP 

versus x (Ga content). In all figures (except Figure S1-(d)), the experimental data are shown by 

symbols and the calculated results are displayed by solid lines. In Figure S1-(d), the symbols are 

Adachi’s model calculations of the thermal conductivity versus x and solid line shows our 

calculations [7,8]. A comparison between the experimental and calculated values in all figures 

show good agreements, which evidences the reliability of the predicted properties of AlxGa1-xAs 

and GaxIn1-xP. 

 

 

 
Figure S1: (a, b) The experimental (symbols) and calculated electron mobility (solid lines) for InP, GaP, and 

GaxIn1-xP, respectively, versus temperature and doping concentration. (c, d) The experimental (symbols) 

and calculated (solid lines) lattice thermal conductivity of GaP and GaxIn1-xP versus temperature. (d) The 

calculated from ref [9, 10] (symbols) and our calculated (solid line) lattice thermal conductivity of GaxIn1-

xP versus x. 
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Table I: GaxIn1-xP lattice parameters used to calculate the electrical conductivity 
Parameter Value Reference 

Static dielectric constant  13.18-3.12x [10] 

High frequency dielectric constant 11.6-3.44x [10] 

Bulk modulus (N/m2) (7.1+1.7x)×1010 [9] 

Mass density (kg/m3) 4810-670x [9] 

Energy at Γ point 1.418+0.77x+0.648x2 [11] 

Energy at L point 1.958-0.019x+0.688x2     [11] 

Energy at X point 2.369-0.152x+0.147x2 [11] 

Conduction band (CB) effective mass at Γ for GaP 0.09 [9] 

CB longitudinal effective mass at L for GaP 1.2 [9] 

CB transverse effective mass at L for GaP 0.15 [9] 

CB longitudinal effective mass at X for GaP 1.12 [9] 

CB transverse effective mass at X for GaP 0.22 [9] 

CB effective mass at Γ for InP 0.08 [9] 

CB longitudinal effective mass at L for InP 0.25 [9] 

CB transverse effective mass at L for InP 0.25 [9] 

CB longitudinal effective mass at X for InP 0.32 [9] 

CB transverse effective mass at X for InP 0.32 [9] 

Valence band (VB) effective mass (heavy hole) 0.60+0.19x [9] 

VB effective mass (light hole) 0.089+0.051x [9] 

CB acoustic phonon deformation potential (eV) 5.1+7.6 x [10] 

VB acoustic phonon deformation potential (eV) -5.1+17.8 x [10] 

Strain parameter for point defect scattering 20 [7] 

CB acoustic phonon deformation potential (eV) 5.1+7.6x [10] 

VB acoustic phonon deformation potential (eV) -5.1+17.8x [10] 

CB non-parabolicity  (eV-1) for L, Γ, X 0.5, 0.5, 0.5 This work 

VB non-parabolicity   (eV-1) 0.83 This work 

 

 
Table II: GaxIn1-xP lattice parameters used to calculate the lattice thermal conductivity 

Parameter Value Reference 

Debye temperature (K) 301+144x [9] 

Bulk modulus (N/m2)  (7.1+1.7x)×1010 [9] 

Mass density (kg/m3) 4810-670x [9] 

CB acoustic phonon deformation potential (eV) 5.1+7.6x [10] 

VB acoustic phonon deformation potential (eV) -5.1+17.8x [10] 

Strain parameter for point defect scattering 20 [7] 

Grüneisen parameter  0.045+0.055x This work 

Higher order phonon scattering 3-0.4x This work 

Ratio of normal to Umklapp scattering  1.0 This work 

 

 
I. Relaxation times 

The scattering processes in a material are taken into account by relaxation times. Various 

approximations of the relaxation times can be found in the literature.12,13 The relaxation times 

used here incorporate nonparabolicity of the band. The relaxation time for the ionized impurity 

scattering is given by following formula12,13  
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.  

The acoustic phonon scattering rate was calculated based on the effective deformation potential 

approximation.14 

The scattering rates for equivalent and non-equivalent valleys for electron transfer from i to j 

valley are given, respectively, by the following relations:15 
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in which Gij is defined as Gij(Ei, Ef) =
(1+αiEi)(1+αfEf)

(1+2αiEi)(1+2αfEf)
.  Ze, Dij, ωij, ρ and Ef are the number of 

equivalent valleys, deformation potential, the phonon frequency which allows the intervalley 

scattering, density, and Fermi energy, respectively. In case of non-equivalent intervalley 

scattering, Ze − 1 is replaced by Zj which is the number of available final valleys for scattering.  

 

The relaxation time 𝜏𝐷𝑃 for acoustic phonon scattering is:16  
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where 𝐸 is the energy relative to the band edge, 𝛼 is the nonparabolicity parameter, 𝐷(𝐸) is the 

density of states, 𝜌 is the density, 𝑣𝑠is the sound speed, 𝐷𝐴 and 𝐷𝑣 are the conduction-band and 

valence-band deformation potentials, respectively. The values of the charge carrier deformational 

potentials used are listed in Table I.  

The selected materials both are polar materials; so, we also calculated the polar longitudinal 

optical phonon scattering rates using the following relation: 

 

 (5) 

Here 𝑥 = 𝐸/𝑘𝐵𝑇 is the reduced energy, and  𝛽 = 𝛼𝑘𝐵𝑇 is the reduced non-parabolicity. 

 

To obtain the total relaxation time, we applied the Matthiessen’s rule:12  
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II. The main thermoelectric properties 

The formulas were used to calculate the electrical conductivity, Seebeck coefficient, and the 

electronic thermal conductivity as applied in a multiband model of Boltzmann transport theory. 

The electrical conductivity and Seebeck coefficient are given by: 
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is the derivative of Fermi-Dirac distribution function, 𝑥 = 𝐸/𝑘𝐵𝑇 is the reduced energy,  𝛽 =
𝛼𝑘𝐵𝑇 is the reduced non-parabolicity, and 𝜏 is the total scattering time. mnx is the conductivity 

effective mass.16 This procedure is repeated for each temperature, doping concentration, and 

different bands allowing all of the thermoelectric properties to be determined over the desired 

temperature and doping concentration ranges for each band.  For the multiband transport model, 

the effective total electrical conductivity and Seebeck coefficient can be calculated as 
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(9) 

where σi and Si are the electrical conductivity and Seebeck coefficients, respectively, for each 

individual band. The contribution of the carriers of different bands to the thermal transport is 

calculated using the Widemann-Franz law17 
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and the summation is achieved over all contributing bands. The bipolar thermal conductivity can 

be calculated as 
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where 𝑖, 𝑗 are the valley indices, and 𝑆 is the Seebeck coefficient. 

 

 
III. Thermal conductivity 

The formalism introduced by Callaway18 is used to calculate the lattice thermal conductivity: 

 𝑘𝑙=𝑘1 + 𝑘2 (14) 

 

where  𝑘1 and 𝑘2 can be expressed as:  
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in which ћ and kB are Planck’s and Boltzmann constants, respectively. The phonon angular 

frequency, the phonon group velocity (sound velocity), Debye temperature and absolute 

temperature are indicated by 𝜔, 𝑣, 𝜃 , and 𝑇, respectively. 𝜏𝐶  ,  𝜏𝑁 and 𝜏𝑈 represent combined, N 

(resistive), and Umklapp relaxation times, respectively. The ratio of the Umklapp to normal mode 

scattering was set to 0.2 in our model. 

Total thermal conductivity is given by: 
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where 𝑘𝑙 represents the lattice part of thermal conductivity, 𝑘𝑒 indicates the electronic part of it 

and 𝑘𝑏 is the bipolar contribution to the total thermal conductivity. 

The contribution of the charge carriers to the thermal conductivity is calculated considering 

different bands:19 
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which the summation is done over all the involved bands where:  
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In the above mentioned equations kB is the Boltzmann constant, / Bx E k T is the reduced energy,

 α and ( )Bk T   are the non-parabolicity parameters, f BE k T   is the reduced Fermi energy 

and  ( )( ) 1 1xf x e    is the Fermi-Dirac distribution function. The factor (1+2βx) is induced 

due to the energy dependency of the effective mass to the non-parabolic band.   

The bipolar thermal conductivity is calculated according to: 19 

 2 21 2
1 2

1 2

( ) ( )B
b

k
k S S T

e

 

 
 


 (22) 

where 1 and 2 indices refer to electrons and holes.  

 
IV. Optimum doping concentration 

For the case of AlxGa1-xAs, at x<0.26, zT vs doping concentration has two peaks, the first one is 

in the 1019 cm-3 range and second one is in 1020 cm-3 range. In this range of x, the first zT peak is 

larger. At 0.26<x<0.4, zT vs doping concentration still has two peaks, but the second zT peak is 

larger. At x>0.4, zT vs doping concentration has only one peak. The optimum doping 

concentration for the two peaks are plotted in Figure S2S-a.  

 
                Figure S2: The optimum doping concentration versus composition for (a) AlxGa1-xAs and (b) 

GaxIn1-xP. 

Also, for In1-xGaxP, we calculated the optimum doping concentration for each x value, which is 

shown in Figure S2S-a.  

 
V. Figure-of-merit versus composition 
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Figure S3 demonstrates the figure-of-merit versus composition for AlxGa1-xAs (panel (a)) and GaxIn1-xP 

(panel (b)). The zT calculations for fixed doping values of 1.05×1019 cm-3 and 1.5×1020 cm-3, respectively, 

for AlGaAs and InGaP are also shown by dotted lines. In practice, it is difficult to reach doping in the 

range of high 1020 cm-3 in AlGaAs. Therefore, the 2nd zT peak for AlGaAs is difficult to reach. The 

calculated zT for the 1st peak is very close to the zT calculation assuming the fixed doping. Therefore, we 

reported the transport properties for a fixed practical doping concentration (~1019 cm-3) for all the x values 

in the main manuscript. 

It is evident that in GaInP the optimum doping curve has a negligible difference with the fixed doping 

curve. Therefore, the transport properties were reported for the fixed doping concentration of 1.5×1020 

cm-3 in the main manuscript. 

 

Figure S3: Figure-of-merit versus composition for (a) AlxGa1-xAs and (b) GaxIn1-xP. 
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