## **Support Information**

Effect of Alkylthiophene Spacers and Fluorination on the Optoelectronic Properties of 5,10-Bis(alkylthien-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene-*alt*-benzothiadiazole Derivatives Copolymers

Pengzhi Guo,<sup>a</sup> Jingbiao Sun,<sup>a</sup> Shuo Sun,<sup>b</sup> Jianfeng Li,<sup>a</sup> Junfeng Tong,<sup>b</sup> Chuang Zhao,<sup>b</sup> Liangjian Zhu,<sup>a</sup> Peng Zhang,<sup>a</sup> Chunyan Yang,<sup>a</sup> Yangjun Xia <sup>a,c,</sup>

<sup>a</sup>Key Lab of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University, Gansu Province, Lanzhou, 730070, China.

<sup>b</sup>·National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

<sup>c.</sup> Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106-9510

## Contents

| 1. Thermogravimetric characteristics of the copolymers.                                                                                                      | .3      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2. Normalized absorption of the PDTBDT-BT and PDTBDT-FBT.                                                                                                    | .3      |
| 3. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in dilu                                                               | te      |
| solution                                                                                                                                                     | .4      |
| 4. Temperature-dependant absorption spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in film                                                                      | .5      |
| 5. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTBT and                                                                    |         |
| PDTBDT-DTFBT in films.                                                                                                                                       | .6      |
| 6. Temperature-dependant absorption spectra of the PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution.                                                  | .7      |
| 7. Electrochemical characteristics of the PDTBDT-BT and PDTBT-FBT                                                                                            | 8       |
| 8 The method used to calculate the HOMO and LUMO levels for the polymers                                                                                     | .9      |
| 9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT.   | 10      |
| 10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT. | 11      |
| 11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).                                | f<br>12 |
| 12. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).                                | f<br>13 |
| 13. 2D-GIWAXs characteristics of the PDTBDT-DTBT                                                                                                             | 14      |
| 14. 2D GIWAXs characteristics of the PDTBDT-DTBT                                                                                                             | 15      |
| 15. J <sup>0.5</sup> –V characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au.                       | 17      |
| 16. AFM topography images of the PDTBDT-DTBT/PC <sub>71</sub> BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.                                   | 18      |
| 17. AFM topography images of PDTBDT-DTFBT/PC <sub>71</sub> BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.                                      | 19      |
| 18. Diagram of the energy levels of the copolymers and $PC_{71}BM$ and calculated $V_{oc}$ from empirical equation                                           | 20      |

1. Thermogravimetric characteristics of the copolymers.



Fig. S1. Thermogravimetric curves of the copolymers.

2. Normalized absorption of the PDTBDT-BT and PDTBDT-FBT.



Fig. S2. Normalized absorption of PDTBDT-BT and PDTBDT-FBT in dilute solution and film.

3. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in dilute solution.



Fig. S3. Normalized temperature-dependent photoluminescence spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution.





Fig. S4. Normalized temperature-dependent UV-vis spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT in solid states.

5. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTBT and PDTBDT-DTFBT in films.



Fig. S5. Normalized temperature-dependent photoluminescence spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in solid states.

6. Temperature-dependant absorption spectra of the PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution.



Fig. S6. Temperature-dependent UV-vis spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in chlorobenzene solution.

## 7. Electrochemical characteristics of the PDTBDT-BT and PDTBT-FBT.



Fig. S7. Cyclic voltammetry curves of PDTBDT-BT and PDTBDT-FBT measured in a nitrogen-saturated solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile with glass carbon and Ag/AgNO<sub>3</sub> electrodes as the working and reference electrodes, respectively.

8 The method used to calculate the HOMO and LUMO levels for the polymers

Electrochemical cyclic voltammetry measurements were carried out using a CHI660 electrochemical workstation equipped with a glass carbon working electrode, Ag/AgNO<sub>3</sub> electrode as the reference electrode, and a Pt wire counter electrode. The measurements were done in anhydrous acetonitrile with tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte under an argon atmosphere at a scan rate of 50 mV/s. The potential of the Ag/AgNO<sub>3</sub> reference electrode was internally calibrated using the ferrocene/ferrocenium redox couple (Fc/Fc<sup>+</sup>), which has a known reduction potential of -4.8 eV. The HOMO and LUMO energy levels were calculated by the following equations.  $E_{\text{HOMO}} = -(E_{\text{red}}+4.71)$  (eV) and  $|E_{\text{LUMO}} = -(E_{\text{red}}+4.71)$  (eV), the E<sub>1/2</sub> of ferrocene/ferrocenium (Fc/Fc<sup>+</sup>) was observed at 0.09 V vs Ag/Ag<sup>+</sup>.



Figure S8. Electrochemical cyclic voltammetry curves of the Fc/Fc<sup>+</sup>.

9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT.



Fig. S9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT.

10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT.



Fig. S10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT.

11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).



Fig. S11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).

12. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).



Figure S12. Optimized geometries of each trimer models (a) and surface plots and energy levels of frontier orbitals of PDTBDT-FBT (b).

13. 2D-GIWAXs characteristics of the PDTBDT-DTBT



Fig. S13. 2D-GIWAXs patterns and corresponding out-off plane and in-plane line-cut profiles of PDTBDT-DTBT pristine film



## 14. 2D GIWAXs characteristics of the PDTBDT-DTBT



Fig. S14. 2D-GIWAXs patterns and corresponding out-off plane and in-plane line-cut profiles of PDTBDT-DTFBT pristine film

15. J<sup>0.5</sup>–V characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au.



Fig. S15.  $J^{0.5} - V$  characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au.

16. AFM topography images of the PDTBDT-DTBT/PC<sub>71</sub>BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.



 $$\mu m$$  Fig. S16. AFM topography images of the PDTBDT-DTBT/PC\_{71}BM (a, without DIO, b with 3% DIO ) with weight ratio of 1:2.

17. AFM topography images of PDTBDT-DTFBT/PC<sub>71</sub>BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.



 $\mu$ m Fig. S17. AFM topography images of PDTBDT-DTFBT/PC<sub>71</sub>BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.

18. Diagram of the energy levels of the copolymers and  $PC_{71}BM$  and calculated  $V_{oc}$  from empirical equation



Fig. S18. Diagram of the energy levels of the copolymers and PC<sub>71</sub>BM and calculated *Voc* from empirical equation.