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Supplementary materials

S1 - SAXS analysis

The Porod invariant is defined in the Equation S1.  

𝑄 =
∞

∫
0

𝑞2𝐼(𝑞)𝑑𝑞 = 2𝜋2𝑉0(∆𝜌2) Equation S1

Where, (Δρ2) = (ρ1-ρ2)2φ1φ2 is the contrast in binary system 53. The ρ1 and ρ2 

correspond to the density of both phase 1 and 2, respectively, while φ1 and φ2 represent the 

volume ratio of each phase. In other words, the beam scattering happened at the interface of 

the different phases. In a typical ex-situ experiment, the vacancy of porous material was filled 

with air 61. So the ρ2 is the density of air while φ2 is the porosity of material. 

The contrast (Δρ2) was therefore modified in order to satisfy trinary phase system 

(Equation S2). 

(∆𝜌2) = (𝜌1 ‒ 𝜌2)2𝜑1𝜑2 + (𝜌1 ‒ 𝜌3)2𝜑1𝜑3 + (𝜌3 ‒ 𝜌2)2𝜑3𝜑2 Equation S2

Where the ρ1 and φ1 represent the density and volume ratio of pristine brass phase 

respectively; while the ρ2 and φ2 represent those of the vacancy phase which is filled by 

solution and the ρ3 and φ3 correspond to the ligament phase. A number of assumptions were 

introduced to simplify the data analysis.

The Kratky plot was calculated from Equation S3 and S4. 

𝑄 =
0.2

∫
0

𝑞2𝐼(𝑞)𝑑𝑞 Equation S3

Then, 
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𝑄(𝑡) =
0.2

∫
0

𝑞2𝐼(𝑞,𝑡)𝑑𝑞 Equation S4

In Equation S5, t corresponds to the duration. At t = 0, then I(q,t) = I0(q), which yields 

the background invariant Q0. The porous layer invariant Qp(t) is therefore calculated by the 

difference between Q(t) and Q0.

𝑄𝑃(𝑡) = 𝑄(𝑇) ‒ 𝑄0 =  
0.2

∫
0

𝑞2 [𝐼(𝑞,𝑡) ‒ 𝐼0(𝑞) ]𝑑𝑞 Equation S5

Since only the porous part will scatter in the given q range observed the difference 

value between I(q,t) – I0(q) is theoretically nill, except in the peak area. In other words, only 

the area under the knee is relevant and may be integrated, to further simply the system, from 

0 to 0.2 Å-1 (Equation S6).

𝑄𝑃(𝑡) =  ∫
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎

𝑞2 [𝐼(𝑞,𝑡) ‒ 𝐼0(𝑞) ]𝑑𝑞 Equation S6

The Q invariant was determined from the Kratky plot data. Specifically, I”(q,t) was 

defined as, I”(q,t) = (I’(q,t)+I’b(t)) * I0(q). Since the value interval of original I0(q) is ranging 

from 0.003 Å-1 to 0.2 Å-1, the I0’(q) was obtained by extrapolating I0(q) with the Boltzmann 

equation, which yielded Equation S7.

𝑄𝑃(𝑡) =  
𝑃𝑒𝑎𝑘 𝑒𝑛𝑑

∫
𝑃𝑒𝑎𝑘 𝑠𝑡𝑎𝑟𝑡

𝑞2 [𝐼"(𝑞,𝑡) ‒ 𝐼0'(𝑞) ]𝑑𝑞 Equation S7
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The Qp(t) is regarded as the scattering energy on the de-alloyed part of the sample if 

assuming the background is constant (assumption still valid in this case, largely within 

experimental error). Therefore, the scattering volume of the de-alloyed part was obtained by 

inputing the Qp(t) into Equation 4.1. Regarding the dense part of the sample, or the non-

dealloyed part, which is still part of the background signal, the contrast (Δρ)2 can be 

simplified into a simple binary system, which is (Δρ2) = (ρ1-ρ2)2φ1φ2.

In the Porod’s law, the intensity I(q) is proportional to the scattering vector q in high 

q, while the relative surface area S is the coefficient (Equation S8).

𝐼(𝑞)~ 𝑆 𝑞 ‒ 4 Equation S8 

The interval of validity of the Porod law should in theory be smaller than 0.1 Å-1 since 

the scattering features in this range would be attributed to interfaces rather than atoms or 

bonds. Here, the Porod’s law was used to reveal the surface area of the ligaments. Therefore, 

the scattering vector interval of interest was taken for the Porod law outside the range of the 

main knee area, and close to 0.1 Å-1.

The Guinier analysis allows for the direct estimation of two SAXS invariants, the 

radius-of-gyration, Rg, and the extrapolated intensity at zero scattering angles, I(0) (Equation 

S9).

ln I(𝑞) = ln 𝐼(0) ‒
𝑅𝑔

2

3
∙ 𝑞2 Equation S9 

Where the Rg in Radius of Gyration, the q is scattering vector and I is the scattering intensity 

which is the function of q. The q·Rg should typically be smaller than 1.3 according to the 
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most common definition of Rg 52, 62. Since I(0) is constant, the can be simplified and 

converted into Equation S10.

ln 𝐼(𝑞)~ ‒
𝑅𝑔

2

3
∙ 𝑞2 Equation S10 

The probed volume V0 of the sample corresponds to the beam size multiplied by the 

thickness of the sample. So, the scattering volume Vs = V0 φ1(t). Therefore, as shown in 

Equation S11:

𝑆𝑄~𝑉𝑠 (𝑡)𝜑2(𝑡) lim
𝑞→∞

(𝑞4𝐼(𝑞)) Equation S11

Where, 

lim
𝑞→∞

(𝑞4𝐼(𝑞)) →𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Then, 

𝐴𝑄~𝑉𝑠(𝑡)[1 ‒ 𝜑1(𝑡)] Equation S12

The plot A x Q against the process duration, is provided in Figure 6. 

During the Au-Ag in-situ dealloying tests, the solid phase ratio increased with process 

progressing but the increase rate was negatively correlated to the solution temperature. The 

dissolution rate of atoms is proportional to the solution temperature. 
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Figure S1. (a) Schematic of the flow cell and (b) schematic of the in-situ chemical DA 

experiment on the SAXS beam line
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Figure S2. The SAXS patterns of in-situ dealloying test on Au-Ag alloy with 0.6 m camera 

lens. De-alloyed with 10% HNO3 at 20 °C
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Figure S3. Phase diagram of Au-Ag (re-phase from 56). Solid line: AuAg50
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Figure S4. Surface morphology of pristine 120 nm AuAg50 ultra-thin foil. (a) SE IMAGES 

image; (b) AFM mapping
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Figure S5. (a) EBSD orientation map of pristine 120 nm AuAg50 ultra-thin foil; (b) 

Misorientation angle distribution
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Figure S6. Pole figures and Inverse pole figure of pristine 120 nm AuAg50 ultra-thin foil for 

fibre texture analysis. (a) PF; (b) contoured PF; (c) IPF; (d) contoured IPF
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Temperature Start End

5 °C 1500 s 2400 s

20 °C 450 s 900 s

40 °C 30 s 240 s

60 °C 0 s 180 s

Figure S7. Example of three stages of in-situ test shown in SAXS pattern. The sample SAXS 

pattern is the 5 °C de-alloyed AuAg50 leaf, de-alloyed with 10% HNO3. The arrow 

displayed on (b) and (c) shown to the trend of intensity change with process progressing. The 

table shows the boundaries of transformation period for each sample.
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First layer
Porosity 50%

Second layer
Porosity 50%

Overlapped
Porosity <50%

Figure S8. Schematic of the different overlapping dealloyed layers constituting the material. 

This aspect of the structure is rationalized to explain the difference in surface porosity 

calculated from the SE IMAGES analysis 

Table S1. Analysed results of de-alloyed Au-Ag for both image analysis and Irena size 

distribution of pores

ImageJ analysing Irena modelling
Rg (nm) average radius 

(nm) average diameter (nm) mean diameter (nm)

5 ºC 10.5 15.4 30.7 30.96

20 ºC 15.8 17.1 34.2 34.56

40 ºC 17.3 21.7 43.4 47.82

60 ºC 24 27.3 54.5 54.90
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Figure S9. Screen-shot of modelling with Irena


