Pd nanocatalyst supported on multifaceted mesoporous silica

with enhanced activity and stability for glycerol

electrooxidation

Thiago S. D. Almeida, ${ }^{\text {a }}$ Katia-Emiko Guima, ${ }^{\text {a }}$ Roberto M. Silveira, ${ }^{\text {b,c }}$ Gabriel C. da Silva, ${ }^{\text {d }}$ Marco A. U. Martines ${ }^{\text {b }}$ and Cauê A. Martinsa ${ }^{*}$

${ }^{\text {a }}$ Faculty of Exact Sciences and Technology, Universidade Federal da Grande Dourados, 79804-970 Dourados, MS, Brazil.
${ }^{\mathrm{b}}$ Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, C.P. 549, 79070900 Campo Grande, MS, Brazil.
${ }^{\text {c Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul - Campus }}$ Ponta Porã, C.P. 79900-000 Ponta Porã, MS, Brazil.
${ }^{\text {d }}$ Instituto de Química de São Carlos/Universidade de São Paulo, IQSC-USP, C.P. 780, São Carlos, SP, Brazil.

[^0]e-mail: cauealvesmartins@gmail.com, cauemartins@ufgd.edu.br

Figure S1. Mean size distribution of multifaceted mesoporous silica ().

Figure S2. Representative EDS spectrum of $\mathrm{Pd} / \mathrm{SiO}_{2}$ nanoparticles.

Counts

Figure S3. Representative EDS spectrum of Pd nanoparticles after removal of SiO_{2}.

Figure S4. First derivative of the voltammograms of $\mathrm{Pd} / \mathrm{SiO}_{2}, \mathrm{Pd}$ and Pd / C in the presence of $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KOH}$ and $0.2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{GlOH}$. The figure shows that the onset potential $\mathrm{E}_{\text {onset }}$ are virtually the same for all catalysts. The potential peaks $\mathrm{E}_{\text {peak }}$ are
indicated in the figure. A small shoulder appears for the reaction on $\mathrm{Pd} / \mathrm{SiO}_{2}$ and Pd , but Pd / C, as indicated by $\mathrm{E}_{\text {shoulder }}$.

Figure S 5 . Cyclic voltammograms of (A) $\mathrm{Pd} / \mathrm{SiO}_{2}$ and (B) Pd in the presence of 0.1 mol $\mathrm{L}^{-1} \mathrm{KOH}$ before (black line) and after (red line) the degradation test protocol, which consist in 100 potential cycles cycles between 0.57 and 1.27 V at $0.05 \mathrm{~V} \mathrm{~s}^{-1}$ in 0.1 mol $\mathrm{L}^{-1} \mathrm{KOH}+0.2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{GlOH}$.

[^0]: * Corresponding Author. Phone: +55 6792624202

