RSC Advances

ARTICLE

Structure-Activity Relationships of Cu-ZrO₂ Catalysts for CO₂ Hydrogenation to Methanol: Interaction Effects and Reaction Mechanism

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

Yu Hao Wang ^{a,b}, Wen Gui Gao ^{a,b}*, Hua Wang ^{a,b}, Yan E Zheng ^{a,b}, Wei Na ^{a,b}, Kong Zhai Li ^{a,b}

www.rsc.org/

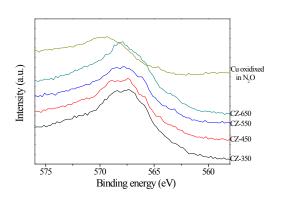
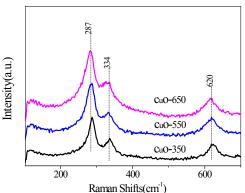
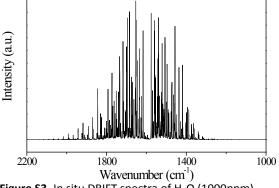
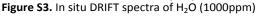
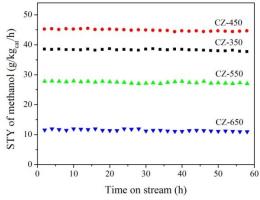
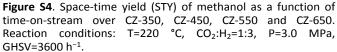


Figure S1. The change in the Cu L3VV Auger line for the reduced CZ catalyst and Cu oxidixed in $\mathsf{N}_2\mathsf{O}$


Figure S2. Raman spectra of various CuO calcinated at 350, 550 and 650 $^\circ\text{C}.$


^{a.} State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China. E-mail: Wengui Gao(gao_wengui@126.com)

^{b.} Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Stability is a key factor in determining whether the Cu/ZrO₂ materials can be used as methanol synthesis catalyst for CO₂ hydrogenation reaction in industrial production. Figure S4 shows the STY versus the time-on-stream of methanol over four catalysts: CZ-350, CZ-450, CZ-550 and CZ-650. It was found that the STY for methanol decreased by less than 3% from its initially stabilized values. It was obvious that the CZ catalysts exhibited a stable catalytic performance for the whole test period.

