Supporting Information

Fluorescence detection of $\mathrm{Mn}^{\mathbf{2 +}}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\mathbf{2 -}}$ and nitroexplosives and photocatalytic degradation of methyl violet and Rhodamine based on two stable metal-organic frameworks

Yu Wua*, Jian Wu ${ }^{\text {b }}$, Zhidong Luo ${ }^{\text {c }}$, Jun Wang ${ }^{\text {a }}$, Yulong Lia ${ }^{\text {a }}$, Yaoyao Hanc , Jianqiang Liu ${ }^{\text {c* }}$

IR spectra

IR spectra of MOFs $\mathbf{1}$ and $\mathbf{2}$ displayed the characteristic asymmetric and symmetric stretching vibrations of carboxylate groups in the ranges from 1616 to $1498 \mathrm{~cm}^{-1}$, and from 1599 to $1428 \mathrm{~cm}^{-1}$, respectively. The disappearance of strong absorption bands around $1700 \mathrm{~cm}^{-1}$ confirms complete deprotonation of the carboxylate groups of the $\mathrm{H}_{2} \mathrm{dbp}$ ligands during the reactions (Fig. S1).

Fig. S1 view of the IR spectra of 1-2.

Thermogravimetric Analysis (TGA)

The thermogravimetric analyses (TGA) of title MOFs were examined (Fig. S2). In the case of 2 the first weight loss begins at $25^{\circ} \mathrm{C}$ and is completed at $110^{\circ} \mathrm{C}$. The observed weight loss of 12.2% corresponds to the loss of the $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules (calcd 12.9 \%). The second weight loss can be attributed to the elimination of organic ligand. The TGA results indicates that the framework of both $\mathbf{1}$ and $\mathbf{2}$ began to collapse only at temperature above $350^{\circ} \mathrm{C}$.

Fig. S2 view of the TGA of 1-2.
(a)

Fig. S3 (a) and (b) Powder XRD profiles of 1-2 after fluorescence sensing and photocatalysis, respectively.
(a)

20
(b)

2θ

Fig. S4 (a) and (b) Powder XRD profiles of 1-2 under different pH , respectively.

Measurements

The activated samples were prepared by soaking the as-synthesized samples in $\mathrm{CH}_{3} \mathrm{OH}$ for two days, then in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three days and subsequent heating at $100{ }^{\circ} \mathrm{C}$ in a quartz tube under high vacuum for 20 h to remove the solvent molecules prior to measurements. The nitrogen adsorption-desorption measurements were carried out at liquid nitrogen temperature (77 K) by using automatic volumetric adsorption equipment (Micromeritics, ASAP2020).

The desorption hysteresis is related to the 1D narrow channel system, which hints the escape of adsorbed gas molecules. The saturated loading is 77 and $15 \mathrm{~cm}^{3}$ (STP) g^{-1} at around 700 Torr for $\mathbf{1}$ and $\mathbf{2}$, respctively. The low N_{2} adsorbed capacity for $\mathbf{1 - 2}$ indicated that the interpenetration greatly reduces the volume of the channel. Also, the differnce loading can be attributed to the skelton of full networks between $\mathbf{1}$ and $\mathbf{2}$.

Fig. S5 (a) and (b) Gas sorption isotherms of $\mathrm{N}_{2}(77 \mathrm{~K})$ for $\mathbf{1}$ and 2, respectively.

Scheme S1 View of the coordination modes of dbp in this work.

Fig. S6 View of the PL spectra of $\mathbf{1 - 2}\left(\lambda_{\text {ex }}=315 \mathrm{~nm}\right)$.

Fig. S7. a), c) and e) Emission spectra of 1 in different metal ions, anions and nitro-explosives (excited at 315 nm). b), d) and f) views of Stern-Volmer plots.

Fig. S8. a), c) and e) Emission spectra of 2 in different metal ions, anions and nitro-explosives (excited at 315 nm). b), d) and f) views of Stern-Volmer plots.

Fig. S9 The UV/vis absorption spectra for $\mathrm{Mn}^{2+}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$, nitro-explosives and dbp.

Fig. S10. The luminescence intensity of three recycles (a) after the first recycle, (b) after the second recycle, and (c) after the third recycle in 1-2.

Fig. S11 (a) and (b) recycling tests of $\mathbf{2}$ towards MV and RhB photodegradation, respectively; (c) view of the UV-vis-NIR.

Scheme S2 Schematic of possible photocatalytic reaction mechanism of MV and Rh
B.

Table S1. Crystal data and structure refinement information for compounds $\mathbf{1}$ and $\mathbf{2}$

Parameter	1	2
Formula	$\mathrm{C}_{29} \mathrm{H}_{17} \mathrm{ZnN}_{3} \mathrm{O}_{5}$	$\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{Cd}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}$
Formula weight	552.83	1389.92
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/c
Crystal color	yellow	yellow
$a,[\AA]$	9.413(2)	10.1676(16)
b, [\AA]	18.749(5)	17.300(3)
c, [\AA]	17.387(5)	17.485(3)
$\left.\alpha,{ }^{\circ}\right]$	90.00	90
$\left.\beta,{ }^{\circ}\right]$	91.076(4)	91.708(2)
$\left.\gamma,{ }^{\circ}\right]$	90.00	90
V, \AA^{3}	3067.9(14)	3074.3(9)
Z	4	2
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.197	1.501
μ, mm^{-1}	0.838	0.767
$F(000)$	1128	1408
θ Range, deg	2.42-25.01	2.35-25.01
Reflection collected	5391/3904	15377/5413
Goodness-of-fit on F^{2}	1.062	1.051
$R_{1}, w R_{2}(I>2 \sigma(I))^{*}$	0.0759, 0.0996	0.0359, 0.0465
$R_{1}, w R_{2}($ all data)**	0.1901, 0.1992	0.0951, 0.1004

* $R=\sum\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right) / \sum\left(\mathrm{F}_{\mathrm{o}}\right), * * w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum\left(F_{\mathrm{o}}^{2}\right)^{2}\right\}^{1 / 2}$.

Table S2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of structures 1-2

1				
$\mathrm{Zn}(1)-\mathrm{O}(2) \# 1$ $1.951(4)$ $\mathrm{Zn}(1)-\mathrm{O}(4) \# 2$ $1.954(4)$ $\mathrm{Zn}(1)-\mathrm{N}(3) \# 3$ $2.030(5)$ $\mathrm{Zn}(1)-\mathrm{N}(1)$ $2.051(4)$ $\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(4) \# 2$ $115.85(17)$ $\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{N}(3) \# 3$ $101.19(19)$ $\mathrm{O}(4) \# 2-\mathrm{Zn}(1)-\mathrm{N}(3) \# 3$ $116.76(19)$ $\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{N}(1)$ $120.7(2)$ $\mathrm{O}(4) \# 2-\mathrm{Zn}(1)-\mathrm{N}(1)$ $95.72(18)$ $\mathrm{N}(3) \# 3-\mathrm{Zn}(1)-\mathrm{N}(1)$ $107.4(2)$				

Symmetry codes: \#1: $-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z} ; \# 2$: x, y, $-1+\mathrm{z} ;$ \#3:1-x, $0.5+\mathrm{y}, 0.5-\mathrm{z}$

$\mathrm{Cd}(1)-\mathrm{O}(1) \mathrm{W}$	$2.309(3)$	$\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$2.312(2)$
$\mathrm{Cd}(1)-\mathrm{N}(1)$	$2.317(3)$	$\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$2.331(2)$
$\mathrm{Cd}(1)-\mathrm{N}(3) \# 3$	$2.356(3)$	$\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$2.513(3)$
$\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	$2.634(2)$		
$\mathrm{O}(1) \mathrm{W}-\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$86.18(9)$	$\mathrm{O}(1) \mathrm{W}-\mathrm{Cd}(1)-\mathrm{N}(1)$	$90.82(10)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$139.04(9)$	$\mathrm{O}(1) \mathrm{W}-\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$91.15(10)$
$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$84.95(9)$	$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$166.77(8)$
$\mathrm{N}(3) \# 3-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	$80.94(10)$	$\mathrm{O}(4) \# 2-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	$137.16(8)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	$86.83(9)$	$\mathrm{O}(1) \mathrm{W}-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	$89.27(9)$
$\mathrm{N}(3) \# 3-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$107.43(10)$	$\mathrm{O}(4) \# 2-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$53.94(8)$

Symmetry codes: \#1: $1+\mathrm{x}, \mathrm{y}, 1+\mathrm{z} ; \# 2: \mathrm{x}, \mathrm{y}, 1+\mathrm{z} ; \# 3: 4-\mathrm{x},-0.5+\mathrm{y}, 1.5-\mathrm{z}$

