RSC Advances

Supplementary Information

Intercalation behaviour of magnesium into natural graphite using organic electrolyte systems

C. God ^a, B. Bitschnau ^b, K. Kapper ^a, C. Lenardt ^a, M. Schmuck*^a, F. Mautner ^b, S. Koller ^a

^{a.} VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz, Austria. E-mail: martin.schmuck@vartamicroinnovation.com; phone: +43 (0) 316-873-32391; fax: +43 (0) 316-873-32387

^{b.} Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria

Results and discussion

Conductivity and viscosity measurement

Figure S1: Conductivity measurement for different Mg(TFSI)₂-salt concentrations in DMF at temperatures from -20°C to +60°C showing a conductivity maximum for the electrolyte 0.5 M Mg(TFSI)₂/DMF at all temperatures.

Figure S2: Viscosity measurement for different $Mg(TFSI)_2$ -salt concentrations in DMF at temperatures from -20°C to +60°C showing a conductivity maximum for the electrolyte 0.5 M Mg(TFSI)_2/DMF at all temperatures.

Electrochemical experiments

Figure S3: Cyclic voltammogram of a natural graphite electrode with 0.5 M Mg(TFSI)₂/DMF electrolyte at different vertex potentials: -0.2 V and -0.25 V vs. Mg/Mg²⁺.

Figure S 4: Cyclic voltammogram of a natural graphite electrode with 0.5 M Mg(TFSI)₂/Dimethylacetamide, 0.5 M Mg(TFSI)₂/Dimethoxyethane, 0.5 M Mg(TFSI)₂/Triethyleneglycoldimethylether, 0.5 M Mg(TFSI)₂/Dimethylsulfoxid, 0.5 M Mg(TFSI)₂/Propylenecarbonate, 0.5 M Mg(TFSI)₂/DMA, 0.5 M Mg(TFSI)₂/Sulfolane electrolyte at scan rate of 0.05 mV·s⁻¹.