Electronic supplementary information

Ideal strength and elastic instability in single-layer 8-Pmmn Borophene

Junhui Yuan, ${ }^{a}$ Niannian Yu, ${ }^{b}$ Kanhao Xue,* ${ }^{a}$ Xiangshui Miao ${ }^{a}$

${ }^{a}$ School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
${ }^{b}$ School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
(a)

$-0-0-0-0-0-0-0$

8
8
8
8
8
8
8

Fig. ESI1 Top view and side view of (a) striped, (b) β_{12} and (c) χ_{3} borophene.

Table ESI1 Calculated lattice constant a and b, buckling height h, and energy E of 8Pmmn, stripe, β_{12} and χ_{3} borophene. Previous theoretical data are also listed for comparison.

Structure	$a(\AA)$	$a(\AA)$	$h(\AA)$	$E(\mathrm{eV} / \mathrm{atom})$	$E c(\mathrm{eV} / \mathrm{atom})$
$8-$ Pmmn borophene	4.523	3.258	2.18	-6.325	-6.038
Ref. 1	4.52	3.26	--	-6.394	--
stripe borophene	1.614	2.868	0.907	-6.187	-5.900
β_{12} borophene	5.070	2.928	0	-6.232	-5.945
χ_{3} borophene	4.459	4.459	0	-6.244	-5.957
stripe borophene 13	1.614	2.866	0.911	--	-6.099
stripe borophene 1	1.61	2.87	--	-6.242	--
β_{12} borophene 13	5.07	2.93	0	--	-6.147
β_{12} borophene 1	5.08	2.92	--	-6.282	--
χ_{3} borophene 13	4.45	4.45	0	--	-6.159

(a)

(b)

Fig. ESI2 The calculated bond length of 8-Pmmn borophene. The five types B-B bonds ($l_{1}, l_{2}, l_{3}, l_{4} l_{5}$) are shown in Fig.ESI2 (a), (b) and (c); the corresponding B-B bond length is shown in Fig.ESI2 (d). The l_{1} represent $\mathrm{B}_{\mathrm{R}}-\mathrm{B}_{\mathrm{R}}$ bond length, l_{2} and l_{4} represent two different $\mathrm{B}_{\mathrm{R}}-\mathrm{B}_{\mathrm{I}}$ bond lengths, l_{3} and l_{5} represent two different $\mathrm{B}_{\mathrm{I}}-\mathrm{B}_{\mathrm{I}}$ bond lengths.

(a) Intrinsic

$$
\varepsilon=0.04
$$

a) orros

101
020
$\varepsilon=0.08$

$0^{0} \cos \cos 0$ rogioll ${ }^{100} 0^{01}$

$$
\varepsilon=0.12
$$

0.00100
10.001 eran

$$
\varepsilon=0.135
$$

(b) Biaxial strain $(\varepsilon=0.04,0.08,0.12,0.135)$

$$
\varepsilon=0.04
$$

$$
\varepsilon=0.08
$$

$$
\varepsilon=0.16
$$

(c) Uniaxial strain along $a(\varepsilon=0.04,0.08,0.12,0.16)$

$$
\varepsilon=0.12
$$

$$
\varepsilon=0.165
$$

(d) Uniaxial strain along $\boldsymbol{b}(\boldsymbol{\varepsilon}=\mathbf{0 . 0 4}, 0.08,0.12,0.165)$

Fig. ESI3 The calculated valence electron density of 8-Pmmn borophene under three types of strain with two different isosurfaces. The isosurfaces of upper panel is $0.07 \mathrm{e} / \mathrm{bohr}^{3}$, the lower panel is $0.10 \mathrm{e} / \mathrm{bohr}^{3}$, respectively. (a) (001), (010) and (100) plane without strain; (b) (001), (010) and (100) plane under biaxial strain; (c) (001), (010) and (100) plane under uniaxial along a direction; (d) (001), (010) and (100) plane under uniaxial along b direction.

References

[1] Ma F, Jiao Y, Gao G, et al. Graphene-like Two-dimensional Ionic Boron with Double Dirac Cones at Ambient Condition[J]. Nano Letters, 2016, 16(5):3022.

