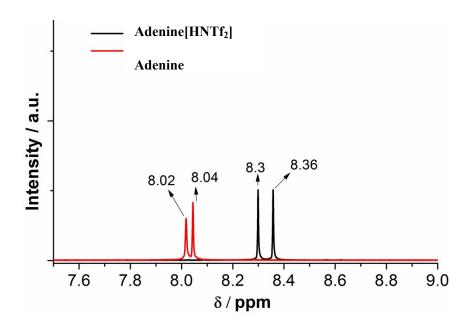
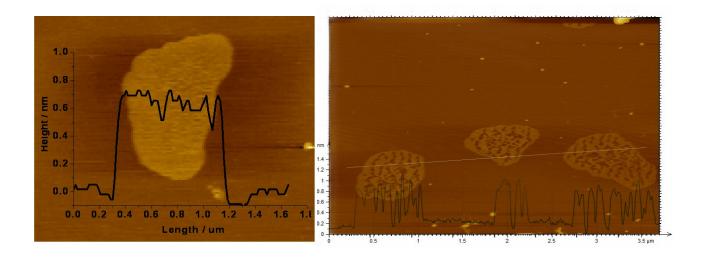

Supporting information


2D quasi-ordered nitrogen and sulfur co-doped carbon materials from ionic liquid as metal-free electrocatalysts for ORR

Bao-Bing Huang¹, Zhi-Yong Luo¹, Jun-Jun Zhang², and Zai-Lai Xie^{1*}


Table S1. Characteristics of nitrogen doped carbons from ILs.					
ILs	T of decomposition	Carbonization	Carbonization	yield	Adenine
	[°C]	yield[%][a]	[%][b]		percentage [%][c]
A	290	0	-		100
A+HNTf ₂	306.9	24.5	21.5		24.6
[a]TG yield at 500 °C. [b]Oven yield. [c]Theoretical value of adenine wt% for respective precursors.					

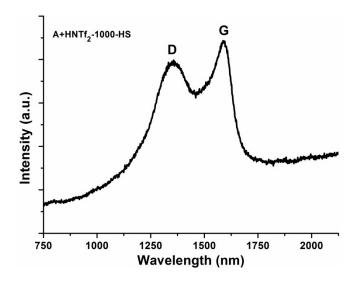

Figure S1. TGA and DSC profiles of adenine and adenine-based ionic liquids under flowing argon with a ramp rate of 5 °C min⁻¹.

Figure S2. HNMR spectra of adenine and adenine[HNTf₂] precursors.

Figure S3. AFM image of the ionothermal carbon from A+HNTf₂.

Figure S4. Raman spectrum of the ionothermal carbon from A+HNT f_2 carbonized at 1000 °C.