Electronic Supplementary Information (ESI)

Antiviral activity and mechanism of gossypols: the O_2^{-1} production rate is one fact, the chirality maybe the other

Bin Zhang^a, Yuxiu Liu^a Ziwen Wang^a, Yongqiang Li^a and Qingmin Wang^{a,b*}

a State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071,

People's Republic of China

Contents:

Data for key compounds	2-4
------------------------	-----

Spectra of key compounds-----4-22

Data of	experiments2	2-	-2	7
---------	--------------	----	----	---

Data for key compounds

(-)-Gossypol ¹H NMR (400 MHz, CDCl₃) δ 15.21 (s, 2H), 11.13 (s, 2H), 7.78 (s, 2H), 7.24 (s, 2H), 6.43 (s, 2H), 5.71 (s, 2H), 3.89 (s, 2H), 2.16 (s, 6H), 1.53 (d, J=6.8Hz, 12H) ; ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 156.1, 150.5, 143.4, 134.1, 133.7, 129.7, 118.1, 115.9, 114.7, 111.8, 27.9, 20.4, 20.2.; $\left[\alpha\right]_{D}^{28}$ = -359.5 (*c* 0.26, CHCl₃). Chiral HPLC analysis: retention time: 4.87 min (major), 5.96 min (minor); ee: 97%, [analytical column using MeOH–2% phosphoric acid aqueous solutions= 90:5 as an eluent (1 ml/min), detected at 254 nm.].

(+)-Gossypol ¹H NMR (400 MHz, CDCl₃) δ 15.21 (s, 2H), 11.13 (s, 2H), 7.78 (s, 2H), 7.24 (s, 2H), 6.43 (s, 2H), 5.71 (s, 2H), 3.89 (s, 2H)2.16 (s, 6H), 1.53 (d, J=6.8Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 156.1, 150.5, 143.4, 134.1, 133.7, 129.7, 118.1, 115.9, 114.7, 111.8, 27.9, 20.4, 20.2.; $\alpha_D^{32} = +363.5$ (*c* 0.105, CHCl₃), Chiral HPLC analysis: time: 4.91 min (minor), 6.09 min (major); ee: 99% [analytical column using MeOH–2% phosphoric acid aqueous solutions= 90:5 as an eluent (1 ml/min), detected at 254 nm.].

Compound 1 ¹H NMR (400 MHz, DMSO_{-d6}) δ 15.38 (d, J = 8.4 Hz, 2H), 10.38 (d, J = 8.4 Hz, 2H), 8.79 (s, 2H), 8.35 (s, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.75 (t, J = 7.2 Hz, 2H), 7.57 (J = 8.4 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 3.81-3.74 (m, 2H), 2.01 (s, 6H), 1.45-1.40 (m, 12H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 171.4, 157.2, 151.0, 147.8, 146.2, 140.4, 134.9, 133.6, 131.0, 128.8, 127.3, 126.1, 125.7, 123.0, 121.7, 119.7, 117.6, 115.8, 108.1, 27.1, 20.7. HRMS(ESI) m/z calcd for C₄₄H₃₇F₆N₂O₆ (M–H)⁻ 803.2561, found 803.2541. $\alpha \int_{-5}^{5} = -1436.5$ (*c* 0.105, CH₃OH).

Compound 2 ¹H NMR (400 MHz, DMSO_{-d6}) δ 15.38 (d, J=8.4 Hz, 2H), 10.38 (d, J=8.4 Hz, 2H), 8.78 (s, 2H), 8.35 (s, 2H), 7.82 (d, J=7.6Hz, 2H), 7.74 (t, J=7.2Hz, 2H), 7.57 (s, 2H), 7.42 (t, J=7.6Hz, 2H), 3.81-3.74 (m, 2H), 2.01 (s, 6H), 1.47-1.42 (m, 12H).¹³C NMR (100 MHz, DMSO_{-d6}) δ 171.4, 157.2, 151.0, 146.2, 140.4, 135.0, 133.6, 131.0, 128.8, 127.3, 126.1, 125.7, 123.0, 121.7, 119.7, 119.3, 117.6, 115.8, 108.0, 27.1, 20.6. HRMS(ESI) m/z calcd for C₄₄H₃₇F₆N₂O₆ (M–H)⁻ 803.2561, found 803.2537. $\alpha B^{23}_{D} = +1430.5$ (c 0.105, CH₃OH).

Compound 3 ¹H NMR (400 MHz, DMSO_{-d6}) δ 13.29 (d, J=12 Hz, 2H), 9.76 (d, J=12 Hz, 2H), 8.41 (s, 2H), 7.84 (s, 2H), 7.44 (s, 2H), 3.72-3.68 (m, 2H), 3.52-3.45 (m, 4H), 1.93 (s, 6H), 1.66-1.63 (m, 4H), 1.45-1.42 (m, 12H), 0.96-0.92 (m, 6H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 172.1, 163.0, 150.1, 146.7, 131.6, 127.3, 126.8, 120.6, 117.0, 116.4, 103.5, 52.0, 27.0, 23.8, 20.8, 20.8, 20.7, 11.4. HRMS(ESI) m/z calcd for C₃₆H₄₃N₂O₆ (M–H)⁻ 599.3127, found 599.3117. $\left[\alpha \right]_{D}^{25}$ = -698.4 (*c* 0.105, CH₃OH).

Compound 4 ¹H NMR (400 MHz, DMSO_{-d6}) 13.29 (d, J=12.8 Hz, 2H), 9.77 (d, J=12.8 Hz, 2H), 8.41 (s, 2H), 7.84 (s, 2H), 7.44 (s, 2H), 3.72-3.68 (m, 2H), 3.51-3.47 (m, 4H), 1.93 (s, 6H), 1.66-1.62 (m, 4H), 1.45-1.42 (m,12H), 0.95-

0.91 (m, 6H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 171.5, 162.4, 149.5, 146.2, 131.1, 126.7, 126.3, 120.1, 116.4, 115.8, 103.1, 51.5, 26.5, 23.3, 20.3, 20.3, 20.2, 10.8. HRMS(ESI) m/z calcd for C₃₆H₄₃N₂O₆ (M-H)⁻ 599.3127, found 599.3103. $\alpha_{D}^{P_3} = +671.2$ (*c* 0.105, CH₃OH).

Compound 5 ¹H NMR (400 MHz, DMSO_{-d6}) δ 13.37 (s, 2H), 9.68 (d, J=8Hz, 2H), 8.42 (s, 2H), 7.43 (s, 2H), 4.22(s, 4H), 3.71-3.64 (m, 2H), 1.93 (s, 6H), 1.44 (s, 12H) ¹³C NMR (100 MHz, DMSO_{-d6}) δ 172.3, 162.8, 149.9, 146.3, 131.3, 127.0, 126.7, 120.2, 116.4, 115.8, 103.7, 65.6, 26.5, 20.2. HRMS(ESI) m/z calcd for C₃₂H₃₅N₂O₁₂S₂ (M-2Na+H)⁻ 703.1637, found 703.1607. $\left[\alpha \right]_{D}^{25}$ = -385.7 (*c* 0.112, CH₃OH).

Compound 6 ¹H NMR (400 MHz, DMSO_{-d6}) δ 13.38 (d, J=12Hz, 2H), 9.69(d, J=12Hz, 2H), 8.44 (s, 2H), 7.43(s, 2H), 4.20 (s, 4H), 3.73-3.68 (m, 2H), 1.92 (s, 6H), 1.43 (s, 12H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 172.3, 162.8, 149.8, 146.3, 137.6, 131.3, 127.0, 126.7, 120.1, 116.5, 115.8, 103.7, 65.5, 26.5, 20.3. HRMS(ESI) m/z calcd for C₃₂H₃₅N₂O₁₂S₂ (M-2Na+H)⁻ 703.1637, found 703.1620. $\alpha D^{25} = +383.6$ (*c* 0.112, CH₃OH).

Compound 7 ¹H NMR (400 MHz, DMSO_{-d6}) δ 13.03 (d, J=9.6Hz, 2H), 9.76 (d, J=9.6Hz, 2H), 8.54 (s, 2H), 7.42 (s, 2H), 3.78 -3.77 (m, 4H), 3.71-3.69 (m, 2H), 2.80-2.84 (m, 4H), 1.93 (s, 6H), 1.44 (s, 12H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 172.1, 162.2, 150.0, 147.1, 131.5, 127.4, 127.0, 120.7, 116.9, 116.6, 103.2, 50.9, 47.6, 26.5, 20.3.. HRMS(ESI) m/z calcd for C₃₄H₃₉N₂O₁₂S₂ (M-2Na+H)⁻ 731.1950, found 731.1915. $\left[\alpha \right]_{D}^{27}$ = -138.48(*c* 0.111, CH₃OH).

Compound 8 ¹H NMR (400 MHz, DMSO_{.d6}) δ 13.03 (d, J=9.6Hz, 2H), 9.76 (d, J=9.6Hz, 2H), 8.50 (s, 2H), 7.41 (s, 2H), 3.77 -3.76 (m, 4H), 3.71-3.67 (m, 2H), 2.80-2.84 (m, 4H), 1.93 (s, 6H), 1.44 (s, 12H). ¹³C NMR (100 MHz, DMSO_{.d6}) δ 172.1, 162.2, 150.0, 147.1, 131.5, 127.4, 126.9, 120.7, 116.9, 116.6, 103.7, 51.3, 48.1, 27.0, 20.8. HRMS(ESI) m/z calcd for C₃₄H₃₉N₂O₁₂S₂ (M–2Na+H)⁻ 731.1950, found 731.1929. α_{D}^{T7} = +137.38 (*c* 0.111, CH₃OH).

Compound 9 ¹H NMR (400 MHz, CDCl₃) δ 14.84 (d, J=12Hz, 2H), 10.13 (d, J=12Hz, 2H), 8.62 (s, 2H), 8.25-8.23 (m, 4H), 7.69 (s, 2H), 7.38-7.35 (m,4H), 5.84 (s, 2H), 3.73-3.70 (m, 2H), 2.17 (s, 6H), 1.55-1.51(m, 12H). ¹³C NMR (100 MHz, DMSO_{-d6}) δ 155.7, 152.8, 147.2, 139.7, 138.6, 136.0, 126.3, 125.9, 124.2, 121.3, 117.0, 115.0, 113.6, 113.2, 108.9, 90.1, 26.6, 21.4, 21.3. HRMS(ESI) m/z calcd for C₄₂H₃₇N₄O₁₀ (M-H)⁻ 757.2515, found 757.2486. $\alpha_{10}^{P6} = -563.5$ (c 0.109, DMF).

Compound 10 ¹H NMR (400 MHz, CDCl₃) δ 14.84 (d, J=12Hz, 2H), 10.12 (d, J=12Hz, 2H), 8.62 (s, 2H), 8.25-8.23 (m, 4H), 7.69 (s, 2H), 7.38-7.35 (m,4H), 5.81 (s, 2H), 3.73-3.70 (m, 2H), 2.17 (s, 6H), 1.55-1.51(m, 12H). ¹³C NMR (100 MHz, DMSO_{.d6}) . δ 155.3, 152.3, 146.7, 139.1, 138.1, 138.0, 135.7, 125.8, 125.6, 123.7, 120.9, 114.6, 113.2, 112.7, 108.4, 89.7, 26.1, 20.8, 20.7. HRMS(ESI) m/z calcd for C₄₂H₃₇N₄O₁₀ (M–H)⁻ 757.2515, found 757.2426. $\alpha \beta_D^{27}$ = +557.8 (c 0.109, DMF).

Spectra of key compounds

Detector A	Ch1 235nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.868	49175924	2603540	99.060	98.508
2	5.960	466813	39444	0.940	1.492
Total		49642737	2642984	100.000	100.000

Figure S1. HPLC, ¹H NMR and ¹³C NMR of (-)-gossypol.

PeakTable

Detector A (etector A Ch1 265nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	4.909	48277	3527	0.411	0.596	
2	6.090	11692765	588537	99.589	99.404	
Total		11741041	592063	100.000	100.000	

Figure S2. HPLC, ¹H NMR and ¹³C NMR of (+)-gossypol.

Figure S3. HRMS, ¹H NMR and ¹³C NMR of compound 1.

Figure S4. HRMS, ¹H NMR and ¹³C NMR of compound 2.

Figure S5. HRMS, ¹H NMR and ¹³C NMR of compound **3**.

Figure S6. HRMS, ¹H NMR and ¹³C NMR of compound 4.

Figure S7. HRMS, ¹H NMR and ¹³C NMR of compound 5.

Figure S8. HRMS, ¹H NMR and ¹³C NMR of compound 6.

Figure S9. HRMS, ¹H NMR and ¹³C NMR of compound 7.

Figure S10. HRMS, ¹H NMR and ¹³C NMR of compound 8.

Figure S11. HRMS, ¹H NMR and ¹³C NMR of compound 9.

Figure S12. HRMS, ¹H NMR and ¹³C NMR of compound 10

Data of experiments

Figure S13. The $O_{2^{-}}$ production rate of (+), (-) -gossypol and their Schiff bases at a concentration of 500 µg/mL and time of 5 hs in the solution (DMF:H₂O=1:10).

Figure S14 The TMV RNA extracted from the assemble solution, which mixed with the antofine, (-)-gossypol, (+)-gossypol, compound 1 and compound 2, separately.

Figure S15. The anti-TMV activities of compound, compound + CAT-1, compound + CAT-2. Compound + CAT-1 refer to adding CAT 10 mins before the compound is applied to tobacco leaves, and compound + CAT-2 refer to adding CAT 10 mins after inoculation of tobacco leaves, which treated by compound for 24hs, with TMV. The means of three independent experiments ± SD are shown.

Figure S16. The anti-TMV activities of compound, compound + SOD-1, compound + SOD-2. Compound + SOD-1 refer to adding SOD 10 mins before the compound is applied to tobacco leaves, and compound + SOD-2 refer to adding SOD 10 mins after inoculation of tobacco leaves, which treated by compound for 24hs, with TMV. The means of three independent experiments ± SD are shown.

Figure S17. (a) The change of SOD activities in tobacco leaves treated by (-)-gossypol + SOD-1 and (+)-gossypol + SOD-1. (b) The change of SOD activities in tobacco leaves treated by (-)-gossypol + SOD-2 and (+)-gossypol + SOD-2. Compound + SOD-1 refer to adding SOD 10 mins before the compound is applied to tobacco leaves, and compound + SOD-2 refer to adding SOD 10 mins after inoculation of tobacco leaves, which treated by compound for 24hs, with TMV. The means of three independent experiments ± SD are shown.

Table S1. The O_2	production rate in	tobacco leaf.
---------------------	--------------------	---------------

position of leaves	data	the O_2 - production rate at the time of 2 h

		Plant A	Plant B	Plant C	Plant D	Plant E
	primary data (nmol/mg. min)	232	392	337	324	384
Upper	reference (nmol/mg. min)	134	213	208	177	233
	relative data (nmol/mg. min)	173%	184%	176%	183%	165%
	primary data (nmol/mg. min)	190	320	327	279	313
Middle	reference (nmol/mg. min)	125	192	185	166	210
	relative data	152%	167%	177%	168%	149%
Lower	primary data (nmol/mg. min)	177	276	266	236	264
	reference (nmol/mg. min)	113	179	164	151	193
	relative data	157%	154%	162%	156%	137%