Electronic supplementary information

Conversion of cellulose into lactic acid using zirconium

oxide catalysts

Panya Wattanapaphawong,^{a,b} Prasert Reubroycharoen^{b,c} and Aritomo Yamaguchi*^{a,d}

^a National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan

^b Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

^c Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Research Building, Bangkok 10330, Thailand

^d JST, PRESTO, 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan

Fig. S1 Cellulose conversion using a ZrO₂ catalyst at 453 K as a function of reaction time. Reaction conditions: 0.5 g ball-milled cellulose, 1 g ZrO₂ (ZRO-7), 50 g water.

Fig. S2 Cellulose conversion using a ZrO₂ catalyst at 463 K as a function of reaction time. Reaction conditions: 0.5 g ball-milled cellulose, 1 g ZrO₂ (ZRO-7), 50 g water.

Fig. S3 Cellulose conversion using a ZrO₂ catalyst at 483 K as a function of reaction time. Reaction conditions: 0.5 g ball-milled cellulose, 1 g ZrO₂ (ZRO-7), 50 g water.

Fig. S4 XRD patterns of ZrO₂ samples.

Fig. S5 Profiles of temperature-programmed desorption of NH₃ on ZrO₂ samples.

Fig. S6 Profiles of temperature-programmed desorption of CO₂ on ZrO₂ samples.