Supporting Information

Amino acid-assisted synthesis of In_2S_3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes

Tongtong Li^a, Sujuan Zhang^a, Sugang Meng^{a*}, Xiangju Ye^{b*}, Xianliang Fu^a, Shifu Chen^{a,b*}

^a Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000,
People's Republic of China.

^b Department of Chemistry, University of Science and Technology of Anhui, Anhui Fengyang, 233100, People's Republic of China.

*To whom correspondence should be addressed. Tel: +86-561-3806611, Fax: +86-

561-3090518. E-mail: chshifu@chnu.edu.cn

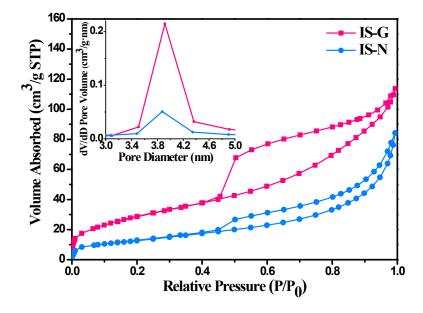


Fig. S1. Nitrogen adsorption-desorption isotherms of the IS-G and IS-N composites; the inset is the corresponding pore diameter distribution of In₂S₃ samples.

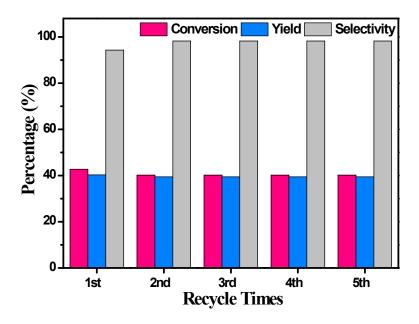


Fig. S2. Recycle experiment for photocatalytic oxidation of benzyl alcohol with IS-G catalyst under visible light irradiation for 2 h.

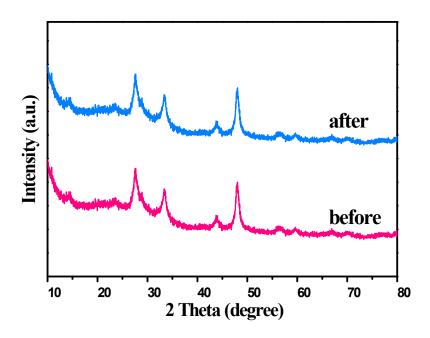


Fig. S3. XRD patterns of IS-G catalyst before and after the photocatalytic reactions.

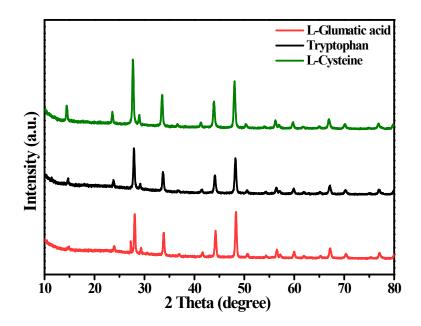


Fig. S4. XRD images of In_2S_3 in the presence of different amino acids: L-Glutamic acid, Tryptophan, L-cysteine.

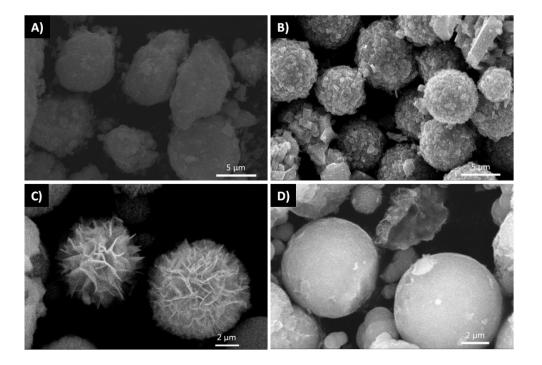


Fig. S5. FESEM images of the morphologies of In_2S_3 in the presence of different amino acids: (A) without amino acids, (B) L-Glutamic acid, (C) Tryptophan, (D) L-cysteine.

Table S1. Molecular structures, morphology of the different amino acids used in the synthesis and the conversion rates (C) for selective oxidation of benzyl alcohol to benzaldehyde with as synthesized In_2S_3 samples.

Amino acids	Molecular structure	Morphology	C (%)
Aspartic acid	О H ₂ N-СH-С-ОН СН ₂ О=С-ОН	Spheres of thick flakes	40
Serine	О Н ₂ N—СН—С—ОН СН ₂ ОН	Spheres of tiny flakes	30
Glycine	О Н ₂ N—СН ₂ —С—ОН	Spheres of uniform flakes	42
L-Glutamic	$\begin{array}{c} O \\ O \\ HO-C \\ \end{array} \begin{array}{c} NH_2 \\ C-OH \\ O \\ \end{array}$	Spheres of nanobricks	35
Tryptophan	$\bigvee_{\substack{N\\N\\H}}^{O} \stackrel{O}{\underset{NH_2}{\longleftarrow}}$	Spheres of thin flakes	32
L-cysteine	O H ₂ N-CH-C-OH I CH ₂ I SH	Spheres with slippery surface	30