Supporting Information

for

Preparation and evaluation of modified cyanobacteria-derived

activated carbon for H_2 adsorption

Jun Gao,^a Jing Xie,^b Xueyan Liu^a and Hui Hu^a

^aSchool of Environmental Sciences & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: huhhust@163.com; Fax: +86 2787792141; Tel: +86 2787792141

^bFaculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074,

China

component	CB ash (Wt.%)
SiO ₂	10.56
Al_2O_3	25.84
Fe ₂ O ₃	2.44
MgO	4.76
CaO	18.87
K ₂ O	7.98
P_2O_5	20.03
SO_3	9.17
TiO ₂	0.33
MnO	0.08

Table S1 Component analyses of CB ash by XRF experiments

Fig. S1 Effect of activation time on N_2 adsorption-desorption experiment on ACK-2-8 and

ACZ-3-8

Fig. S2 Nitrogen adsorption (solid) /desorption (open) isotherm and Porous properties

for pretreated carbonized material AC

Fig. S3 Comparison of surface acidic-basic functional groups on different activated

carbons

Fig. S4 The relationship between the H₂ adsorption amount (at -196 °C and 1 bar) and

BET surface area on some samples