Electronic Supplementary Information

HBT-based turn-on fluorescent probe for discrimination of Homocysteine from Glutathione/Cysteine and its bioimaging applications

Fengzao Chen^{a, b}, Yuanchao Sun^a, Zhen Chen^a, Heng Liu^{a,*}, Deman Han^b,

Hanping He^a, Xiuhua Zhang^a, Shengfu Wang^a

 ^a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
^bDepartment of Chemistry, Taizhou University, Jiaojiang 318000, PR China.

*Corresponding author: H. Liu, E-mail: liuheng11b@hubu.edu.cn.

HRMS (ESI⁺) of HBTI

2. Additional experiment data

Fig. S1. Titration graph of the fluorescence response of probe HBTI (10 μ M) toward GSH (A) and Cys (B) in PBS buffer (10 mM, pH 7.4, containing 1% CH₃CN, v/v) at 25°C. Inset: plot of the fluorescence intensity at 445 nm of probe HBTI versus GSH and Cys concentrations. Each spectrum was performed after 15 min. E_x = 385 nm, d_{ex} = d_{em} = 3 nm.

Fig. S2. The pseudo-first-order kinetic analysis of probe HBTI (10 μ M) to Hcy, GSH and Cys (50 μ M each) in PBS buffer (10 mM, pH 7.4, containing 1% CH₃CN, v/v) at 25°C. E_x = 385 nm, d_{ex} = d_{em} = 3 nm.

Fig. S3. Fluorescence spetrum (A) and bar graph (B) of probe HBTI (10 μ M) upon addition of Ala, Arg, Asp, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val and NaSH (various analytes: 100 μ M; Hcy: 50 μ M; GSH: 1 mM; Cys: 200 μ M) in PBS buffer (10 mM, pH 7.4, containing 1% CH₃CN, v/v) at 25°C. Ex = 385 nm, d_{ex} = d_{em} = 3 nm.

Fig. S4. Fluorescence spetrum (A) and bar graph (B) of probe HBTI (10 μ M) upon addition of various analytes (100 μ M) in PBS buffer (10 mM, pH 7.4, containing 1% CH₃CN, v/v) at 25°C. Ex = 385 nm, d_{ex} = d_{em} = 3 nm.

Fig. S5.¹H NMR spectra changes of probe HBTI in the presence of excessive Hcy, GSH and Cys in d_6 -DMSO/D₂O (9:1, v/v), respectively.

Fig. S6. MS (ESI⁺) of probe HBTI in the presence of Hcy, GSH and Cys, respectively.

Fig. S7. Cell viability of HeLa cells treated with different concentrations of probe HBTI (0, 2.5, 5.0, 7.5 and 10.0 μ M) for 12 h. The cell viability was observed via CCK-8 assay.

3. Table S1. Comparison of fluorescent probe for Hcy

Probes	Detection	Response	Detection	Reference
	system	time	limit	
но сно	HEPES buffer	80 min	9.02 x 10 ⁻⁶	Tetrahedron
	(pH 7.4)		М	Lett. 2016,
	containing			57, 5227.
н \ ₄ ,	10% EtOH			
СНО	HEPES buffer	100 min	5.4 x 10 ⁻⁵ M	Chem
	(pH 7.0)			Commun.,
OH OH	containing			2016,52, 827.
	98% EtOH			
	PB buffer (pH	3 min	3.46 x 10 ⁻⁷	J. Mater.
	8.0)		М	Chem. C,
	containing			2015,
\bigcirc	20% CH ₃ CN			3,8397.
o N				
СНО	HEPES buffer	10 min	1.94 x 10 ⁻⁶	Chem.
	(pH 7.4)		М	Commun.,
	containing			2014,
	10% DMSO			50, 6967.
Ϋ́Υ				

	Buffer (pH	5 min	1.2 x 10 ⁻⁵ M	J. Mater.
	8.0)			Chem. B,
	containing 1%			2014, 2,
	DMSO			3919.
O3Ŝ				
HO	PBS buffer	15 min	1.6 x 10 ⁻⁷ M	This work
	(pH 7.4)			
S' S	containing 1%			
)=0	CH ₃ CN			