Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Synthesis and photophysical properties of phenanthroimidazole-triarylborane dyads: Intriguing 'turn-on' sensing mediated by fluoride anion

Dong Kyun You,^a Seon Hee Lee,^b Ji Hye Lee,^a Sang Woo Kwak,^c Hyonseok Hwang,^a Junseong Lee,^d Yongseog Chung,^{*c} Myung Hwan Park^{*b} and Kang Mun Lee^{*a}

 ^a Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
 ^b Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
 ^c Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

^d Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.

 Table S1. Crystallographic data and parameters for 1Ph and 1BP

Compound	1Ph	1BP ·(THF) _{0.5}
Formula	$C_{45}H_{39}BN_2$	C ₁₀₇ H ₉₆ B ₂ N ₄ O
Formula weight	618.59	1475.49
Crystal system	triclinic	monoclinic
Space group	P ₋₁	$P2_1/n$
<i>a</i> (Å)	8.6872(2)	10.8270(2)
<i>b</i> (Å)	13.4379(3)	11.8600(2)
<i>c</i> (Å)	17.4444(4)	34.3648(7)
α (°)	84.593(2)	90
β (°)	83.569(2)	94.6387(13)
γ (°)	84.507(2)	90
$V(Å^3)$	2007.12(8)	4398.27(14)
Ζ	2	2
$\rho_{\text{calc}}(\text{g cm}^{-3})$	1.024	1.114
μ (mm ⁻¹)	0.059	0.064
<i>F</i> (000)	656	1568
<i>T</i> (K)	296(2)	273(2)
Scan mode	multi-scan	multi-scan
	$-10 \rightarrow +10,$	$-12 \rightarrow +13$,
<i>hkl</i> range	$-13 \rightarrow +16,$ $20 \rightarrow +20$	$-14 \rightarrow +12,$
Measd reflns	$\begin{array}{c} -20 \rightarrow \pm 20 \\ 26782 \end{array}$	$-41 \rightarrow +41$
Unique reflns $[R_{\perp}]$	7323 [0 0272]	8079 [0.0673]
Reflue used for refinement	7323	8079
Refined narameters	3913	3632
$R_{a}^{a} (I > 2\sigma(I))$	0.0561	0.0769
wR_{a}^{b} all data	0.1469	0.2688
$GOF \text{ on } F^2$	1 009	1 044
$o_{\rm c}$ (max/min) (e Å ⁻³)	0 197 -0 237	0 581 -0 214
	0.177, 0.237	0.001, 0.217

^{*a*} $R_1 = \sum ||Fo| - |Fc|| / \sum |Fo|$. ^{*b*} $wR_2 = \{ [\sum w(Fo2 - Fc2)2] / [\sum w(Fo2)2] \}^{1/2}$.

Compound	1Ph	1BP					
	Bond lengths						
B(1)–C(1)	1.570(3)	1.574(6)					
B(1)-C(10)	1.569(3)	1.582(6)					
B(1)-C(19)	1.557(3)	1.555(5)					
N(1)-C(22)	1.444(2)	_					
N(1)-C(28)	_	1.450(5)					
	Angles						
C(1)-B(1)-C(10)	121.37(18)	121.9(3)					
C(1)-B(1)-C(19)	118.2(2)	120.4(4)					
С(10)-В(1)-С(19)	120.39(19)	117.6(3)					

Table S2. Selected bond lengths (Å) and angles (deg) for 1Ph and 1BP

Fig. S1 UV–vis absorption spectra of (a) 1Ph, (b) 2Ph, (c) 1BP and (d) 2BP in various solvents (2.5×10^{-5} M).

Fig. S2 Emission decay curve detected at (a) 386 nm and (b) 476 nm of THF (5.0×10^{-5} M) solution of **1Ph** at 298 K(black line). The red-line corresponds to the single-exponential fitting curve ($R^2 = 0.9968$ and 0.9982) for the experimental curve.

Fig. S3 Emission decay curve detected at (a) 386 nm and (b) 483 nm of THF (5.0×10^{-5} M) solution of **2Ph** at 298 K(black line). The red-line corresponds to the single-exponential fitting curve ($R^2 = 0.9985$ and 0.9974) for the experimental curve.

Fig. S4 Emission decay curve detected at (a) 385 nm and (b) 485 nm of THF (5.0×10^{-5} M) solution of **1BP** at 298 K(black line). The red-line corresponds to the double or single-exponential fitting curve ($R^2 = 0.9984$ and 0.9988) for the experimental curve.

Fig. S5 Emission decay curve detected at (a) 386 nm and (b) 476 nm of THF (5.0×10^{-5} M) solution of **2BP** at 298 K(black line). The red-line corresponds to the double-exponential fitting curve ($R^2 = 0.9984$ and 0.9984) for the experimental curve.

Fig. S6 Spectral change in the (a) UV–vis absorption and (b) PL intensity of a solution **2Ph** ($\lambda_{ex} = 325$ nm) in THF (4.00 ×10⁻⁵ M) upon the addition of TBAF (0–4.30 ×10⁻⁵ M). The inset shows the absorbance at 311 nm as a function of [F⁻]. The line corresponds to the binding isotherm calculated with $K = 1.1 \times 10^4 M^{-1}$

Fig. S7 Spectral change in the (a) UV–vis absorption and (b) PL intensity of a solution **1BP** ($\lambda_{ex} = 296$ nm) in THF (2.00 ×10⁻⁵ M) upon the addition of TBAF (0–5.48 ×10⁻⁵ M). The inset shows the absorbance at 319 nm as a function of [F⁻]. The line corresponds to the binding isotherm calculated with $K = 1.0 \times 10^4 M^{-1}$

Fig. S8 Spectral change in the (a) UV–vis absorption and (b) PL intensity of a solution **2BP** ($\lambda_{ex} = 292$ nm) in THF (2.00 ×10⁻⁵ M) upon the addition of TBAF (0–3.1 ×10⁻⁵ M). The inset shows the absorbance at 319 nm as a function of [F⁻]. The line corresponds to the binding isotherm calculated with $K = 3.0 \times 10^4 M^{-1}$

Fig. S9 ¹H NMR spectra of **1Ph** with 1.5 equiv TBAF in THF-*d*8. (* from THF-*d*8, # from residual THF in THF-*d*8, † from H_2O , and ‡ from *n*Bu).

Fig. S10 ¹H NMR spectra of **1BP** with 1.5 equiv TBAF in THF-*d*8. (* from THF-*d*8, † from H_2O , and ‡ from *n*Bu).

Fig. S11 The PL emission spectra of (a) [1Ph + 1.5 equiv. Bu₄NF] ($\lambda_{ex} = 326$ nm) and (b) [1BP + 1.5 equiv. Bu₄NF] ($\lambda_{ex} = 296$ nm) in various organic solvents at 298 K.

Computational details

Fig. S12 Frontier molecular orbitals of **1Ph** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the ground state (S₀) optimized geometries.

state	λ /nm	f_{calc}	major contribution
1	414.75	0.0088	HOMO \rightarrow LUMO (99.2%)
2	362.34	0.1090	HOMO-2 \rightarrow LUMO (98.4%)
3	346.20	0.0687	HOMO-3 \rightarrow LUMO (98.0%)
4	338.21	0.0530	HOMO-4 \rightarrow LUMO (25.2%)
			HOMO-1 \rightarrow LUMO (64.9%)
5	336.59	0.0928	HOMO-4 \rightarrow LUMO (71.2%)
			HOMO-1 \rightarrow LUMO (17.1%)
6	333.06	0.2510	HOMO-5 \rightarrow LUMO (12.1%)
			HOMO-1 \rightarrow LUMO (15.8%)
			HOMO \rightarrow LUMO+1 (53.5%)
			HOMO \rightarrow LUMO+2 (11.2%)

Table S3. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **1Ph** from TD-B3LYP/6-31G(d) calculations in THF at the ground state (S₀) optimized geometries

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.93	94.3	1.2	4.5
LUMO+1	-1.19	98.2	1.0	0.8
LUMO	-1.98	2.4	61.9	35.6
HOMO	-5.44	99.6	0.0	0.4
HOMO-1	-6.07	99.3	0.1	0.6
HOMO-2	-6.19	0.0	95.6	4.4

Table S4. Molecular orbital energies (in eV) and distributions (in %) of **1Ph** at the ground state (S_0) optimized geometries

Fig. S13 Frontier molecular orbitals of **1Ph** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the first excited state (S₁) optimized geometries.

state	λ /nm	f_{calc}	major contribution
1	520.27	0.0003	HOMO \rightarrow LUMO (99.4%)
2	394.13	0.0695	HOMO-3 \rightarrow LUMO (87.3%)
			HOMO-2 \rightarrow LUMO (11.4%)
3	388.47	0.0691	HOMO-3 \rightarrow LUMO (11.2%)
			HOMO-2 \rightarrow LUMO (85.6%)
4	373.95	0.0758	HOMO-4 \rightarrow LUMO (98.6%)
5	367.43	0.0017	HOMO-1 \rightarrow LUMO (97.2%)
6	363.20	0.0076	HOMO-5 \rightarrow LUMO (95.7%)
7	361.20	0.7249	HOMO \rightarrow LUMO+1 (88.7%)

Table S5. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **1Ph** from TD-B3LYP/6-31G(d) calculations in THF at the first excited state (S₁) optimized geometries

Table S6. Molecular orbital energies (in eV) and distributions (in %) of **1Ph** at the first excited state (S_1) optimized geometries

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.92	95.4	0.1	4.5
LUMO+1	-1.37	99.2	0.1	0.7
LUMO	-2.32	2.1	50.2	47.7
HOMO	-5.21	99.8	0.0	0.2
HOMO-1	-6.13	98.9	0.7	0.4
HOMO-2	-6.23	0.9	96.2	2.9

Fig. S14 Frontier molecular orbitals of **2Ph** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the ground state (S₀) optimized geometries.

state	λ /nm	f_{calc}	major contribution
1	410.42	0.0011	HOMO \rightarrow LUMO (99.5%)
2	360.11	0.1043	HOMO-2 \rightarrow LUMO (94.6%)
3	344.23	0.0416	HOMO-3 \rightarrow LUMO (96.9%)
4	335.77	0.0763	HOMO-4 \rightarrow LUMO (92.6%)
5	334.62	0.0064	HOMO-1 \rightarrow LUMO (89.6%)
6	332.62	0.3004	HOMO \rightarrow LUMO+1 (71.0%)
			HOMO \rightarrow LUMO+2 (17.5%)

Table S7. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **2Ph** from TD-B3LYP/6-31G(d) calculations in THF at the ground state (S₀) optimized geometries

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.91	97.7	1.3	1.0
LUMO+1	-1.16	98.9	0.4	0.7
LUMO	-1.94	1.1	63.1	35.9
НОМО	-5.44	99.7	0.0	0.3
HOMO-1	-6.06	98.1	1.3	0.6
HOMO-2	-6.19	1.7	94.1	4.3

Table S8. Molecular orbital energies (in eV) and distributions (in %) of **2Ph** at the ground state (S_0) optimized geometries

Fig. S15 Frontier molecular orbitals of **2Ph** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the first excited state (S₁) optimized geometries.

state	λ /nm	f_{calc}	major contribution
1	522.86	0.0003	HOMO \rightarrow LUMO (99.7%)
2	394.18	0.0678	HOMO-3 \rightarrow LUMO (51.2%)
			HOMO-2 \rightarrow LUMO (43.9%)
3	387.13	0.0488	HOMO-3 \rightarrow LUMO (44.7%)
			HOMO-2 \rightarrow LUMO (53.0%)
4	374.43	0.0646	HOMO-4 \rightarrow LUMO (97.7%)
5	369.10	0.0004	HOMO-1 \rightarrow LUMO (95.9%)
6	363.62	0.0068	HOMO-5 \rightarrow LUMO (95.3%)
7	360.37	0.6975	HOMO \rightarrow LUMO+1 (88.0%)

Table S9. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **2Ph** from TD-B3LYP/6-31G(d) calculations in THF at the first excited state (S₁) optimized geometries

Table S10. Molecular orbital energies (in eV) and distributions (in %) of **2Ph** at the first excited state (S_1) optimized geometries

	$\mathbf{F}(\mathbf{a}\mathbf{V})$	Phenanthro	dimositulhorono	bridged phonyl	
		-imidazole	unicsityioorane	onaged phenyi	
LUMO+2	-0.89	97.6	0.5	1.9	
LUMO+1	-1.33	99.2	0.1	0.7	
LUMO	-2.31	1.1	51.0	47.9	
НОМО	-5.19	99.8	0.0	0.1	
HOMO-1	-6.11	98.5	1.1	0.5	
HOMO-2	-6.22	0.7	96.6	2.6	

Fi. S16 Frontier molecular orbitals of **1BP** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the ground state (S₀) optimized geometries.

Table S11. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **1BP** from TD-B3LYP/6-31G(d) calculations in THF at the ground state (S₀) optimized geometries

state	λ /nm	f_{calc}	major contribution
1	395.98	0.0117	HOMO \rightarrow LUMO (98.2%)
2	361.18	0.0977	HOMO-2 \rightarrow LUMO (97.3%)
3	349.44	0.3012	HOMO-3 \rightarrow LUMO (94.5%)
4	337.96	0.1293	HOMO-4 \rightarrow LUMO (95.6%)
5	333.26	0.3213	HOMO \rightarrow LUMO+1 (66.5%)
			HOMO \rightarrow LUMO+2 (20.0%)

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.96	76.3	6.7	17.1
LUMO+1	-1.18	96.4	1.1	2.4
LUMO	-1.97	0.9	51.0	48.1
НОМО	-5.44	99.5	0.0	0.4
HOMO-1	-6.07	97.8	0.4	1.8
HOMO-2	-6.15	0.0	95.4	4.6

Table S12. Molecular orbital energies (in eV) and distributions (in %) of **1BP** at the ground state (S_0) optimized geometries

Fig. S17 Frontier molecular orbitals of **1BP** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the first excited state (S₁) optimized geometries.

state	λ /nm	f_{calc}	major contribution
1	508.14	0.0024	HOMO \rightarrow LUMO (98.9%)
2	397.60	0.0596	HOMO-3 \rightarrow LUMO (95.2%)
3	396.57	0.3694	HOMO-2 \rightarrow LUMO (30.7%)
			HOMO-1 \rightarrow LUMO (61.2%)
4	378.74	0.1220	HOMO-4 \rightarrow LUMO (95.4%)
5	365.06	0.0045	HOMO-5 \rightarrow LUMO (98.3%)
6	364.59	0.0082	HOMO-2 \rightarrow LUMO (65,1%)
			HOMO-1 \rightarrow LUMO (32.3%)
7	359.61	0.7675	HOMO \rightarrow LUMO+1 (89.8%)

Table S13. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **1BP** from TD-B3LYP/6-31G(d) calculations in THF at the first excited state (S₁) optimized geometries

Table S14. Molecular orbital energies (in eV) and distributions (in %) of **1BP** at the first excited state (S_1) optimized geometries

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.95	39.3	24.7	36.1
LUMO+1	-1.34	98.9	0.2	0.9
LUMO	-2.38	1.1	34.2	64.7
HOMO	-5.21	99.8	0.0	0.2
HOMO-1	-6.11	35.6	43.3	21.1
HOMO-2	-6.13	64.8	26.5	8.6

Fig. S18 Frontier molecular orbitals of **2BP** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the ground state (S₀) optimized geometries.

Table S15. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **2BP** from TD-B3LYP/6-31G(d) calculations in THF at the ground state (S₀) optimized geometries

state	λ /nm	f_{calc}	major contribution
1	395.64	0.0017	HOMO \rightarrow LUMO (98.9%)
2	360.69	0.2500	HOMO-2 \rightarrow LUMO (97.4%)
3	348.05	0.1000	HOMO-3 \rightarrow LUMO (96.5%)
4	336.35	0.1184	HOMO-4 \rightarrow LUMO (96.7%)
5	332.89	0.3432	HOMO \rightarrow LUMO+1 (69.4%)
			HOMO \rightarrow LUMO+2 (20.8%)

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.96	84.2	1.3	14.4
LUMO+1	-1.18	96.5	0.1	3.4
LUMO	-1.95	0.4	52.5	47.1
НОМО	-5.44	99.6	0.0	0.4
HOMO-1	-6.07	98.7	0.2	1.1
HOMO-2	-6.14	0.0	95.4	4.6

Table S16. Molecular orbital energies (in eV) and distributions (in %) of **2BP** at the ground state (S_0) optimized geometries

Fig. S19 Frontier molecular orbitals of **2BP** from B3LYP/6-31G(d) calculations (Isovalue = 0.04) with CPCM in THF at the first excited state (S₁) optimized geometries.

state	λ / nm	f_{calc}	major contribution
1	509.59	0.0008	HOMO \rightarrow LUMO (99.3%)
2	397.26	0.0533	HOMO-3 \rightarrow LUMO (97.5%)
3	395.11	0.2832	HOMO-2 \rightarrow LUMO (77.0%)
			HOMO-1 \rightarrow LUMO (18.4%)
4	378.34	0.0930	HOMO-4 \rightarrow LUMO (96.7%)
5	365.29	0.0010	HOMO-2 \rightarrow LUMO (19.3%)
			HOMO-1 \rightarrow LUMO (79.7%)
6	364.58	0.0031	HOMO-5 \rightarrow LUMO (98.3%)
7	359.76	0.7166	HOMO \rightarrow LUMO+1 (90.9%)

Table S17. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **2BP** from TD-B3LYP/6-31G(d) calculations in THF at the first excited state (S₁) optimized geometries

Table S18. Molecular orbital energies (in eV) and distributions (in %) of **2BP** at the first excited state (S_1) optimized geometries

	E (eV)	Phenanthro -imidazole	dimesitylborane	bridged phenyl
LUMO+2	-0.94	53.6	18.1	28.3
LUMO+1	-1.33	99.1	0.0	0.9
LUMO	-2.36	0.5	35.3	64.2
HOMO	-5.20	99.8	0.0	0.2
HOMO-1	-6.11	81.5	12.8	5.6
HOMO-2	-6.13	18.2	64.3	17.5

Fig. S20 ¹H (top) and ¹³C (bottom) NMR spectrum of 1a (* from residual CHCl₃ in CDCl₃).

Fig. S21 ¹H (top) and ¹³C (bottom) NMR spectrum of 2a (* from residual CHCl₃ in CDCl₃).

Fig. S22 ¹H (top) and ¹³C (bottom) NMR spectrum of **3a** (* from residual CHCl₃ in CDCl₃).

Fig. S23 ¹H (top) and ¹³C (bottom) NMR spectrum of 1Ph (* from residual CHCl₃ in CDCl₃).

Fig. S24 ¹H (top) and ¹³C (bottom) NMR spectrum of 2Ph (* from residual CHCl₃ in CDCl₃).

Fig. S25 ¹H (top) and ¹³C (bottom) NMR spectrum of 1BP (* from residual CHCl₃ in CDCl₃).

Fig. S26 ¹H (top) and ¹³C (bottom) NMR spectrum of 2BP (*from residual CHCl₃ in CDCl₃).