Supporting Information for

Fabrication of Co₃O₄ Nanoparticles in Thin Porous Carbon shell from Metal-Organic Frameworks for Enhanced Electrochemical Performance

Bin Qiu^a, Wenhan Guo^a, Zibin Liang^a, Wei Xia^a, Song Gao^a, Qingfei Wang^a, Xiaofeng Yu^a, Ruo Zhao^a and Ruqiang Zou^{a*}

B. Qiu, W. Guo, Q. Wang, Prof. R. Zou
[a] Beijing Key Laboratory for Theory and Technology of Advanced Battery
Materials, Department of Materials Science and Engineering, College of Engineering,
Peking University, Beijing 100871, P. R. China
E-mail: rzou@pku.edu.cn

Fig. S1. XRD patterns of as-synthesized Co-MOF-74.

Fig. S2. SEM images of nanorod Co-MOF-74 synthesized by hydrothermal method.

Fig. S3. (a) N_2 sorption/desorption isotherms, and (b) pore size distribution of the as-synthesized

Co-MOF-74 nanorods.

Fig. S4. Thermogravimetric analysis (TGA) result of Co-MOF-74 under N₂.

Fig. S5. XRD patterns of Co@C nanocomposites.

Fig. S6. SEM images of as-synthesized Co@C nanocomposites.

Fig. S7. Thermogravimetric analysis (TGA) result of Co@C composites under CO₂ and Air

atmosphere.

Fig. S8. Raman spectrum of as-synthesized Co@C, Co₃O₄, Co@CoO@C and Co₃O₄@C

composites.

Fig. S9. (a) N₂ sorption/desorption isotherms, and (b) pore size distribution of the as-synthesized.

Fig. S10 The equivalent-circuit model of three samples for as-prepared batteries.

Samples	C (wt%)
Co@C	12.38
Co ₃ O ₄	0.15
Co@CoO@C	10.7
$\mathrm{Co}_3\mathrm{O}_4$ ($\mathrm{@C}$	3.17

Table S1. The carbon content in the obtained samples from element analysis

Table S2. Comparison of the capacity of present work with the reported $Co_3O_4@C$ electrode materials derived from metal organic frameworks

Samples	Current	Cycle	Capacity	Ref.
	density	number		
Co ₃ O ₄ hollow	100 mA g ⁻¹	100	1355 mAh g ⁻¹	1
dodecahedrons				
Co ₃ O ₄ hollow dodecahedra	100 mA g ⁻¹	100	780 mAh g ⁻¹	2
Co ₃ O ₄ nanoparticles	50 mA g ⁻¹	50	965 mAh g ⁻¹	3
Co ₃ O ₄ composites	200 mA g ⁻¹	60	913 mAh g ⁻¹	4
MWCNTs/Co ₃ O ₄	100 mA g ⁻¹	100	813 mAh g ⁻¹	5
nanocomposite				
Co ₃ O ₄ /C nanosheets	100 mA g ⁻¹	100	1082 mAh g ⁻¹	6
Co ₃ O ₄ @C composites	100 mA g ⁻¹	100	1137 mAh g ⁻¹	This work

- J. Shao, Z. M Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu and H. H. Zheng, *J. Mater. Chem. A*, 2014, **2**, 12194-12200.
- 2 R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. L. Ya, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang and Y. Z. Huang, *Small*, 2014, 10, 10, 1932-1938.
- 3 B. Liu, X. B. Zhang, H. Shioyama, T. Mukaia, T. Sakaia and Q. Xu, J. Power Sources, 2010, 195, 857-861.
- 4 C. Li, T. Q. Chen, W. J. Xu, X. B. Lou, L. K. Pan, Q. Chen and B. W. Hu, J. Mater.

Chem. A, 2015, **3**, 5585-5591.

- 5 G. Huang, F. F. Zhang, X. C. Du, Y. L. Qin, D. M. Yin and L. M. Wang, ACS Nano, 2015, 9, 2, 1592-1599.
- W. Liu, H. Z. Yang, L. Zhao, S. Liu, H. L. Wang, S. G. Chen, *Electrochim. Acta*, 2016, 207, 293-300.