Supporting Information

Pyridine C3-arylation of nicotinic acids accessible via multicomponent reaction: An entry to all-substituted-3,4diaryled pyridines

Sankar K Guchhait,^a Neha Hura,^a Kanchan Sinha^b and Dulal Panda^b

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali)–160062, India E-mail: <u>skguchhait@niper.ac.in</u>; Fax: +91 172 2214692; Tel: +91 172 2214683

^bDepartment of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Contents

1. Dehydrogenative aromatization reactions utilizing different conditions (Table1)	S3
2. Optimization for mono-hydrolysis of compound 4a (Table 2)	S3
3.Inhibition of cell proliferation upon treatment of HeLa cells with 5 µM compounds (Table 3)	S4
4. Effects of compounds 8b , 8f , 8j , 8p on the assembly of tubulin <i>in vitro</i> (Figure 1)	S5
5. References	S5
6. NMR spectra of compounds (3a , 4a , 5a , 8a-8t)	S6

1. Dehydrogenative aromatization reactions utilizing different conditions (Table1)

Entry	Reaction conditions ^a	Time (h)	% Yield ^b
11	NaClO ₂ (1.5 equiv), EtOH:Water(1:1), conc. HCl (0.2 mL), 20 °C	3	70
22	Mn(OAc) ₃ , (2 equiv), AcOH (5 mL), rt	2	90
33	Fe(ClO ₄) ₃ (2 mol%), AcOH (5 mL), rt	4	60

^a Reaction was done at 1 mmol scale, ^bYield obtained after recrystallization

2. Optimization for mono-hydrolysis of compound 4a (Table 2)^{4,5}

Entry	Base (equiv)	Solvent	T (°C)	Yield $(\%)^b$		
				Monoacid	Diacid	Substrate recovered
1	KOH(2)	EtOH:Water (3:1)	80	50	29	20
2	KOH(2)	EtOH:Water (3:1)	65	60	20	20
3	KOH(2)	EtOH:Water (3:1)	50	65	7	26
4	NaOH(2)	EtOH:Water (3:1)	50	67	5	27
5	KOH(2)	EtOH	50	55	25	20
6	KOH(2)	MeOH	50	60	30	10
7	NaOH (2)	THF:Water (1:10)	0-50	0	0	100
8	KOH(2), TBAB(1)	EtOH:Water (3:1)	50	65	10	25

^a Reactions were performed at 0.5 mmol scale, reaction time 24 h; ^b Isolated yield

3. Inhibition of cell proliferation upon treatment of HeLa cells with 5 μ M compounds (Table 3)

Diaryled-	% Inhibition
pyriaine	
compounds	
(5μM)	
8a	11±9
8b	64±5
8c	52±5
8d	50±10
8e	3±2
8f	73±5
8g	41±12
8h	45±11
8i	40±11
8j	65±8
8k	8±4
81	60±2
8m	47±15
8n	8±2
80	48±10
8р	64±2
8q	54±12
8r	28±3
8s	18±3
8t	29±19

4. Effects of compounds 8b, 8f, 8j, 8p on the assembly of tubulin in vitro

Figure 1: Effects of compounds 8b, 8f, 8j, 8p on the assembly of tubulin *in vitro*. Tubulin($12 \mu M$) was polymerized in the presence of 1 mM GTP and 10% DMSO without or with 20 μM of compound 8b, 8f, 8j, 8p. Three independent sets of experiments were performed for each compound. Here is one of the representative set.

5. References

- 1. R. S. Varma and D. Kumar, *Tet. Lett.*, 1999, 40, 21.
- 2. X. Liao, W. Lin, J. Lu and C. Wanga, Tet. Lett., 2010, 51, 3859.
- 3. M. M. Heravi, F. K. Behbahani, H. A. Oskooie and R. H. Shoar, Tet. Lett., 2005, 46, 2775.
- 4. J. Duan, X. Song, H. Yan and X. Song, *Molecules*, 2011, 16, 3845.
- 5. M. Chouhan, R. Sharma and V. A. Nair, Org. Lett., 2012, 14, 5672.

6. NMR spectra of compounds (3a, 4a, 5a, 8a-8t)

Scheme 1, (3a): ¹H NMR

Scheme 1 (3a): ¹³C NMR

Scheme 4, Entry 1 (8a): ¹H NMR

Scheme 4, Entry 3 (8c): ¹³C NMR

Scheme 4, Entry 5 (8e): ¹H NMR

Scheme 4, Entry 11 (8k): ¹³C NMR

Scheme 4, Entry 13 (8m): ¹H NMR

Scheme 4, Entry 14 (8n): ¹³C NMR

Scheme 4, Entry 16 (8p): ¹H NMR

Scheme 6, 8s: ¹H NMR

