Supporting Information

Pd-ZnO Nanowire Arrays as Recyclable Catalysts for 4-Nitrophenol Reduction and Suzuki Coupling Reactions

Qiyan Hu,^{a,b} Xiaowang Liu,^{*a} Lin Tang,^{a,b} Dewen Min,^a Tianchao Shi^a and Wu Zhang^{*a}

^aCollege of Chemistry and Materials Science, Anhui Normal University, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, P.R. China

^bSchool of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China

E-mail: zhangwu@mail.ahnu.edu.cn; xwliu601@mail.ahnu.edu.cn

Content

Characterization of ZnO@Zn and Pd-ZnO nanowire arrays	2-3
Additional data on Pd-ZnO@Zn nanowire arrays toward 4-nitrophenol reduction	n 4
Characterization of recycled Pd-ZnO@Zn nanowire arrays	5
Characterization data for the products	6-11
¹ H and ¹³ C NMR spectra of the products	12-38
References	39

Characterization of ZnO@Zn and Pd-ZnO@Zn nanowire arrays

Figure S1. (a and b) Representative SEM images of as-prepared ZnO@Zn nanowire arrays for Pd nanoparticle loading and (c) TEM image of a single ZnO nanowire removed from the nanowire arrays by sonication.

Figure S2. HRTEM images of Pd-ZnO nanowire arrays obtained by immersing ZnO@Zn nanowire arrays into an aqueous solution of Na_2PdCl_4 (5 mM) for different periods of time: (a) 5 s; (b) 15 s; and (c) 25 s.

Figure S3. XRD patters of ZnO nanowire arrays before and after the growth of Pd NPs. Note that the diffraction patterns for Pd and Zn (from the substrate) are labeled with "★" and "▲", respectively.

Additional data on Pd-ZnO@Zn nanowire arrays toward 4-nitrophenol reduction

Figure S4. UV-vis spectra of 4-nitrophenol before (black curve) and after (red curve) the addition of NaBH₄ solution.

Figure S5. A comparison of the catalytic performance of ZnO@Zn nanowire arrays and Pd-ZnO nanowire arrays prepared by immersing ZnO@Zn nanowire arrays in a Na_2PdCl_4 solution for 5, 15 and 25 s.

Characterization of recycled Pd-ZnO@Zn nanowire arrays

Figure S6. (a) SEM image and (b) XPS profile (Pd 3d) of as-prepared Pd NP-ZnO nanowire arrays after recycled use for 10 times toward 4-nitrophenol reduction.

Figure S7. (a) SEM image and (b) XPS profile (Pd 3d) of as-prepared Pd nanoparticle-ZnO nanowire arrays after recycled use for 3 times toward Suzuki reaction.

Characterization data for the products

Biphenyl (1a)

White solid; m.p. 67–68 °C (lit. m.p. 69-70 °C ^[1]); ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J*=7.8Hz, 4H), 7.45-7.40 (m, 4H), 7.36-7.31 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 128.8, 127.3, 127.2.

4-Methoxybiphenyl (1b)

White solid; m.p. 88–89 °C (lit. m.p. 89-90 °C ^[1]); ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.51 (m, 4H), 7.41 (t, *J* = 7.2Hz, 2H), 7.32-7.30 (m, 1H), 6.97 (d, *J* = 8.4Hz, 2H), 3.84(s, 3H); ¹³C NMR (75 MHz,CDCl₃) δ 159.5, 141.2, 134.1, 129.1, 128.6, 127.1, 127.1,114.6, 55.7.

4-Chlorobiphenyl (1c)

White solid; m.p. 77-78 °C (lit. m.p. 78-78.5 °C ^[2]); ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.49 (m, 4H), 7.46-7.33 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 140.0, 139.7, 133.4, 128.9, 128.9, 128.4, 127.6, 127.0.

4-Methylbiphenyl (1d)

White solid; m.p. 46-47 °C (lit. m.p. 46-47 °C ^[1]); ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 7.2Hz, 2H), 7.49 (d, J = 8.1Hz, 2H), 7.44-7.39 (m, 2H), 7.34-7.31 (m, 1H), 7.25-7.21 (m, 2H), 2.39 (s, 3H); ¹³C NMR(75 MHz, CDCl₃) δ 141.2, 138.4, 137.1, 129.5, 128.8, 127.0, 127.0, 21.2.

4-Methoxy-4'-methylbiphenyl (1e)

White solid; m.p. 109-111 °C(lit. m.p. 108-109 °C ^[3]); ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.43(m, 4H), 7.22 (d, *J* = 7.8Hz, 2H), 6.96 (d, *J* = 8.4Hz, 2H), 3.84 (s, 3H), 2.38(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 138.0, 136.4, 133.7, 129.5, 128.0, 126.6, 114.2, 55.4, 21.1.

4-Chloro-4'-methoxybiphenyl (1f)

White solid; m.p. 110-112 °C (lit. m.p. 115-115.5 °C ^[2]); ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.44 (m, 4H), 7.35 (d, *J* = 8.4Hz, 2H), 6.95 (d, *J* = 8.7Hz, 2H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 139.3, 132.7, 132.5, 128.9, 128.0, 128.0, 114.3, 55.4.

4'-Methoxybiphenyl-4-carbonitrile (1g)

White solid; m.p. 101-103 °C (lit. m.p. 103-105 °C ^[4]); ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.62 (m, 4H), 7.54(d, *J* = 8.4Hz, 2H), 7.00(d, *J* = 8.7Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 145.6, 133.0, 131.8, 128.8, 127.5, 119.5, 114.9, 110.4, 55.8.

4'-Chlorobiphenyl-4-carbonitrile (1h)

White solid; m.p. 125-126 °C (lit. m.p. 125-126 °C ^[2]); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4Hz, 2H), 7.57(d, *J* = 8.4Hz, 2H), 7.45 (d, *J* = 8.4Hz, 2H), 7.37(d, *J* = 8.7Hz, 2H); ¹³CNMR (75 MHz, CDCl₃): δ 144.4, 137.6, 135.0, 132.7, 129.3, 128.5, 127.6, 118.8, 111.3.

Ethyl biphenyl-4-carboxylate (1i)

White solid; m.p. 48-49 °C (lit. m.p. 49-50 °C ^[5]); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1Hz, 2H), 7.67-7.61 (m, 4H), 7.49-7.39 (m, 3H), 4.40 (q, *J* = 6.9 Hz, 2H), 1.41 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 145.9, 140.4, 130.4, 129.6, 129.3, 128.5, 127.7, 127.4, 61.4, 14.8.

1-([1, 1'-biphenyl]-4-yl)ethanone (1j)

White solid; m.p. 118-120 °C (lit. m.p. 122-123 °C ^[3]); ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1Hz, 2H), 7.68-7.60(m, 4H), 7.48-7.39 (m, 3H), 2.62 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 146.2, 140.3, 136.3, 129.4, 129.3, 128.6, 127.7, 127.6, 27.0.

4'-Methoxybiphenyl-4-carbaldehyde (1k)

White solid; m.p. 101-102 °C (lit. m.p. 100-101 °C ^[6]); ¹H NMR (300 MHz, CDCl₃, 25 °C): δ 10.03 (s, 1H), 7.93 (d, *J* = 8.1Hz, 2H), 7.71 (d, *J* = 8.1Hz, 2H), 7.59 (d, *J* = 8.7, 2H), 7.01 (d, *J* = 8.7, 2H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 192.0, 160.1, 146.8, 134.7, 132.0, 130.3, 128.5, 127.1, 114.5, 55.4.

2-Methoxybiphenyl (11)

White solid; m.p. 28-30 °C (lit. m.p. 29-30 °C ^[1]);; ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.42-7.28 (m, 5H), 7.04-6.95 (m, 2H), 3.77(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.5, 138.6, 131.0, 130.8, 129.6, 128.7, 128.1, 127.0, 120.9, 111.3, 55.6.

4'-Chloro-2-methoxybiphenyl (1m)

White solid; m.p. 52-54 °C (lit. m.p. 50-52 °C ^[7]); ¹H NMR (300 MHz, CDCl₃) δ7.46 (d, *J* = 8.4Hz, 2H), 7.37-7.26 (m, 4H), 7.04-6.95 (m, 2H), 3.79(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.4, 137.0, 132.9, 130.9, 130.7, 129.4, 129.0, 128.2, 120.9, 111.2, 55.6.

4, 4"-dimethoxy-1,1':2',1"-terphenyl (1n)

White solid; m.p. 102-104 °C (lit. m.p. 107-108 °C ^[8]); ¹H NMR (300 MHz, CDCl₃) δ 7.37 (m, 4H), 7.06 (d, *J* = 8.4Hz, 4H), 6.76 (d, *J* = 8.4Hz, 4H), 3.77(s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.2, 140.1, 134.1, 130.9, 130.6, 127.2, 113.4, 55.2.

4-(4-Trifluoromethylphenyl)anisole (10)

White solid; m.p. 120-122 °C (lit. m.p. 121-122 °C ^[1]); ¹H NMR (300 MHz, CDCl₃) δ 7.65 (m, 4H), 7.54(d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 144.3, 132.1, 128.7 (q, *J*_{CF} = 32.25Hz),128.4, 126.9, 125.7 (q, *J*_{CF} = 3.75Hz), 124.4 (q, *J*_{CF} = 270Hz), 114.4, 55.3.

3-(4-Methoxyphenyl) pyridine (1p)

White solid; m.p. 62-63 °C (lit. m.p. 62-64 °C ^[3]); ¹H NMR (300 MHz, CDCl₃) δ 8.82 (s, 1 H), 8.54 (d, *J* = 3.6 Hz, 1 H), 7.82 (d, *J* = 7.8 Hz, 1 H), 7.51 (d, J= 8.7 Hz, 2 H), 7.35-7.31 (m, 1 H), 7.00 (d, J= 8.7 Hz, 2 H), 3.84(s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 147.8, 147.7, 136.3, 133.9, 130.2, 128.2, 123.6, 114.6, 55.4.

Benzophenone (2a)

White solid; m.p. 48-49 °C (lit. m.p. 46-47 °C ^[9]); ¹H NMR (300 MHz, CDCl₃) δ 7.81-7.79 (m, 4 H), 7.61-7.56 (m, 2 H), 7.51- 7.46 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 137.6, 132.4, 130.1, 128.3.

(4-Methoxyphenyl)(phenyl)methanone (2b)

White solid; m.p. 58-60 °C (lit. m.p. 59-60 °C ^[9]); ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, *J* = 8.7Hz, 2H), 7.75 (d, *J* = 7.2Hz, 2H), 7.56 (t, *J* = 7.2Hz, 1H), 7.47 (t, *J* = 7.2Hz, 2H), 6.96 (d, *J* = 9.0Hz, 2H), 3.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.9, 163.6, 138.7 132.9, 132.2, 130.6, 130.1, 128.6, 114.0, 55.9.

(4-Chlorophenyl)(phenyl)methanone (2c)

White solid; m.p. 72-73 °C (lit. m.p. 74.3-74.7 °C ^[10]); ¹H NMR (300 MHz, CDCl₃) δ 7.79-7.74 (m, 4H), 7.63-7.58 (m, 1H), 7.51-7.45 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 195.5, 138.9, 137.3, 135.9, 132.6, 131.4, 129.9, 128.6, 128.4.

Phenyl(p-tolyl)methanone (2d)

White solid; m.p. 57-58 °C (lit. m.p. 57-58 °C ^[9]); ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.56 (t, *J* = 7.2Hz, 1H), 7.48-7.43 (m, 2H), 7.27-7.24 (m, 2H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.5, 143.2, 138.0, 134.9, 132.2, 130.3, 129.9, 129.0, 128.2, 21.7.

(4-Methoxyphenyl)(p-tolyl)methanone (2e)

White solid; m.p. 75-77 °C (lit. m.p. 76.3-77 °C ^[10]); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5, 2H), 7.68 (d, *J* = 8.0, 2H), 7.27 (d, *J* = 8.0, 2H), 6.96 (d, *J* = 9.0, 2H), 3.88 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.7, 163.4, 143.0, 136.0, 132.8, 130.9, 130.4, 129.3, 113.9, 55.8, 22.0.

4-Benzoylbenzonitrile (2f)

White solid; m.p. 110-112 °C (lit. m.p. 110-111 °C ^[9]); ¹H NMR (300 MHz, CDCl₃) δ 7.88(d, *J* = 8.4Hz, 2H), 7.81-7.78(m, 4H), 7.65(t, *J* = 7.5Hz, 1H), 7.52(t, *J* = 7.5Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 141.2, 136.3, 133.3, 132.2, 130.2, 130.1, 128.6, 118.0, 115.6.

4-(4-Methoxybenzoyl)benzonitrile (2g)

White solid; m.p. 129-131 °C (lit. m.p. 129.3-130.1 °C ^[10]); ¹H NMR (300 MHz, CDCl₃) δ 7.84-7.76 (m, 6H), 6.99 (d, *J* = 8.7, 2H), 3.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.7, 163.9, 142.1, 132.6, 132.1, 129.9, 129.0, 118.1, 115.1, 113.9, 55.6.

Ethyl 4-benzoylbenzoate (2h)

Colorless oil ^[11]; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.83-7.78 (m, 4H), 7.62-7.58 (m, 1H), 7.50-7.45 (m, 2H), 4.41 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.0, 165.8, 141.2, 137.0, 133.6, 132.9, 130.1, 129.7, 129.4, 128.4, 61.4, 14.3.

1-(4-Benzoylphenyl)ethanone (2i)

White solid; m.p. 82-84 °C (lit. m.p. 82-83 °C ^[9]); ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, J = 8.1Hz, 2H), 7.87(d, J = 8.1Hz, 2H), 7.81(d, J = 7.2Hz, 2H), 7.63(t, J = 7.5Hz, 1H), 7.51(t, J = 7.5Hz, 2H), 2.67 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 195.9, 141.4, 139.6, 137.0, 133.0, 130.1, 130.0, 128.5, 128.2, 26.9.

4-(4-Methoxybenzoyl)benzaldehyde (2j)

White solid; m.p. 100-103 °C (lit. m.p. 104-106 °C ^[12]); ¹H NMR (300 MHz, CDCl₃) δ 10.13 (s, 1H), 8.00 (d, *J* = 7.8, 2H), 7.89-7.82 (m, 4H), 6.99 (d, *J* = 8.7, 2H), 3.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 194.5, 191.6, 163.8, 143.5, 138.2, 132.6, 130.0, 129.7, 129.4, 113.8, 55.6.

(4-Methoxyphenyl)(pyridin-3-yl)methanone (2k)

White solid; m.p. 96-98 °C (lit. m.p. 98-99 °C ^[13]); ¹H NMR (300 MHz, CDCl₃) δ 8.96 (s, 1 H), 8.80 (d, *J* = 3.6 Hz, 1 H), 8.09 (d, *J* = 7.8 Hz, 1 H), 7.84 (d, *J* = 9.0 Hz, 2 H), 7.47-7.43 (dd, *J* = 4.8Hz, 7.8 Hz, 1 H), 7.00 (d, *J* = 9.0 Hz, 2 H), 3.91(s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 193.4, 163.8, 152.3, 150.4, 137.0, 134.0, 132.5, 129.4, 123.4, 113.9, 55.6.

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of the products

Biphenyl (1a)

4-Methoxybiphenyl (1b)

4-Chlorobiphenyl (1c)

4-Methylbiphenyl (1d)

4-Methoxy-4'-methylbiphenyl (1e)

4-Chloro-4'-methoxybiphenyl (1f)

4'-Methoxybiphenyl-4-carbonitrile (1g)

4'-Chlorobiphenyl-4-carbonitrile (1h)

Ethyl biphenyl-4-carboxylate (1i)

1-([1, 1'-biphenyl]-4-yl)ethanone (1j)

4'-Methoxybiphenyl-4-carbaldehyde (1k)

22

2-Methoxybiphenyl (11)

4'-Chloro-2-methoxybiphenyl (1m)

4, 4"-dimethoxy-1,1':2',1"-terphenyl (1n)

4-(4-Trifluoromethylphenyl)anisole (10)

3-(4-Methoxyphenyl) pyridine (1p)

(4-Methoxyphenyl)(phenyl)methanone (2b)

(4-Chlorophenyl)(phenyl)methanone (2c)

Phenyl(p-tolyl)methanone (2d)

(4-Methoxyphenyl)(p-tolyl)methanone (2e)

4-Benzoylbenzonitrile (2f)

4-(4-Methoxybenzoyl)benzonitrile (2g)

Ethyl 4-benzoylbenzoate (2h)

1-(4-Benzoylphenyl)ethanone (2i)

4-(4-Methoxybenzoyl)benzaldehyde (2j)

(4-Methoxyphenyl)(pyridin-3-yl)methanone (2k)

References

1 J. F. Wei, J. Jiao, J. J. Feng, J. Lv, X. R. Zhang, X. Y. Shi, Z. G. Chen, *J. Org. Chem.*, 2009, 74, 6283-6286.

2 M. Al-Amin, M. Akimoto, T. Tameno, Y. Ohki, N. Takahashi, N. Hoshiya, S. Shuto, M. Arisawa, *Green Chem.*, 2013, **15**, 1142-1145.

- 3 R. Martínez, I. M. Pastor, M. Yus, European J. Org. Chem., 2014, 4, 872-877.
- 4 W. Erb, M. Albini, J. Rouden, J. Blanchet, J. Org. Chem., 2014, 79, 10568-10580.
- 5 K. Ueura, T. Satoh, M. Miura, Org. Lett., 2005, 7, 2229-2231.
- 6 S. L. Mao, Y. Sun, G. A, Yu, C. Zhao, Z. J. Han, J. Yuan, X. Zhu, Q. Yang, S. H. Liu, *Org. Biomol. Chem.*, 2012, **10**, 9410-9417.
- 7 H. Jasch, J. Scheumann, M. R. Heinrich, J. Org. Chem., 2012, 77, 10699-10706.
- 8 B. T. King, J. Kroulik, C. R. Robertson, P. Rempala, C. L. Hilton, J. D. Korinek, L. M. Gortari, *J. Org. Chem.*, 2007, **72**, 2279-2288.
- 9 X. Li, G. Zou, Chem. Commun., 2015, 51, 5089-5092.
- 10 Y. Zhong, W. Han, Chem. Commun., 2014, 50, 3874-3877.
- 11 D. Lee, T. Ryu, Y. Park, P. H. Lee, Org. Lett., 2014, 16, 1144-1147.
- 12 W. S. Bechara, G. Pelletier, A. B. Charette, *Nature Chem.*, 2012, 4, 228-234.
- 13 K. Kato, S. Ohkawa, S. Terao, Z. Terashita, K. Nishikawa, J. Med. Chem., 1985, 28, 287-294.