Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Materials

Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide

with enhanced lithium storage performance

Gangyong Li, Mingjun Jing*, Zhengu Chen, Binhong He, Minjie Zhou, Zhaohui Hou*

School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang

414006, China

^{*} Corresponding author

Fax: +86 730 8640122; Tel: +86 730 8640122

E-mail: zhaohuihou@126.com (Z.H. Hou); jingmingjun86@163.com (M.J. Jing)

Fig. S1. Schematic diagram for illustrating the preparation procedure of solution of Cu^{2+} ions in toluene.

Fig. S2. XRD pattern of GO.

Fig. S3 SEM images of Cu₂O/RGO composite.

Fig. S4 EDS pattern of the porous CuO-NSs/RGO composite.

Fig. S5 Digital photographs of the separators obtained from (a) pristine separator, (b)

pristine CuO cell, and (c) CuO-NSs/RGO composite cell.

Fig. S6 (a) SEM images of the CuO-NSs/rGO composite before cycling and (b) after

200 cycles at a current density of 0.5 A g $^{-1}\!.$

Materials	Rate	Cycle number	Specific capacity (mA h g ⁻¹)	Reference
CuO@carbon octahedra	0.5 A g ⁻¹	300	512	[1]
	3 A g ⁻¹	_	365	
Nanoleaf-on-sheet CuO/graphene	100 mA g ⁻¹	50	600	[2]
	800 mA g ⁻¹	_	280	
CuO nanorods/graphene	0.1 C	50	692.5	[3]
	5 C	_	262	
CuO nanorod/rGO	70 mA g ⁻¹	50	480	[4]
	700 mA g ⁻¹	_	250	
CuO/rGO paper	67 mA g ⁻¹	50	736.8	[5]
	3.35 A g ⁻¹	_	~ 250	
CuO/RGO	0.1 mA cm ⁻²	45	516.4	[6]
	6.4 mA cm ⁻²	_	201.1	
CuO hollow nanoparticles/graphene	50 mA g ⁻¹	50	743	[7]
	1 A g ⁻¹	500	281	
	2 A g ⁻¹	_	396	
Porous CuO-NSs/RGO	0.1 A g ⁻¹	50	692.8	This work
	0.5 A g ⁻¹	200	616.2	
	1 A g ⁻¹	300	446	
	5 A g ⁻¹	_	329.4	

Table S1 Comparison of various CuO/carbon materials for LIB anodes.

References

- T. Chen, Y. Hu, B.R. Cheng, R.P. Chen, H.L. Lv, L.B. Ma, G.Y. Zhu, Y.R. Wang, C.Z. Yan, Z.X. Tie, Z. Jin, J. Liu, *Nano Energy* 2016, **20**, 305–314.
- X.Y. Zhou, J. Zhang, Q.M. Su, J.J. Shi, Y. Liu, G.H. Du, *Electrochim. Acta*, 2014, **125**, 615–621.
- Q. Wang, J. Zhao, W.F. Shan, X.B. Xia, L.L. Xing, X.Y. Xue, J. Alloy. Compd., 2014, 590, 424–427.
- X. Zhang, Y.A. Hu, D.Z. Zhu, A.J. Xie, Y.H. Shen, *Ceram. Int.*, 2016, 42, 1833–1839.
- Y. Liu, W. Wang, L. Gu, Y.W. Wang, Y.L. Ying, Y.Y. Mao, L.W. Sun, X.S. Peng, ACS Appl. Mater. Interfaces, 2013, 5, 9850–9855.
- A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J.W. Kang, B.J. Paul, N.K. Singh,
 J.J. Song, J. Kim, *J. Power Sources*, 2013, 244, 435–441.
- J.S. Zhou, L.L. Ma, H.H. Song, B. Wu, X.H. Chen, *Electrochem. Commun.*, 2011, 13, 1357–1360.