Supporting Information

Table of Contents

Supporting Information1
General information2
Preparation of [(SIPr)Ag(CF ₂ H)] ^[1]
Preparation of [(SIPr)Ag(SCF ₂ H)] ^[2]
Synthesis of Starting Materials4
Stoichiometric reaction of complex [(Xantphos)Pd(3-Py)(I)] with
[(SIPr)Ag(SCF ₂ H)]15
General Procedure for Difluoromethylthiolation of Heteroaryl iodide16
General Procedure for Difluoromethylthiolation of Heteroaryl bromide
General Procedure for Difluoromethylthiolation of Heteroaryl triflates44
General Procedure for Difluoromethylthiolation of aryl iodide49
Procedure for Difluoromethylthiolation of 4-bromo-1-isobutyl-1H-imidazo[4,5-c]
quinolone 6
Procedure for Difluoromethylthiolation of heptan-2-yl 2-((5-chloro-3-iodo
quinolin-8-yl)oxy)acetate 759
Reference
Spectrum of the Starting Material61
Spectrum of the Products82
X-ray structure of [(Xantphos)Pd(3-py)(Br)]186

General information

All solvents were purified by standard methods. ¹H NMR spectra were recorded on a 500 MHz, 400 MHz or 300 MHz spectrometer. ¹⁹F NMR spectra were recorded on a 376 MHz or 282 MHz spectrometer. ¹³C NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer. ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure. Detection of melting point was conducted on the SGW X-4 microscopic melting point meter. Elemental analysis was conducted on the VARIO EL III. X-ray structure was obtained on BRUKER SMART APEX CCD.

All reagents were received from commercial sources (Adamas-beta®, Alfa, TCI). Solvents were freshly dried and degassed according to the purification handbook *Purification of Laboratory Chemicals* before using.

Preparation of [(SIPr)Ag(CF₂H)]^[1]

To a solution of [(SIPr)AgCl] (831 mg, 1.50 mmol) and NaO^tBu (285 mg, 3.00 mmol) in THF (30 mL) was added TMSCF₂H (375 uL, 3.00 mmol). The resulting mixture was stirred for 1.5 h at ambient temperature. The mixture was filtered through a short plug with Celite and the solvent was evaporated under vacuum to give an off-white solid. The solid was recrystallized from CH₂Cl₂/pentane to give (1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-yl) (difluoromethyl)silver [(SIPr)Ag(CF₂H)] as a white solid (698 mg, 82%). ¹H NMR (400 MHz, THF-d₈) δ 7.36 (t, J = 8.0 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 4 H), 5.90 (td, J = 43.6, 14.0 Hz, 1 H), 4.04 (s, 4 H), 3.15 (hept, J = 6.8 Hz, 4 H), 1.34 (d, J = 7.2 Hz, 12 H), 1.32 (d, J = 7.2Hz, 12 H); ¹⁹F NMR (376 MHz, THF-d₈) δ -113.66 (dd, $J^{109}_{Ag-F} = 62.4$ Hz, $J^{107}_{Ag-F} =$ 54.5 Hz, $J_{\text{H-F}}$ = 43.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 24.11, 25.76, 28.96, 124.55, 129.78, 134.80, 146.76, 153.67 (dt, $J^{109}_{Ag-C} = 260.6Hz$, $J^{107}_{Ag-C} = 225.2$ Hz, $J_{C-F} =$ 280.8 Hz), 211.41 (d, $J_{Ag-C}^{109} = 151.5$ Hz, $J_{Ag-C}^{109} = 131.3$ Hz) ppm. Anal. Calcd for C₂₈H₃₉AgF₂N₂: C, 61.20; H, 7.15; N, 5.10; Found: C, 60.91; H, 6.87; N, 4.78.

Preparation of [(SIPr)Ag(SCF₂H)]^[2]

In a 250 mL round-bottom flask, a solution of $[(SIPr)Ag(CF_2H)]$ (5.6 g, 10 mmol, 1.0 equiv) and S₈ (1.92 g, 60 mmol, 6.0 equiv) in THF (200 mL) was stirred for 50 min under an argon atmosphere at ambient temperature. The mixture was filtered through a short plug with Celite and the solvent was evaporated under vacuum to give an greyish-green solid. The solid was recrystallized twice from THF/pentane to give

(1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-yl)(difluoromethylthio)silver [(SIPr)Ag(SCF₂H)] as a off-white solid (4.74 g, 82%).

(1,3-Bis(2,6-diisopropylphenyl)imidazolidin-2-yl) (difluoromethylthio) silver 1 ¹H NMR (400 MHz, d^8 -THF) δ 7.56 (dd, J = 8.3, 7.1 Hz, 2 H), 7.50 – 7.42 (m, 4 H), 6.74 (t, J = 65.2 Hz, 1 H), 4.31 (s, 4 H), 3.36 (hept, J = 6.9 Hz, 4 H), 1.52 (t, J = 6.6Hz, 24 H); ¹⁹F NMR (376 MHz, d^8 -THF) δ -59.40 (d, J = 65.2 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 210.49 – 207.67 (m), 146.65, 134.47, 129.92, 124.60, 124.20 (t, J = 269.4 Hz), 53.89, 53.81, 28.89, 25.31, 24.09 ppm. Anal. Calcd. for C₂₈H₃₉AgF₂N₂S: C, 57.83; H, 6.76; N, 4.82; Found: C, 57.43; H, 6.94; N, 4.54.

Synthesis of Starting Materials

Preparation of (Xantphos)Pd(3-Py)(I) 3

Pd(dba)₂ (574 mg, 1.0 mmol) and Xantphos (578 mg, 1.0 mmol) were placed in a 100 mL flask. Toluene (40 mL) and 3-iodopyridine (2.04 g, 10.0 mmol) were added, and the mixture was stirred at room temperature for 4 h. The solution was filtered through Celite. The filtrate was evaporated in vacuum to a volume of 5.0 mL. Addition of pentane (150 mL) gave a yellow precipitate. The precipitate was filtered, and the solid was recrystallized from THF/pentane (510.0 mg, 57%) to give (Xantphos)Pd(3-py)(I) **3**.

(Xantphos)Pd(3-Py)(I). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1 H), 7.61 (d, J = 7.6 Hz, 2 H), 7.45 – 7.13 (m, 25 H), 6.56 (s, 1 H), 5.93 (s, 1 H), 1.78 (s, 6 H); ³¹P NMR (162 MHz, CDCl₃) δ 10.64 (s, 2 P) ppm. Anal. Calcd. for C₄₄H₃₆INOP₂Pd: C, 59.38; H, 4.08; N, 1.57; Found: C, 59.44; H, 4.23; N, 1.67.

Preparation of (Xantphos)Pd(3-Py)(Br)

 $Pd(dba)_2$ (574 mg, 1.0 mmol) and Xantphos (578 mg, 1.0 mmol) were placed in a 100 mL flask. Toluene (40 mL) and 3-bromopyridine (1.56 g, 10.0 mmol) were added, and the mixture was stirred at 60 °C for 4 h. The solution was filtered through Celite. The filtrate was evaporated in vacuum to a volume of 5.0 mL. Addition of pentane (150 mL) gave a pale yellow precipitate (592 mg, 70%).

(Xantphos)Pd(3-Py)(Br). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.60 (d, J = 5.2 Hz, 3 H), 7.44 – 7.12 (m, 24 H), 6.58 (s, 1 H), 5.88 (s, 1 H), 1.76 (s, 6 H); ³¹P NMR (162 MHz, CDCl₃) δ 9.20 (s, 2 P) ppm. Anal. Calcd. for C₄₄H₃₆BrNOP₂Pd: C, 62.69; H, 4.30; N, 1.66; Found: C, 62.47; H, 4.56; N, 1.75.

Preparation of 6-Iodobenzo[d]thiazole^[3] 3ak

A mixture of concentrated H₂SO₄ (20 mL) and NaNO₂ (1.3 g, 18.5 mmol) was stirred at 70 °C for 15 min. After cooling to 40 °C, a solution of 6-aminobenzothiazole (6) (2.5 g, 16.6 mmol) in acetic acid (35.0 mL) was added dropwise. The reaction mixture was stirred at room temperature for 30 min. The mixture was then added to the stirred solution of KI (3.32 g, 20 mmol) in water (35 mL). The resulting mixture was stirred at 70 °C for 30 min and then poured onto ice. The precipitate was collected by filtration, washed with water, and dissolved in CHCl₃ (50 mL). The organic solution was washed with 10% aqueous solution of Na₂S₂O₃ (2 × 30 mL), dried over Na₂SO₄. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel to yield 6-iodobenzo[*d*]thiazole as a white solid (1.6 g, 37 %).

6-Iodobenzo[d]thiazole 3ak. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1 H), 8.28 (d, J = 0.9 Hz, 1 H), 7.86 (d, J = 8.6 Hz, 1 H), 7.78 (dd, J = 8.6, 1.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 154.32, 152.61, 135.87, 135.29, 130.40, 125.07, 90.21 ppm. **Preparation of 5-Iodobenzofuran**^[3] **3**y

A Schlenk tube was charged with CuI (48.0 mg, 0.25 mmol, 5.0 mol%), NaI (1.5 g,

10.0 mmol). briefly evacuated and backfilled with argon. Racemic trans-N,N'-dimethyl-1,2-cyclohexanediamine (80.0 µL, 1.00 mmol, 10 mol%), 5-bromobenzofuran (0.98 g, 5.00 mmol), and dioxane (5.0 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 24 h. The resulting suspension was allowed to reach room temperature, diluted with 30% ag ammonia (25 mL), poured into water (100 mL), and extracted with dichloromethane (3×15 mL). The combined organic phases were dried (MgSO₄ or Na₂SO₄), concentrated, and the residue was purified by flash chromatography on silica gel (eluent: hexane / EtOAc = 10:1) to provide the desired product as a colorless liquid (1.17 g, 96 %).

5-Iodobenzofuran 3y. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1 H), 7.55 (d, *J* = 12.5 Hz, 2 H), 7.27 (d, *J* = 8.6 Hz, 1 H), 6.69 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 154.33, 145.78, 132.85, 130.16, 130.06, 113.43, 105.83, 86.26 ppm.

Preparation of *tert*-butyl 5-iodo-1*H*-indazole-1-carboxylate^[3] 3ai

A Schlenk tube was charged with CuI (48.0 mg, 0.25 mmol, 5.0 mol%), NaI (1.5 g, 10.0 mmol). briefly backfilled evacuated and with argon. Racemic trans-N,N'-dimethyl-1,2-cyclohexanediamine (80.0 µL, 1.00 mmol, 10 mol%), 5-bromo-1H-indazole (0.98 g, 5.00 mmol), and dioxane (5.0 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 24 h. The resulting suspension was allowed to reach room temperature, diluted with 30% ag ammonia (25 mL), poured into water (100 mL), and extracted with dichloromethane (3×15 mL). The combined organic phases were dried (MgSO₄ or Na₂SO₄), concentrated, and the residue was used directly without further purification.

In a 100 mL round-bottom flask, Boc_2O (1.72 g, 7.6 mmol), DMAP (0.12 g, 1 mmol) was dissolved in MeCN (15 mL). Et₃N (0.70 mL, 5 mmol) was added and the mixture was stirred at room temperature for 3 h. The mixture was then concentrated in vacuo. The resulting residue was purified by flash chromatography (eluent: hexane / EtOAc = 30:1) to give the *tert*-butyl 5-iodo-1*H*-indazole-1-carboxylate as colorless oil (1.3 g, 76 %).

tert-Butyl 5-iodo-1*H*-indazole-1-carboxylate 3ai. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 2 H), 7.96-7.94 (m, 1 H), 7.75 (dd, *J* = 8.8, 1.7 Hz, 1 H), 1.71 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 148.90, 138.99, 138.15, 137.30, 129.96, 128.05, 116.33, 87.34, 85.36, 28.15 ppm.

Preparation of 8-(benzyloxy)-5,7-dichloroquinoline^[5,6] 3u

In a 500 mL round-bottom flask, the 5,7-dichloroquinolin-8-ol (8.5 g, 40 mmol), sodium hydroxide (2.4 g, 60 mmol) and *tetra*-butylammonium bromide (332 mg, 1.0 mmol) were dissolved in a mixture of dichloromethane (100 mL) and water (100 mL). Benzyl bromide (13.6 g, 80 mmol) was added dropwise to the solution. The mixture was stirred at room temperature for 4 h. The organic layer was separated and the aqueous layer extracted with dichloromethane (2×100 mL). The organic phase was combined and dried over anhydrous Na₂SO₄, and then concentrated in vacuo. The resulting residue was purified by flash chromatography (eluent: hexane / EtOAc = 20:1) to give the 8-(benzyloxy)-5,7- dichloroquinoline as a white solid (9.5 g, 78 %).

8-(Benzyloxy)-5,7-dichloroquinoline 2u. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 4.1 Hz, 1 H), 8.52 (d, J = 8.6 Hz, 1 H), 7.64 (s, 1 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.54 (dd, J = 8.5, 4.1 Hz, 1 H), 7.39-7.31 (m, 3 H), 5.47 (s, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 150.77, 150.34, 143.90, 137.03, 133.33, 128.65, 128.35, 128.21, 127.88, 127.02, 126.28, 126.21, 122.02, 76.67 ppm. MS (EI): 91.1 (100), 303. HRMS (EI) for C₁₆H₁₁Cl₂NO Calcd: 303.0218; Found: 303.0223. IR (KBr): v = 3085, 3064, 3030, 2956, 1600, 1580, 1496, 1483, 1456, 1446, 1369, 1349, 1284, 1238, 1215, 1138, 1095, 1041, 990, 945, 883, 877, 807 cm⁻¹. Mp: 87.9 – 89.2 °C.

N-Iodo-succinimide (2.25 g, 10 mmol) was added in portions to a stirred solution of 8-(benzyloxy)-5,7-dichloroquinoline (3.0 g, 10.0 mmol) in acetic acid (10 mL) at 70 $^{\circ}$ under argon. The mixture was heated to 70 $^{\circ}$ for 18 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was redissolved in dichloromethane (50 mL) and the solution was washed successively with 10 % aqueous sodium thiosulfate solution (2 × 30 mL) and 10 % aqueous sodium hydrogen carbonate solution (2 × 30 mL), dried (NaSO₄) and then concentrated in vacuo. The resulting residue was purified by flash chromatography (eluent: hexane / EtOAc = 20:1) to give the 8-(benzyloxy)-5,7-dichloro-3- iodoquinoline as a white solid (1.4 g, 33 %).

8-(Benzyloxy)-5,7-dichloro-3-iodoquinoline 3u. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, *J* = 1.9 Hz, 1 H), 8.88 (d, *J* = 2.0 Hz, 1 H), 7.63 (s, 1 H), 7.57 (d, *J* = 6.6 Hz, 2 H), 7.39-7.33 (m, 3 H), 5.44 (s, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.06, 150.53,

142.00, 141.08, 136.75, 128.84, 128.62, 128.39, 128.32, 127.68, 127.55, 124.95, 91.59, 77.82 ppm. MS (EI): 91.1 (100), 429. HRMS (EI) for $C_{16}H_{10}Cl_2INO$ Calcd: 428.9184, Found: 428.9181. IR (KBr): v = 3072, 3028, 2949, 1569, 1455, 1438, 1384, 1350, 1280, 1242, 1206, 1101, 1072, 940, 890, 762, 729, 693, 623 cm⁻¹. Mp: 130.8 – 132.4 °C.

Preparation of 2-((5-chloro-3-iodoquinolin-8-yl)oxy)acetate^[6] 3ay.

N-Iodo-succinimide (4.5 g, 20 mmol) was added in portions to a stirred solution of heptan-2-yl 2-((5-chloroquinolin-8-yl)oxy)acetate (6.7 g, 20 mmol) in acetic acid (20 mL) at 70 °C under argon. The mixture was heated to 70 °C for 18 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was redissolved in dichloromethane (100 mL) and the solution was washed successively with 10 % aqueous sodium thiosulfate solution (2 × 60 mL) and 10 % aqueous sodium hydrogen carbonate solution (2 × 60 mL), dried (NaSO₄) and then concentrated in vacuo. The resulting residue was purified by flash chromatography (eluent: hexane / EtOAc = 20:1) to give the heptan-2-yl 2-((5-chloro-3-iodoquinolin-8-yl)oxy)acetate as a white solid (1.02 g, 11 %).

2-((5-Chloro-3-iodoquinolin-8-yl)oxy)acetate 3ay. ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1 H), 8.89 (s, 1 H), 7.49 (d, *J* = 8.4 Hz, 1 H), 6.89 (d, *J* = 8.4 Hz, 1 H), 5.07-4.96 (m, 1 H), 4.92 (s, 2 H), 1.56-1.42 (m, 2 H), 1.28-1.18 (m, 9 H), 0.87-0.82 (m, 3

H); ¹³C NMR (101 MHz, CDCl₃) δ 167.91, 155.19, 153.11, 140.85, 138.76, 128.60, 127.06, 122.17, 109.95, 92.24, 72.83, 66.39, 35.65, 31.46, 24.88, 22.47, 19.86, 13.93 ppm. MS (EI): 318 (100), 461. HRMS (EI) for C₁₈H₂₁ClINO₃ Calcd: 461.0255; Found: 461.0253. IR (KBr): $\nu = 2930$, 1743, 1605, 1557, 1446, 1364, 1338, 1314, 1217, 1158, 1119, 947, 892, 834, 720 cm⁻¹. Mp: 66.8 – 68.2 °C.

Preparation of 4-bromo-1-isobutyl-1H-imidazo[4,5-c]quinolone^[7] 3ax

1-*iso*Butyl-1*H*-imidazo[4,5-c]quinolin-4-amine (932 mg, 3.88 mmol) was suspended in hydrobromic acid (5.0 mL, 48% in water), and the mixture was cooled to -15 °C. Bromine (1.2 mL, 23.5 mmol) was added dropwise to the mixture followed by addition of sodium nitrite (1.5 g, 21.7 mmol) in water (2 mL). The reaction mixture was warmed to room temperature and was further stirred for 3 h. The reaction mixture was cooled to -15 °C and quenched with aqueous solution of potassium hydroxiode. The mixture was extracted with ethyl acetate (3 × 30 mL). The combined extracts were washed with water (2 × 20 mL), saturated aqueous sodium bicarbonate (20 mL), dried with sodium sulfate, and concentrated in vacuo. The resulting residue was purified by flash chromatography (eluent: hexane / EtOAc = 10:1) to give the 4-bromo-1-*iso*butyl-1*H*-imidazo[4,5-c]quinoline as a white solid (732 mg, 66 %).

4-Bromo-1*-iso***butyl-1***H***-imidazo**[**4**,**5**-c]**quinolone 3ax.** ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 7.8 Hz, 1 H), 8.08 (d, *J* = 7.7 Hz, 1 H), 7.94 (s, 1 H), 7.71-7.64 (m, 2 H), 4.35 (d, *J* = 7.4 Hz, 2 H), 2.40-2.29 (m, 1 H), 1.04 (d, *J* = 6.6 Hz, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ 144.84, 143.94, 136.48, 132.93, 130.32, 127.97, 127.00, 120.16, 117.81, 109.99, 55.41, 28.83, 19.78 ppm. MS (EI): 303 (100), 305 (100). HRMS (EI) for C₁₄H₁₄BrN₃ Calcd: 303.0371; Found: 303.0377. IR (KBr): v = 3092, 2962, 1740, 1561, 1390, 1354, 1218, 1137, 1077, 1014, 915, 773 cm⁻¹. Mp: 176.2 – 177.8 °C.

Preparation of heteroaryl triflates^[8]

To a stirred solution of starting material (10.0 mmol) and Et_3N (1.8 mL, 13.0 mmol) in CH_2Cl_2 (20.0 mL) at ^oC was added Tf_2O (2.0 mL, 12.0 mmol) dropwise over 3 min. The mixture was stirred for 2 h then concentrated *in vacuo* and the residue purified by flash chromatography to provide heteroaryl triflates.

5-Bromopyridin-2-yl trifluoromethanesulfonate 3a

Prepared from 5-bromopyridin-2-ol (1.73 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 10:1) to yield **5-bromopyridin-2-yl trifluoromethanesulfonate** (1.5 g, 49 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 2.4 Hz, 1 H), 8.01-7.98 (m, 1 H), 7.10 (dd, *J* = 8.6, 0.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 154.50, 149.72, 143.49, 120.51, 118.56 (q, *J* = 320.6 Hz), 116.75 ppm.

5-Chloropyridin-2-yl trifluoromethanesulfonate 3b

Prepared from 5-chloropyridin-2-ol (1.29 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 10:1) to yield **5-chloropyridin-2-yl** trifluoromethanesulfonate (1.3 g, 50 %) as a pale yellow oil. ¹H NMR (400 MHz,

CDCl₃) δ 8.35 (d, *J* = 2.6 Hz, 1 H), 7.86 (dd, *J* = 8.6, 2.7 Hz, 1 H), 7.16 (d, *J* = 8.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.97 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.89, 147.42, 140.60, 132.44, 118.58 (q, *J* = 320.6 Hz), 116.29 ppm.

Isoquinolin-1-yl trifluoromethanesulfonate 3v

Prepared from isoquinolin-1-ol (1.45 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 30:1) to yield **isoquinolin-1-yl trifluoromethanesulfonate** (1.36 g, 49 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 5.7, 2.4 Hz, 1 H), 8.10 (d, *J* = 8.4 Hz, 1 H), 7.89 (d, *J* = 8.3 Hz, 1 H), 7.81-7.77 (m, 1 H), 7.73-7.67 (m, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.09 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 152.94, 139.43, 139.42, 131.97, 129.18, 126.85, 122.81, 122.03, 119.91, 118.68 (q, *J* = 320.5 Hz) ppm.

5-Bromopyrimidin-2-yl trifluoromethanesulfonate 3ac

Prepared from 5-bromopyrimidin-2-ol (1.74 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 20:1) to yield **5-bromopyrimidin-2-yl trifluoromethanesulfonate** (0.5 g, 16 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.01 – -73.07 (m, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 161.26, 157.02, 119.50, 118.45(q, *J* = 320.8 Hz) ppm. MS (EI): 163 (100), 306, 308. HRMS (EI) for C₅H₂BrF₃N₂O₃S Calcd: 305.8922; Found: 305.8917. IR (KBr): v = 1561, 1429, 1405, 1216, 1135, 1021, 908, 807, 763, 610 cm⁻¹.

Quinolin-2-yl trifluoromethanesulfonate 3ap

Prepared from quinolin-2-ol (1.45 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 20:1) to yield **quinolin-2-yl trifluoromethanesulfonate** (1.1 g, 40 %) as a pink oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, *J* = 8.7, 3.4 Hz, 1 H), 8.06-7.93 (m, 1 H), 7.85 (d, *J* = 8.1 Hz, 1 H), 7.78-7.74 (m, 1 H), 7.62-7.57 (m, 1 H), 7.20 (dd, *J* = 8.7, 2.4 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.07 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.70, 145.88, 141.89, 131.23, 128.89, 127.79, 127.73, 127.64, 118.73 (q, *J* = 320.5 Hz), 113.13 ppm.

Quinoxalin-2-yl trifluoromethanesulfonate 3at

Prepared from quinoxalin-2-ol (1.46 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 20:1) to yield **quinoxalin-2-yl trifluoromethanesulfonate** (2.3 g, 83 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1 H), 8.21-8.17 (m, 1 H), 8.07-8.03 (m, 1 H), 7.88-7.83 (m, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.74 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 149.54, 142.20, 139.62, 137.86, 131.99, 131.02, 129.35, 128.86, 118.63 (q, *J* = 320.8 Hz) ppm.

5-Bromo-3-nitropyridin-2-yl trifluoromethanesulfonate 3av

Prepared from 5-bromo-3-nitropyridin-2-ol (2.18 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 10:1) to yield **5-bromo-3-nitropyridin-2-yl trifluoromethanesulfonate** (1.1 g, 31 %) as a yellow oil. ¹H NMR (400 MHz, CDCl₃)

δ 8.70 (d, J = 2.3 Hz, 1 H), 8.69 (d, J = 2.3 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ-72.81 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.45, 145.87, 138.93, 136.26, 120.33, 118.35 (q, J = 321.1 Hz) ppm. MS (EI): 174 (100), 350, 352. HRMS (EI) for C₆H₂BrF₃N₂O₅S Calcd: 349.8820; Found: 349.8816. IR (KBr): v = 3082, 1363, 1587, 1541, 1435, 1342, 1219, 1133, 910, 855, 792, 760, 610 cm⁻¹.

7-Bromoisoquinolin-1-yl trifluoromethanesulfonate 3aw

Prepared from 7-bromoisoquinolin-1-ol (2.23 g, 10.0 mmol) according to general procedure. The crude residue was purified by flash column chromatography on silica gel (eluent: hexane / EtOAc = 10:1) to yield **7-bromoisoquinolin-1-yl trifluoromethanesulfonate** (2.0 g, 56 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.27-8.21 (m, 2 H), 7.91 – 7.86 (m, 1 H), 7.81-7.77 (m, 1 H), 7.68 (t, *J* = 5.1 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.72 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.75, 139.89, 137.79, 135.64, 128.44, 125.11, 123.24, 121.71, 120.70, 118.64 (q, *J* = 320.7 Hz) ppm. MS (EI): 196 (100), 355, 357. HRMS (EI) for C₁₀H₅BrF₃NO₃S Calcd: 354.9126; Found: 354.9124. IR (KBr): v = 3074, 1633, 1584, 1409, 1311, 1182, 1153, 1077, 1038, 895, 853, 802, 763, 666 cm⁻¹. Mp: 107.2 – 109.4 °C.

Stoichiometric reaction of complex [(Xantphos)Pd(3-Py)(I)] with [(SIPr)Ag(SCF₂H)].

$$(Xantphos)Pd(3-Py)(I) + (SIPr)Ag(SCF_2H) \xrightarrow{Xantphos} SCF_2H$$

toluene, r.t., 1 h
73%

[(Xantphos)Pd(3-Py)(I)] (17.8 mg, 0.02 mmol, 1.0 equiv), Xantphos (11.6 mg, 0.02 mmol, 1.0 equiv) and [(SIPr)Ag(SCF₂H)] (17.4 mg, 0.03 mmol, 1.5 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 1.0 mL of anhydrous toluene and the mixture was stirred at room temperature for 1 h. Yields were determined by ¹⁹F NMR analysis of the crude reaction mixture with trifluorotoluene as an internal standard.

General Procedure for Difluoromethylthiolation of Heteroaryl iodide

Method A

Heteroaryl iodide (0.5 mmol, 1.0 equiv), $Pd(dba)_2$ (30.0 mg, 10.0 mol%), XantPhos (44.0 mg, 15.0 mol%), and [(SIPr)Ag(SCF₂H)] (350.0 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 50 °C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

Method B

Hetary iodide (0.5 mmol, 1.0 equiv), XantphosPd(3-py)(Br) (21.0 mg, 5.0 mol%), XantPhos (7.5 mg, 2.5 mol%), and [(SIPr)Ag(SCF₂H)] (350.0 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 5.0 mL of anhydrous toluene and the mixture was stirred at 50 °C for 6 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

5-Bromo-2-((difluoromethyl)thio)pyridine 4a

Prepared from 5-bromo-2-iodopyridine (141.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-2-((difluoromethyl)thio)pyridine 4a** (66 mg, 55 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 2.1 Hz, 1 H), 7.73 (dd, *J* =

8.4, 2.4 Hz, 1 H), 7.63 (t, J = 56.2 Hz, 1 H), 7.17 (dd, J = 8.4, 0.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.31 (d, J = 56.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.81 (t, J = 3.7 Hz), 151.09, 139.73, 125.34 (t, J = 2.3 Hz), 120.83 (t, J = 272.0 Hz), 118.80 ppm. MS (EI): 191 (100), 239, 241. HRMS (EI) for C₆H₄BrF₂NS Calcd: 238.9216; Found: 238.9214. IR (KBr): v = 2926, 1560, 1545.7, 1452, 1352, 1285, 1119, 1069, 1004, 823, 791, 750, 627, 483 cm⁻¹.

5-Chloro-2-((difluoromethyl)thio)pyridine 4b

Prepared from 5-chloro-2-iodopyridine (119.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-chloro-2-((difluoromethyl)thio)pyridine 4b** (84 mg, 86 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 2.3 Hz, 1 H), 7.62 (t, *J* = 56.2 Hz, 1 H), 7.60 (dd, *J* = 8.5, 2.6 Hz, 1 H), 7.23 (dd, *J* = 8.5, 0.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.23 (d, *J* = 56.2 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.17 (t, *J* = 4.0 Hz), 148.93, 136.97, 130.51, 124.97 (t, *J* = 2.3 Hz), 120.94 (t, *J* = 272.0 Hz) ppm. MS (EI): 145 (100), 195. HRMS (EI) for C₆H₄ClF₂NS Calcd: 194.9721; Found: 194.9720. IR (KBr): v = 3051, 2927, 2855, 1567, 1551, 1447, 1358, 1285, 1122, 1068, 1010, 825, 789, 765 cm⁻¹.

Methyl 6-((difluoromethyl)thio)nicotinate 4c

Prepared from methyl 6-iodonicotinate (131.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **methyl 6-((difluoromethyl)thio)nicotinate 4c** (101 mg, 92 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, *J* = 1.7 Hz, 1 H), 8.18 (dd, *J* = 8.3, 2.2 Hz, 1 H), 7.83 (t, *J* = 55.9 Hz, 1 H), 7.29 (d, *J* = 8.3 Hz, 1 H), 3.95 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.45 (d, *J* = 55.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃)

δ 165.21, 158.87 (t, J = 3.7 Hz), 151.00, 137.66, 123.23, 122.60 (t, J = 2.4 Hz), 120.71 (t, J = 297.9 Hz), 52.48 ppm. MS (EI): 137 (100), 219. HRMS (EI) for C₈H₇F₂NO₂S Calcd: 219.0166; Found: 219.0160. IR (KBr): v = 3074, 2965, 1731, 1556, 1463, 1439, 1367, 1306, 1281, 1248, 847, 832, 785, 762, 582 cm⁻¹. Mp: 40.2 – 42.3 °C.

2-((Difluoromethyl)thio)-5-nitropyridine 4d

Prepared from 2-iodo-5-nitropyridine (125.0 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)-5-nitropyridine 4d** (88 mg, 85 %) as a white solid.

Prepared from 2-iodo-5-nitropyridine (125.0 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)-5-nitropyridine 4d** (102 mg, 99 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, J = 2.6 Hz, 1 H), 8.38 (dd, J = 8.8, 2.7 Hz, 1 H), 7.83 (t, J = 55.6 Hz, 1 H), 7.39 (dd, J = 8.8, 0.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.80 (d, J = 55.5 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 161.67 (t, J = 3.9 Hz), 145.26, 142.36, 142.36, 131.75, 122.63 (t, J = 3.1 Hz), 119.95 (t, J = 272.1 Hz) ppm. MS (EI): 124.1 (100), 206. HRMS (EI) for C₆H₄F₂NO₂S Calcd: 205.9962; Found: 205.9958. IR (KBr): v = 3099, 2844, 1593, 1568, 1514, 1455, 1346, 1277, 1139, 1061, 1011, 857, 843, 788, 748 580, 526 cm⁻¹. Mp: 44.3 – 46.8 °C.

2-((Difluoromethyl)thio)isonicotinonitrile 4e

Prepared from 2-iodoisonicotinonitrile (115.0 mg, 0.5 mmol) according to general

procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)isonicotinonitrile 4e** (86%, determined by ¹⁹F NMR analysis) as a colorless oil. The compound was further purified by prep-HPLC with a C18 column (Waters, Prep Nova-pak[®] HR C18, 19×300 mm, 6 μ m) using a water-acetonitrile mixed solvent as the eluent (CH₃CN : H₂O = 80 : 20, flow = 10.0 mL/min, 254 nm). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (dd, *J* = 5.0, 0.7 Hz, 1 H), 7.71 (t, *J* = 55.8 Hz, 1 H), 7.47 (d, *J* = 1.0 Hz, 1 H), 7.36 (dd, *J* = 5.0, 1.3 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.00 (d, *J* = 55.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 155.83 (t, *J* = 4.0 Hz), 150.79, 125.06 (t, *J* = 2.5 Hz), 122.62, 121.56, 120.21 (t, *J* = 272.6 Hz), 115.54 ppm. MS (EI): 104.1 (100), 186. HRMS (EI) for C₇H₄F₂N₂S Calcd: 186.006; Found: 186.0069. IR (KBr): v = 3128, 3062, 3023.2, 2947, 2242, 1587, 1538, 1460, 1287, 1120, 1073, 850, 788, 608 cm⁻¹.

3-((Difluoromethyl)thio)pyridine^[9]4f

Prepared from 3-iodopyridine (102.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)pyridine 4f** (60 mg, 75 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1 H), 8.65 (d, *J* = 4.7 Hz, 1 H), 7.91 (d, *J* = 7.9 Hz, 1 H), 7.33 (dd, *J* = 7.7, 4.9 Hz, 1 H), 6.83 (t, *J* = 56.3 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.49 (d, *J* = 56.3 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 155.25, 150.79, 143.09, 124.10, 123.11 (t, *J* = 2.9 Hz), 119.68 (t, *J* = 276.7 Hz) ppm.

2-Chloro-5-((difluoromethyl)thio)pyridine 4g

Prepared from 2-chloro-5-iodopyridine (119.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-5-((difluoromethyl)thio)pyridine 4g** (85 mg, 87 %) as a

colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 2.1 Hz, 1 H), 7.86 (dd, J = 8.3, 2.4 Hz, 1 H), 7.37 (d, J = 8.2 Hz, 1 H), 6.82 (t, J = 56.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.64 (d, J = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 155.18, 153.42, 145.52, 124.97, 121.70 (t, J = 2.8 Hz), 119.13 (t, J = 277.3 Hz) ppm. MS (EI): 195 (100). HRMS (EI) for C₆H₄ClF₂NS Calcd: 197.9721; Found: 194.9722. IR (KBr): v = 2960, 2867, 1559, 1450, 1356, 1318, 1298, 1138, 1117, 1070, 1044, 1014, 833, 773, 753, 668, 509 cm⁻¹.

5-((Difluoromethyl)thio)-2-fluoropyridine 4h

Prepared from 2-fluoro-5-iodopyridine (111.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-((difluoromethyl)thio)-2-fluoropyridine 4h** (47 mg, 53 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1 H), 8.01 (t, *J* = 7.9 Hz, 1 H), 7.01-6.98 (m, 1 H), 6.83 (dt, *J* = 57.3, 28.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.41 (s, 1 F), -92.02 (d, *J* = 56.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 164.56 (d, *J* = 244.1 Hz), 154.23 (d, *J* = 15.6 Hz), 148.49 (d, *J* = 8.8 Hz), 119.73, 119.19 (t, *J* = 277.3 Hz), 110.53 (d, *J* = 38.0 Hz) ppm. MS (EI): 179 (100). HRMS (EI) for C₆H₄F₃NS Calcd: 179.0017; Found: 197.0021. IR (KBr): v = 1583, 1507, 1471, 1365, 1256, 1073, 1018, 835, 791, 761, 636, 533 cm⁻¹.

5-Bromo-3-((difluoromethyl)thio)-2-methoxypyridine 4i

Prepared from 5-bromo-3-iodo-2-methoxypyridine (156.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-3-((difluoromethyl)thio)-2-methoxypyridine 4i** (100 mg, 74 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 2.3 Hz, 1 H), 7.90 (d, *J* = 2.3 Hz, 1 H), 6.98 (t, J = 57.4 Hz, 1 H), 4.00 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.89 (d, J = 57.3 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 161.80, 148.68, 146.18, 119.31 (t, J = 276.6 Hz), 112.20, 111.50, 54.72 ppm. MS (EI): 219.9 (100), 269, 271. HRMS (EI) for C₇H₆BrF₂NOS Calcd: 268.9322; Found: 268.9325. IR (KBr): v = 2991, 2953, 2925, 2853 1563, 1466, 1404.2, 1372, 1297, 1237, 1065, 1010, 905, 792, 770, 716, 642, 551 cm⁻¹.

3-((Difluoromethyl)thio)-2-methoxypyridine 4j

Prepared from 3-iodo-2-methoxypyridine (117.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)-2-methoxypyridine 4j** (87 mg, 91 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, *J* = 5.0, 1.8 Hz, 1 H), 7.80 (dd, *J* = 7.4, 1.8 Hz, 1 H), 6.97 (t, *J* = 57.7 Hz, 1 H), 6.90 (dd, *J* = 7.4, 5.0 Hz, 1 H), 4.02 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -93.02 (d, *J* = 57.6 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 163.06, 148.28, 144.94, 119.76 (t, *J* = 275.6 Hz), 117.43, 110.32 (t, *J* = 3.4 Hz), 54.26 ppm. MS (EI): 140(100), 191. HRMS (EI) for C₇H₇F₂NOS Calcd: 191.0216; Found: 191.0222. IR (KBr): v = 3057, 2955, 1577, 1466, 1401, 1300, 12560, 1070, 1044, 1014, 833, 801, 763, 697 cm⁻¹.

3-((Difluoromethyl)thio)-2-nitropyridine^[2] 4k

Prepared from 3-iodo-2-nitropyridine (125.0 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)-2-nitropyridine 4k** (72 mg, 70 %) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.55-8.54 (m, 1 H), 8.24 (d, *J* = 8.0 Hz, 1 H), 7.64 (dd, *J* = 8.0, 4.6 Hz, 1 H), 6.97 (t, *J* = 55.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.73 (d, *J* = 55.6 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 157.99, 148.10,

143.52, 127.97, 120.41, 119.03 (t, *J* = 278.1 Hz) ppm.

Prepared from 4-(5-iodopyridin-2-yl)morpholine (145.0 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **4-(5-((difluoromethyl)thio)pyridin-2-yl)morpholine 4l** (107 mg, 87 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 2.2 Hz, 1 H), 7.63 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.67 (t, *J* = 57.0 Hz, 1 H), 6.59 (d, *J* = 8.9 Hz, 1 H), 3.80-3.77 (m, 4 H), 3.57 – 3.54 (m, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.74 (d, *J* = 56.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 159.66, 155.02, 144.99, 120.22 (t, *J* = 275.8 Hz), 108.78 (t, *J* = 2.9 Hz), 106.73, 66.58, 45.03 ppm. MS (EI): 246.1 (100). HRMS (EI) for C₁₀H₁₂F₂N₂OS Calcd: 246.0638; Found: 246.0634. IR (KBr): v = 2960, 2925, 2856, 1731, 1586, 1486, 1448, 1398, 1270, 1249.5, 1114, 1069, 1032, 945, 812, 771, 756, 741 cm⁻¹.

2-Chloro-4-((difluoromethyl)thio)pyridine 4m

Prepared from 2-chloro-4-iodopyridine (119.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-4-((difluoromethyl)thio)pyridine 4m** (80 mg, 82 %) as a pale yellow oil.

Prepared from 2-chloro-4-iodopyridine (119.5 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-4-((difluoromethyl)thio)pyridine 4m** (76 mg, 78 %) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 5.2 Hz, 1 H), 7.43 (s, 1 H), 7.30 (d, J = 5.222 Hz, 1 H), 7.00 (t, J = 55.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.29 (d, J = 55.5 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 152.17, 149.85, 141.43 (t, J = 2.9 Hz), 126.02, 124.41, 119.21 (t, J = 277.1 Hz) ppm. MS (EI): 195.1 (100). HRMS (EI) for C₆H₄ClF₂NS Calcd: 194.9721; Found: 194.9718. IR (KBr): $\nu = 3052$, 2927, 2857, 1568, 1532, 1503, 1456, 1364, 1300, 1149, 1078, 1048, 832, 795, 751 cm⁻¹.

2-Bromo-4-((difluoromethyl)thio)pyridine 4n

Prepared from 2-bromo-4-iodopyridine (141.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-bromo-4-((difluoromethyl)thio)pyridine 4n** (78 mg, 65 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 5.2 Hz, 1 H), 7.59 (d, *J* = 1.3 Hz, 1 H), 7.34 (dd, *J* = 5.2, 1.5 Hz, 1 H), 6.99 (t, *J* = 55.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.19 (d, *J* = 55.5 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 150.23, 142.66, 141.14 (t, *J* = 2.9 Hz), 129.69 , 124.81, 119.17 (t, *J* = 277.2 Hz) ppm. MS (EI): 239 (100), 241 (100). HRMS (EI) for C₆H₄BrF₂NS Calcd: 238.9216; Found: 238.9218. IR (KBr): v = 3048, 2964, 1564, 1523, 1455, 1359, 1321, 1300, 1135, 1077, 984, 831, 793, 769, 746, 552 cm⁻¹.

4-((Difluoromethyl)thio)-2-fluoro-5-methylpyridine 4o

Prepared from 2-fluoro-4-iodo-5-methylpyridine (118.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **4-((difluoromethyl)thio)-2-fluoro-5-methylpyridine 4o** (70 mg, 73 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1 H), 7.04 (d, *J* = 2.3 Hz, 1 H), 7.01 (t, *J* = 55.6 Hz, 1 H), 2.31 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ 162.16 (d, ²³

J = 239.1 Hz), 147.80 (d, J = 15.1 Hz), 143.16 (dt, J = 8.3, 2.8 Hz), 131.35 (d, J = 4.8 Hz), 119.27 (t, J = 276.5 Hz), 110.46 (d, J = 40.0 Hz), 16.57 ppm. MS (EI): 142 (100), 193. HRMS (EI) for C₇H₆F₃NS Calcd: 193.0173; Found: 193.0177. IR (KBr): v = 3064, 2962, 2867, 1590, 1557, 1475, 1451, 1387, 1352, 1299.6, 1262, 1240, 1185, 1082, 1046, 917, 853, 794, 764, 746, 709 cm⁻¹.

2-Chloro-4-((difluoromethyl)thio)-5-(trifluoromethyl)pyridine 4p

Prepared from 2-chloro-4-iodo-5-(trifluoromethyl)pyridine (153.5 mg, 0.5 mmol) according to general procedure A. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-4-((difluoromethyl)thio)** -5-(trifluoromethyl)pyridine 4p (70 mg, 53 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1 H), 7.64 (s, 1 H), 7.03 (t, J = 55.2 Hz, 1 H); ¹⁹F NMR (376) MHz, CDCl₃) δ -60.62 (s, 3 F), -91.48 (ddd, J = 55.2, 3.4, 1.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 155.52, 147.78 (q, J = 6.1 Hz), 141.10, 126.88, 125.32 (q, J =30.3 Hz), 122.48 (q, J = 274.1 Hz), 118.65 (tq, J = 278.6, 1.6 Hz) ppm. MS (EI): 193 (100), 263. HRMS (EI) for C₇H₃ClF₅NS Calcd: 262.9589; Found: 262.9595. IR (KBr): v = 3110, 2929, 1571, 1538, 1462, 1315, 1285, 1222, 1114, 1025, 941, 871, 835, 789, 741 cm⁻¹.

4-((difluoromethyl)thio)-2-methoxypyridine 4q

Prepared from 4-iodo-2-methoxypyridine (117.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **4-((difluoromethyl)thio)-2-methoxypyridine 4q** (87 mg, 91 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 5.4 Hz, 1 H), 6.93 (dd, *J* = 5.4, 1.5 Hz, 1 H), 6.96 (t, *J* = 56.1 Hz, 1 H), 6.85 (d, *J* = 1.3 Hz, 1 H), 3.93 (s, 3 H);

¹⁹F NMR (376 MHz, CDCl₃) δ -91.11 (d, J = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 164.48, 147.34, 140.27 (t, J = 3.0 Hz), 119.94 (t, J = 275.6 Hz), 119.00, 113.37, 53.71 ppm. MS (EI): 191 (100). HRMS (EI) for C₇H₇F₂NOS Calcd: 191.0216; Found: 191.0222. IR (KBr): v = 3062, 2984, 2951, 2862, 1589, 1548, 1473, 1385, 1309, 1281, 1224, 1073, 1034, 985, 863, 816, 790, 757, 709, 619 cm⁻¹.

3-((Difluoromethyl)thio)quinolone^[9] 4r

Prepared from 3-iodoquinoline (127.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)quinolone 4r** (95 mg, 90 %) as a pale yellow solid. Prepared from 3-iodoquinoline (127.5 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)quinolone 4r** (97 mg, 92 %) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 1.9 Hz, 1 H), 8.42 (d, *J* = 1.2 Hz, 1 H), 8.12 (d, *J* = 8.5 Hz, 1 H), 7.82 – 7.75 (m, 2 H), 7.61 – 7.57 (m, 1 H), 6.88 (t, *J* = 56.3 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.33 (d, *J* = 56.3 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 154.47, 147.96, 143.63, 131.06, 129.41, 127.83, 127.57, 119.80 (t, *J* = 276.8 Hz), 119.39 (t, *J* = 2.7 Hz) ppm.

6-((Difluoromethyl)thio)quinolone^[9] 4s

Prepared from 6-iodoquinoline (127.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **6**-((**difluoromethyl**)**thio**)**quinolone 4s** (100 mg, 95 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 4.2, 1.7 Hz, 1 H), 8.08 (t, J = 8.7 Hz, 2 H), 8.03 (d, J = 1.8 Hz, 1 H), 7.79 (dd, J = 8.8, 2.0 Hz, 1 H), 7.40 (dd, J = 8.3, 4.2 Hz, 1 H), 6.91 (t, J = 56.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.30 (d, J = 56.6 Hz,

2 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.69, 148.08, 135.91, 135.00, 134.91, 130.53, 128.31, 124.38 (t, *J* = 3.0 Hz), 121.91, 120.58 (t, *J* = 275.7 Hz) ppm.

7-Chloro-4-((difluoromethyl)thio)quinolone 4t

Prepared from 7-chloro-4-iodoquinoline (144.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **7-chloro-4-((difluoromethyl)thio)quinolone 4t** (121 mg, 99 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.5 Hz, 1 H), 8.17 (d, *J* = 9.0 Hz, 1 H), 8.09 (d, *J* = 2.0 Hz, 1 H), 7.60 (d, *J* = 4.5 Hz, 1 H), 7.54 (dd, *J* = 9.0, 2.1 Hz, 1 H), 6.99 (t, *J* = 56.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.49 (d, *J* = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 150.58, 148.89, 136.32, 136.08 (t, *J* = 2.8 Hz), 129.03, 128.65, 127.22, 126.31, 126.14, 119.81 (t, *J* = 277.3 Hz). MS (EI): 245 (100). HRMS (EI) for C₁₀H₆ClF₂NS Calcd: 244.9878; Found: 244.9577. IR (KBr): v = 3000, 1603, 1560, 1487, 1415, 1329, 1291 1192, 1070, 1024, 975, 874, 827, 813, 787, 627 cm⁻¹. Mp: 75.2 – 76.9 °C.

8-(Benzyloxy)-5,7-dichloro-3-((difluoromethyl)thio)quinolone 4u

Prepared from 8-(benzyloxy)-5,7-dichloro-3-iodoquinoline (214.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **8-(Benzyloxy)-5,7-dichloro-3-** ((difluoromethyl)thio)quinolone 4u (171 mg, 89 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.08 (d, *J* = 2.1 Hz, 1 H), 8.75 (d, *J* = 2.1 Hz, 1 H), 7.67 (s, 1 H), 7.61 – 7.59 (m, 2 H), 7.41 – 7.34 (m, 3 H), 6.95 (t, *J* = 56.0 Hz, 1 H), 5.47 (s, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.89 (d, *J* = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃)

δ 154.61, 150.44, 143.50, 140.34, 136.76, 129.03, 128.68, 128.63, 128.42, 128.35, 126.02, 126.00, 121.43 (t, J = 2.6 Hz), 119.48 (t, J = 277.5 Hz), 76.87 ppm. MS (EI): 91 (100), 385. HRMS (EI) for C₁₇H₁₁Cl₂F₂NOS Calcd: 384.9906; Found: 384.9904. IR (KBr): v = 3070, 2888, 1591, 1575, 1462, 1439, 1347, 1323, 1284, 1215, 1057, 1025, 954, 907, 874, 846, 754, 696, 633 cm⁻¹. Mp: 67.1 – 69.2 °C.

1-((Difluoromethyl)thio)isoquinoline 4v

Prepared from 1-iodoisoquinoline (127.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **1-((difluoromethyl)thio)isoquinoline 4v** (103 mg, 98 %) as a pale green yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 5.7 Hz, 1 H), 8.04 (t, *J* = 56.2 Hz, 1 H), 7.98 (d, *J* = 8.4 Hz, 1 H), 7.79 (d, *J* = 8.2 Hz, 1 H), 7.70 (t, *J* = 7.5 Hz, 1 H), 7.60 (t, *J* = 7.7 Hz, 1 H), 7.46 (d, *J* = 5.7 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.60 (d, *J* = 56.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 154.63 (t, *J* = 3.6 Hz), 141.89, 136.00, 130.95, 127.78, 127.37, 126.95 (t, *J* = 2.0 Hz), 124.18, 121.70 (t, *J* = 270.0 Hz), 119.17 ppm. MS (EI): 129 (100), 211. HRMS (EI) for C₁₀H₇F₂NS Calcd: 211.0267; Found: 211.0272. IR (KBr): v = 3057, 1621, 1585, 1554, 1494, 1317, 1277, 1261, 1144, 1071, 985, 866, 839, 787, 744, 674, 646 cm⁻¹.

5-((Difluoromethyl)thio)-1-methyl-1H-indole 4w

Prepared from 5-iodo-1-methyl-1*H*-indole (128.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-((difluoromethyl)thio)-1-methyl-1***H***-indole 4w** (101 mg, 95 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 1.5 Hz, 1 H), 7.43 (dd, *J* = 8.5, 1.6 Hz, 1 H), 7.33 (d, *J* = 8.5 Hz, 1 H), 7.11 (d, *J* = 3.1 Hz, 1 H), 6.81 (t, *J* = 27

57.6 Hz, 1 H), 6.52 (dd, J = 3.1, 0.6 Hz, 1 H), 3.80 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.97 (d, J = 57.6 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 137.29, 130.19, 129.48, 129.32, 128.87, 121.85 (t, J = 274.7 Hz), 115.00, 110.05, 101.38, 32.99 ppm. MS (EI): 162 (100), 213. HRMS (EI) for C₁₀H₉F₂NS Calcd: 213.0424; Found: 213.0422. IR (KBr): v = 3102, 2947, 2919, 2883, 2819, 1607, 1512, 1476, 1422, 1329, 1294, 1278, 1244, 1061, 1030, 887, 806, 757, 723, 611 cm⁻¹.

3-((Difluoromethyl)thio)-9-phenyl-9*H*-carbazole 4x

Prepared from 3-iodo-9-phenyl-9*H*-carbazole (134.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)-9-phenyl-9***H***-carbazole 4x** (80 mg, 71 %) as a colorless oil.

Prepared from 3-iodo-9-phenyl-9*H*-carbazole (134.5 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on silica gel to yield **3-((difluoromethyl)thio)-9-phenyl-9***H***-carbazole 4x** (130 mg, 80 %) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 1.6 Hz, 1 H), 8.17 (d, J = 7.8 Hz, 1 H), 7.66-7.33 (m, 10 H), 6.87 (t, J = 57.3 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.98 (d, J = 57.4 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 141.69, 141.43, 137.10, 133.56, 130.07, 128.76, 128.01, 127.15, 126.80, 124.38, 122.58, 121.49 (t, J = 275.2 Hz), 120.68, 120.58, 115.36 (t, J = 2.8 Hz), 110.61, 110.13 ppm. MS (EI): 274.1 (100), 325. HRMS (EI) for C₁₉H₁₃F₂NS Calcd: 325.0737; Found: 325.0731. IR (KBr): v = 3063, 2962, 2927, 2854, 1595, 1487, 1469, 1361, 1329, 1294, 1064, 1028, 889, 819, 748, 728, 699, 667, 619, 600, 567 cm⁻¹.

5-((Difluoromethyl)thio)benzofuran 4y

Prepared from 5-iodobenzofuran (122 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-((difluoromethyl)thio)benzofuran 4y** (97 mg, 97 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.68 (d, *J* = 2.2 Hz, 1 H), 7.52 (s, 2 H), 6.83 (t, *J* = 57.1 Hz, 1 H), 6.79 (d, *J* = 2.1 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.99 (d, *J* = 57.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 155.71, 146.26, 131.85, 129.40, 128.68, 121.15 (t, *J* = 275.1 Hz), 119.32 (t, *J* = 3.1 Hz), 112.31, 106.49 ppm. MS (EI): 200.1 (100). HRMS (EI) for C₉H₆F₂OS Calcd: 200.0107; Found: 200.0114. IR (KBr): v = 3125, 2965, 1535, 1449, 1326, 1296, 1261, 1249, 1174, 1112, 1073, 1062, 1031, 875, 815, 757, 737, 613 cm⁻¹.

1-(5-((Difluoromethyl)thio)thiophen-2-yl)ethanone 4z

Prepared from 1-(5-iodothiophen-2-yl)ethanone (126 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **1-(5-((difluoromethyl)thio)thiophen-2-yl)ethanone 4z** (76 mg, 73 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 3.9 Hz, 1 H), 7.30 (d, *J* = 3.9 Hz, 1 H), 6.78 (t, *J* = 56.5 Hz, 1 H), 2.54 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.46 (d, *J* = 56.5 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 189.99, 149.79, 138.02, 132.26, 131.67 (t, *J* = 3.6 Hz), 119.40 (t, *J* = 278.9 Hz), 26.70 ppm. MS (EI): 208 (100). HRMS (EI) for C₇H₆F₂OS₂ Calcd: 207.9828; Found: 207.9824. IR (KBr): ν = 3095, 3005, 1667, 1516, 1420, 1361, 1316, 1267, 1072, 1000, 929, 812, 784, 746, 608 cm⁻¹.

4-((Difluoromethyl)thio)dibenzo[b,d]thiophene 4aa

Prepared from 4-iododibenzo[*b*,*d*]thiophene (155 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **4-((difluoromethyl)thio)dibenzo[***b***,***d***]thiophene 4aa (126 mg, 95 %) as a white solid.**

Prepared from 4-iododibenzo[*b*,*d*]thiophene (155 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on silica gel to yield **4-((difluoromethyl)thio)dibenzo[***b***,***d***]thiophene 4aa** (100 mg, 75 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.9 Hz, 1 H), 8.12 (dd, J = 5.9, 2.9 Hz, 1 H), 7.88 (dd, J = 6.1, 2.7 Hz, 1 H), 7.71 (d, J = 7.4 Hz, 1 H), 7.51 – 7.46 (m, 3 H), 6.95 (t, J = 57.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.52 (d, J = 57.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 147.23, 139.36, 136.57, 135.78, 134.89, 127.36, 125.42, 124.78, 123.36, 122.87, 122.03, 120.55 (t, J = 277.3 Hz), 119.63 (t, J = 3.2 Hz) ppm. MS (EI): 266 (100). HRMS (EI) for C₁₃H₈F₂S₂ Calcd: 266.0035; Found: 266.0038. IR (KBr): v = 3058, 2989, 1451, 1386, 1291, 1249, 1198, 1085, 1013, 798, 748, 704, 494 cm⁻¹. Mp: 68.7 – 73.2 °C.

2-Chloro-5-((difluoromethyl)thio)pyrimidine 4ab

Prepared from 2-chloro-5-iodopyrimidine (120 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-5-((difluoromethyl)thio)pyrimidine 4ab** (32 mg, 33 %) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 2 H), 6.86 (t, *J* = 55.4 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.13 (d, *J* = 55.4 Hz, 2 F); ¹³C NMR (101

MHz, CDCl₃) δ 164.69, 162.93, 120.65 (t, J = 2.6 Hz) 118.12 (t, J = 278.8 Hz) ppm. MS (EI): 196 (100). HRMS (EI) for C₅H₃ClF₂N₂S Calcd: 195.9674; Found: 195.9675. IR (KBr): v 3045, 2927, 1592, 1552, 1531, 1390.1, 1348, 1315, 1174, 1072, 1043, 794, 770, 746, 636 cm⁻¹.

5-Bromo-2-((difluoromethyl)thio)pyrimidine 4ac

Prepared from 5-bromo-2-iodopyrimidine (142 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-2-((difluoromethyl)thio)pyrimidine 4ac** (100 mg, 83 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 2 H), 7.70 (t, *J* = 55.8 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -98.97 (d, *J* = 55.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 165.84 (t, *J* = 5.8 Hz), 158.38, 120.33 (t, *J* = 271.3 Hz), 116.95 ppm. MS (EI): 160 (100), 240, 242. HRMS (EI) for C₅H₃BrF₂N₂S Calcd: 239.9168; Found: 239.9171. IR (KBr): v = 3033, 2927, 1546, 1527, 1389, 1362, 1289, 1191, 1111, 1072, 1006, 929, 791, 763, 631 cm⁻¹.

5-chloro-2-((difluoromethyl)thio)pyrimidine 4ad

Prepared from 5-chloro-2-iodopyrimidine (120 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **5-chloro-2-((difluoromethyl)thio)pyrimidine 4ad** (96 mg, 98 %) as a pale yellow oil.

Prepared from 5-chloro-2-iodopyrimidine (120 mg, 0.5 mmol) according to general procedure **B**. The crude residue was purified by flash column chromatography on

silica gel to yield **5-chloro-2-((difluoromethyl)thio)pyrimidine 4ad** (75 mg, 76 %) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 2 H), 7.70 (t, J = 55.8 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.01 (d, J = 55.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 165.35 (t, J = 5.9 Hz), 156.28, 128.56, 120.42 (t, J = 271.2 Hz) ppm. MS (EI): 114 (100), 196. HRMS (EI) for C₅H₃ClF₂N₂S Calcd: 195.9674; Found: 195.9680. IR (KBr): v = 3038, 2928, 1555, 1530, 1387, 1290, 1194, 1073, 930, 792, 781, 763, 632, 586, 552 cm⁻¹. Mp: 47.5 – 49.3 °C.

2-((Difluoromethyl)thio)pyrazine 4ae

Prepared from 2-iodopyrazine (103 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)pyrazine 4ae** (35 mg, 43 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 1.4 Hz, 1 H), 8.47 – 8.46 (m, 1 H), 8.42 (d, J = 2.5Hz, 1 H), 7.61 (t, J = 56.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -95.68 (d, J =56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.13 (t, J = 3.5 Hz), 145.08 (t, J = 2.3Hz), 144.48, 142.26, 120.34 (t, J = 273.3 Hz) ppm. MS (EI): 80 (100), 162. HRMS (EI) for C₅H₄F₂N₂S Calcd: 162.0063; Found: 162.0070. IR (KBr): v = 3065, 2960, 1559, 1513, 1458, 1388, 1288, 1133, 1073, 1010, 840, 789, 768, 755 cm⁻¹.

2,5-Bis((difluoromethyl)thio)pyrazine 4af

Prepared from 2-bromo-5-iodopyrazine (142 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **2,5-bis((difluoromethyl)thio)pyrazine 4af** (15 mg, 12 %) as a pale yellow oil. When 2.4 eqiuv (SIPr)Ag(SCF₂H) was used, the yield determined by ¹⁹F NMR analysis was 93 % $_{\circ}$ ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 2 H), 7.52 (t, *J* =

56.0 Hz, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -95.22 (d, *J* = 55.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 148.44 (t, *J* = 3.6 Hz), 144.79 (t, *J* = 2.4 Hz), 120.06 (t, *J* = 274.6 Hz) ppm. MS (EI): 244 (100). HRMS (EI) for C₆H₄F₄N₂S₂ Calcd: 243.9752; Found: 243.9751. IR (KBr): v = 2928, 1497, 1450, 1289, 1161, 1070, 1015, 899, 781, 743, 587 cm⁻¹.

Methyl 3-((difluoromethyl)thio)pyrazine-2-carboxylate 4ag

Prepared from methyl 3-iodopyrazine-2-carboxylate (132 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **methyl 3-((difluoromethyl)thio)pyrazine-2-carboxylate 4ag** (92 mg, 84 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 2.3 Hz, 1 H), 8.49 (d, *J* = 2.3 Hz, 1 H), 7.74 (t, *J* = 55.8 Hz, 1 H), 4.02 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.63 (d, *J* = 55.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 164.45, 156.03 (t, *J* = 4.3 Hz), 145.97, 140.10, 138.91, 119.48 (t, *J* = 270.2 Hz), 53.47 ppm. MS (EI): 220 (100). HRMS (EI) for C₇H₆F₂N₂O₂S Calcd: 220.0118; Found: 220.0117. IR (KBr): v = 3023, 2964, 1710, 1526, 1455, 1380, 1300, 1278, 1228, 1158, 1069, 1048, 949, 871, 854, 807, 785, 762, 524, 440 cm⁻¹. Mp: 94.6 – 96.2 °C.

4-Chloro-6-((difluoromethyl)thio)quinazoline 4ah

Prepared from 4-chloro-6-iodoquinazoline (145 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **4-chloro-6-((difluoromethyl)thio)quinazoline 4ah** (55 mg, 45 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1 H), 8.51 (t, *J* = 1.2 Hz, 1 H), 8.09 (d, *J* = 1.2 Hz, 2 H), 6.97 (t, *J* = 56.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.25 (d, *J* = 56.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 162.31, 154.73, 151.13,

140.23, 132.33, 129.94, 128.98 (t, J = 3.0 Hz), 124.24, 119.80 (t, J = 277.0 Hz) ppm. MS (EI): 246 (100). HRMS (EI) for C₉H₅ClF₂N₂S Calcd: 245.9830; Found: 245.9824. IR (KBr): v = 3054, 3007, 2676, 2603, 1712, 1645, 1559, 1474, 1321, 1143, 1065, 1025, 983, 869, 846, 785, 755, 695, 501 cm⁻¹. Mp: 138.6 – 140.2 °C.

tert-Butyl 5-((difluoromethyl)thio)-1H-indazole-1-carboxylate 4ai

Prepared from tert-butyl 5-iodo-1H-indazole-1-carboxylate (172 mg, 0.5 mmol) according to general procedure A. The crude residue was purified by flash column chromatography silica gel to yield *tert*-butyl on 5-((difluoromethyl)thio)-1H-indazole-1-carboxylate 4ai (111 mg, 74 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.7 Hz, 1 H), 8.17 (s, 1 H), 7.99 (d, *J* = 0.7 Hz, 1 H), 7.70 (dd, J = 8.7, 1.4 Hz, 1 H), 6.83 (t, J = 56.7 Hz, 1 H), 1.71 (s, 9 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.99 (d, J = 56.7 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 148.83, 140.19, 139.01, 135.76, 129.21, 126.64, 120.51 (t, J = 275.7 Hz), 120.46 (t, J = 2.9 Hz), 115.36, 85.51, 28.11 ppm. MS (EI): 200 (100), 300. HRMS (EI) for $C_{13}H_{14}F_2N_2O_2S$ Calcd: 300.0744; Found: 300.0745. IR (KBr): v = 3004, 2990, 1756, 1434, 1364, 1295, 1322, 1295, 1238, 1076, 1060, 1020, 904, 852, 821, 762, 590 cm^{-1} . Mp: 104.4 – 105.8 °C.

7-Chloro-2-((difluoromethyl)thio)thieno[3,2-b]pyridine-6-carbonitrile 4aj

Prepared from 7-chloro-2-iodothieno[3,2-*b*]pyridine-6-carbonitrile (160 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **7-chloro-2-((difluoromethyl)thio)thieno[3,2-b]pyridine-6-carbonitrile 4aj** (70 mg, 51 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1 H), 7.85 (s, 1 H), 6.96

(t, J = 55.8 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.31 (d, J = 55.8 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 157.66, 150.62, 140.39, 137.02, 136.22, 134.66, 118.79 (t, J = 280.4 Hz), 114.17, 106.01 ppm. MS (EI): 226 (100), 276. HRMS (EI) for C₉H₃ClF₂N₂S₂ Calcd: 275.9394; Found: 275.9388. IR (KBr): v = 3059, 2233, 1567, 1514, 1517, 1467, 1446, 1346, 1310, 1126, 1066, 1042, 997, 859, 746, 730, 677, 529 cm⁻¹. Mp: 146.3 – 148.0 °C.

6-((Difluoromethyl)thio)benzo[d]thiazole 4ak

Prepared from 6-iodobenzo[*d*]thiazole (130.5 mg, 0.5 mmol) according to general procedure **A**. The crude residue was purified by flash column chromatography on silica gel to yield **6-((Difluoromethyl)thio)benzo[***d***]thiazole 4ak** (106 mg, 98 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1 H), 8.20 (d, *J* = 1.1 Hz, 1 H), 8.12 (d, *J* = 8.5 Hz, 1 H), 7.70 (dd, *J* = 8.5, 1.4 Hz, 1 H), 6.87 (t, *J* = 56.7 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 155.90, 154.08, 134.68, 133.28, 129.27, 124.19, 123.07 (t, *J* = 3.0 Hz), 120.57 (t, *J* = 275.9 Hz) ppm. MS (EI): 217 (100). HRMS (EI) for C₈H₅F₂NS₂ Calcd: 216.9831; Found: 216.9836. IR (KBr): v = 3064, 2964, 1724, 1462, 1430, 1387, 1293, 1067, 1032, 884, 843, 812, 764, 517 cm⁻¹.

General Procedure for Difluoromethylthiolation of Heteroaryl Bromide.

Method C

Heteroaryl bromide (0.5 mmol, 1.0 equiv), $Pd(dba)_2$ (30 mg, 10 mol%), XantPhos (44 mg, 15 mol%), and [(SIPr)Ag(SCF₂H)] (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 50 °C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

Method D

Heteroaryl bromide (0.5 mmol, 1.0 equiv), XantphosPd(3-py)(Br) (21 mg, 5 mol%), XantPhos (7.5 mg, 2.5 mol%), and [(SIPr)Ag(SCF₂H)] (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 5.0 mL of anhydrous toluene and the mixture was stirred at 50 °C for 6 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

Methyl 6-((difluoromethyl)thio)nicotinate 4c

Prepared from methyl 6-bromonicotinate (107.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **methyl 6-((difluoromethyl)thio)nicotinate 4c** (109 mg, >99 %) as a white solid. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in
Scheme 2, 4c).

2-((Difluoromethyl)thio)-5-nitropyridine 4d

Prepared from 2-bromo-5-nitropyridine (101 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)-5-nitropyridine 4d** (88 mg, 83 %) as a white solid. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4d**).

2-((Difluoromethyl)thio)isonicotinonitrile 4e

Prepared from 2-bromoisonicotinonitrile (91 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)isonicotinonitrile 4e** (86%, determined by ¹⁹F NMR analysis) as a colorless oil. The compound was further purified by prep-HPLC with a C18 column (Waters, Prep Nova-pak[®] HR C18, 19×300 mm, 6 μ m) using a water-acetonitrile mixed solvent as the eluent (CH₃CN : H₂O = 80 : 20, flow = 10.0 mL/min, 254 nm). (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4e**).

6-((Difluoromethyl)thio)nicotinonitrile 4al

Prepared from 6-bromonicotinonitrile (91 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **6-((difluoromethyl)thio)nicotinonitrile 4al** (89%, determined by ¹⁹F NMR analysis) as a white solid. The compound was further purified by

prep-HPLC with a C18 column (Waters, Prep Nova-pak[®] HR C18, 19×300 mm, 6 μ m) using a water-acetonitrile mixed solvent as the eluent (CH₃CN : H₂O = 70 : 30, flow = 10.0 mL/min, 254 nm). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 1.4 Hz, 1 H), 7.83 (dd, *J* = 8.4, 2.2 Hz, 1 H), 7.78 (t, *J* = 55.7 Hz, 1 H), 7.33 (d, *J* = 8.4 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.83 (d, *J* = 55.7 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 159.51, 152.39, 139.36, 122.83 (t, *J* = 2.4 Hz), 119.90 (t, *J* = 272.5 Hz), 116.14, 107.22 ppm. MS (EI): 136.1 (100), 186. HRMS (EI) for C₇H₄F₂N₂S Calcd: 186.0063; Found: 186.0064. IR (KBr): v = 3089, 2923, 2238, 1585, 1463, 1367, 1292, 1117, 1063, 1023, 850, 777, 598, 554 cm⁻¹. Mp: 54.8 – 56.4 °C.

3,5-Dichloro-2-((difluoromethyl)thio)pyridine 4am

Prepared from 2-bromo-3,5-dichloropyridine (112.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **3,5-dichloro-2-((difluoromethyl)thio)pyridine 4am** (102 mg, 89 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 2.2 Hz, 1 H), 7.73 (t, *J* = 55.9 Hz, 1 H), 7.68 (d, *J* = 2.2 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -98.85 (d, *J* = 55.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 151.29 (t, *J* = 4.4 Hz), 146.27, 136.45, 129.50, 129.34 (t, *J* = 2.3 Hz), 120.60 (t, *J* = 271.0 Hz) ppm. MS (EI): 179 (100), 229. HRMS (EI) for C₆H₃Cl₂F₂NS Calcd: 228.9331; Found: 228.9330. IR (KBr): v = 3071, 2928, 1558, 1408, 1363, 1286, 1212, 1072, 1041, 893, 840, 783, 719, 588 cm⁻¹.

1-(6-((Difluoromethyl)thio)pyridin-3-yl)ethanone 4an

Prepared from 1-(6-bromopyridin-3-yl)ethanone (99.5`mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography

on silica gel to yield **1-(6-((difluoromethyl)thio)pyridin-3-yl)ethanone 4an** (98 mg, 97 %) as a pale yellow oil.

Prepared from 1-(6-bromopyridin-3-yl)ethanone (99.5 mg, 0.5 mmol) according to general procedure **D**. The crude residue was purified by flash column chromatography on silica gel to yield **1-(6-((difluoromethyl)thio)pyridin-3-yl)ethanone 4an** (76 mg, 75 %) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 1.5 Hz, 1 H), 8.10 (dd, J = 8.4, 2.1 Hz, 1 H), 7.80 (t, J = 55.9 Hz, 1 H), 7.28 (d, J = 8.4 Hz, 1 H), 2.58 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.55 (d, J = 55.9 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 195.69, 159.06 (t, J = 3.7 Hz), 150.08, 136.18, 130.05, 122.87 (t, J = 2.4 Hz), 120.45 (t, J = 271.5 Hz), 26.55 ppm. MS (EI): 138 (100), 203. HRMS (EI) for C₈H₇F₂NOS Calcd: 203.0216; Found: 203.0218. IR (KBr): v = 3057, 2963, 1723, 1690, 1583, 1551, 1459, 1367, 1121, 1066, 1016, 834, 792, 775 cm⁻¹.

4-Bromo-2-((difluoromethyl)thio)pyridine 4ao

Prepared from 2,4-dibromopyridine (117.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **4-bromo-2-((difluoromethyl)thio)pyridine 4ao** (60 mg, 50 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 5.3 Hz, 1 H), 7.69 (t, *J* = 56.1 Hz, 1 H), 7.45 (s, 1 H), 7.31 (dd, *J* = 5.3, 1.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.51 (d, *J* = 56.2 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 154.90 (t, *J* = 3.9 Hz), 150.42, 133.47, 126.74 (t, *J* = 2.2 Hz), 125.09, 120.75 (t, *J* = 271.9 Hz) ppm. MS (EI): 157 (100), 239, 241. HRMS (EI) for C₆H₄BrF₂NS Calcd: 238.9216; Found: 238.9214. IR (KBr): v = 3048, 2927, 1558, 1455, 1358, 1285, 1145, 1070, 823, 790, 768, 676 cm⁻¹.

2-((Difluoromethyl)thio)quinolone 4ap

Prepared from 2-bromoquinoline (103.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)quinolone 4ap** (105 mg, >99 %) as a pale yellow oil.

Prepared from 2-bromoquinoline (103.5`mg, 0.5 mmol) according to general procedure **D**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)quinolone 4ap** (88.5 mg, 84 %) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, J = 56.0 Hz, 1 H), 8.01-7.97 (m, 2 H), 7.76-7.69 (m, 2 H), 7.53-7.49 (m, 1 H), 7.21 (d, J = 8.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.49 (d, J = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.75 (t, J =3.6 Hz), 148.17, 136.92, 130.34, 128.50, 127.75, 126.53, 126.49, 121.07 (t, J = 2.3Hz), 121.30 (t, J = 270.1 Hz) ppm. MS (EI): 129.1 (100), 211. HRMS (EI) for C₁₀H₇F₂NS Calcd: 211.0267; Found: 211.0272. IR (KBr): v = 3062, 2959, 1616, 1591, 1559, 1498, 1422, 1139, 1097, 1064, 945, 816, 782, 749, 635, 474 cm⁻¹.

1-((Difluoromethyl)thio)isoquinoline 4v

Prepared from 1-bromoisoquinoline (103.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **1-((difluoromethyl)thio)isoquinoline 4v** (66 mg, 63 %) as a pale green yellow oil. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4v**).

Methyl 3-((difluoromethyl)thio)pyrazine-2-carboxylate 4ag

Prepared from methyl 3-bromopyrazine-2-carboxylate (108 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **Methyl 3-((difluoromethyl)thio)pyrazine-2-carboxylate 4ag** (92 mg, 84 %) as a white solid. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2**, **4ag**).

6-((Difluoromethyl)thio)pyrazine-2-carbonitrile 4aq

Prepared from 6-bromopyrazine-2-carbonitrile (91.5 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **6-((difluoromethyl)thio)pyrazine-2-carbonitrile 4aq** (89 mg, 95 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.8 Hz, 2 H), 7.65 (t, *J* = 55.4 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.54 (d, *J* = 55.4 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.45 (t, *J* = 3.6 Hz), 146.91 (t, *J* = 2.2 Hz), 144.86, 129.87, 119.25 (t, *J* = 275.3 Hz), 114.61 ppm. MS (EI): 137.1 (100), 187. HRMS (EI) for C₆H₃F₂N₃S Calcd: 187.0016; Found: 187.0018. IR (KBr): v = 3050, 2963, 2242, 1723, 1516, 1395, 1295, 1243, 1191, 1133, 1074, 1007, 889, 779, 755, 453 cm⁻¹.

2-Chloro-5-((difluoromethyl)thio)pyrazine 4ar

Prepared from 2-bromo-5-chloropyrazine (96 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-chloro-5-((difluoromethyl)thio)pyrazine 4ar** (54 mg, 55 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1 H), 8.36 (s, 1 H), 7.52 (t, *J* = 55.9 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 148.55 (t, *J* = 3.8 Hz), 147.70, 144.43,

144.09 (t, J = 2.4 Hz), 120.05 (t, J = 274.7 Hz) ppm. MS (EI): 119 (100), 196. HRMS (EI) for C₅H₃ClF₂N₂S Calcd: 195.9674; Found: 195.9677. IR (KBr): v = 3068, 2927, 2854, 1446, 1292, 1155, 1070, 1016, 897, 843, 781, 660 cm⁻¹.

2-((Difluoromethyl)thio)-5-(methylthio)pyrazine 4as

Prepared from 2-bromo-5-(methylthio)pyrazine (102 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)-5-(methylthio)pyrazine 4as** (101 mg, 97 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 1.4 Hz, 1 H), 8.38 (d, *J* = 1.5 Hz, 1 H), 7.34 (t, *J* = 56.4 Hz, 1 H), 2.56 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -93.93 (d, *J* = 56.5 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 157.01, 145.76 (t, *J* = 2.1 Hz), 143.26, 142.43 (t, *J* = 3.6 Hz), 120.62 (t, *J* = 274.8 Hz), 12.79 ppm. MS (EI): 208 (100). HRMS (EI) for C₆H₆F₂N₂S₂ Calcd: 207.9940; Found: 207.9945. IR (KBr): v = 2930, 1538, 1493, 1448, 1280, 1162, 1068, 1015, 996, 895, 798, 782, 407 cm⁻¹.

2-((Difluoromethyl)thio)quinoxaline 4at

Prepared from 2-bromoquinoxaline (104 mg, 0.5 mmol) according to general procedure **C**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)quinoxaline 4at** (105 mg, 99 %) as a white solid.

Prepared from 2-bromoquinoxaline (104 mg, 0.5 mmol) according to general procedure **D**. The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)quinoxaline 4at** (100 mg, 94 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1 H), 8.06-8.04 (m, 1 H), 7.97-7.95 (m, 1 H),

7.90 (t, J = 56.0 Hz, 1 H), 7.77-7.69 (m, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.76 (d, J = 55.7 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 150.52 (t, J = 3.4 Hz), 144.13 (t, J = 2.3 Hz), 142.34, 140.70, 130.93, 129.66, 129.44, 128.35, 120.41 (t, J = 272.6 Hz) ppm. MS (EI): 212.1 (100). HRMS (EI) for C₉H₆F₂N₂S Calcd: 212.0220; Found: 212.0226. IR (KBr): v = 3065, 1543, 1487, 1367, 1287, 1246, 1153, 1126, 1064, 963, 911, 781, 761, 597 cm⁻¹.

6-((Difluoromethyl)thio)-2,2'-bipyridine 4au

Prepared from 6-bromo-2,2'-bipyridine (117 mg, 0.5 mmol) according to general procedure **D**. The crude residue was purified by flash column chromatography on silica gel to yield **6**-((**difluoromethyl)thio**)-**2,2'-bipyridine 4au** (>99 %, determined by ¹⁹F NMR analysis) as a white solid. The compound was further purified by prep-HPLC with a C18 column (Waters, Prep Nova-pak[®] HR C18, 19×300 mm, 6 μ m) using a water-acetonitrile mixed solvent as the eluent (CH₃CN : H₂O = 60 : 40, flow = 10.0 mL/min, 254 nm). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.2 Hz, 1 H), 8.33 (d, *J* = 8.0 Hz, 1 H), 8.25 (dd, *J* = 7.8, 0.6 Hz, 1 H), 7.83 (t, *J* = 54.4 Hz, 1 H), 7.79 (td, *J* = 7.8, 1.8 Hz, 1 H), 7.69 (dd, *J* = 9.8, 5.9 Hz, 1 H), 7.29 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1 H), 7.22 (dd, *J* = 7.8, 0.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ 9-66.37 (d, *J* = 56.3 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 156.49, 154.90, 152.60 (t, *J* = 3.7 Hz), 149.22, 138.06, 137.00, 124.21, 123.75 (t, *J* = 2.1 Hz), 121.37 (t, *J* = 270.8 Hz), 121.14, 118.79 ppm. MS (EI): 156 (100), 238. HRMS (EI) for C₁₁H₈F₂N₂S Calcd: 238.0376; Found: 238.0367. IR (KBr): v = 3060, 3012, 1578, 1556, 1419, 1279, 1146, 1070, 1036, 772, 740, 692 cm⁻¹. Mp: 72.3 – 73.7 °C.

General Procedure for Difluoromethylthiolation of Heteroaryl triflates

Method E

Heteroaryl triflates (0.5 mmol, 1.0 equiv), $Pd(dba)_2$ (30 mg, 10 mol%), XantPhos (44 mg, 15 mol%) (or $Pd(dba)_2$ (60mg, 20 mol%), XantPhos (88 mg, 30 mol%)), NaBr (103 mg, 2.0 equiv) and [(SIPr)Ag(SCF₂H)] (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 50 °C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

Method F

Heteroaryl triflates (0.5 mmol, 1.0 equiv), XantphosPd(3-py)Br (25 mg, 6.0 mol%), XantPhos (9.0 mg, 3.0 mol%), NaBr (103 mg, 2.0 equiv) and $[(SIPr)Ag(SCF_2H)]$ (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 5.0 mL of anhydrous toluene and the mixture was stirred at 50 °C for 6 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

5-Bromo-2-((difluoromethyl)thio)pyridine 4a

Prepared from 5-bromopyridin-2-yl trifluoromethanesulfonate (152.5 g, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (60 mg, 20 mol%) and XantPhos (88 mg, 30 mol%) was used). The crude residue was purified by flash column chromatography

on silica gel to yield **5-bromo-2-((difluoromethyl)thio)pyridine 4a** (60 mg, 50 %) as a colorless oil.

Prepared from 5-bromopyridin-2-yl trifluoromethanesulfonate (152.5 mg, 0.5 mmol) according to general procedure **F**. The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-2-((difluoromethyl)thio)pyridine 4a** (39 mg, 33 %) as a colorless oil.(¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4a**).

5-Chloro-2-((difluoromethyl)thio)pyridine 4b

Prepared from 5-chloropyridin-2-yl trifluoromethanesulfonate (130.5 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (60 mg, 20 mol%) and XantPhos (88 mg, 30 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **5-chloro-2-((difluoromethyl)thio)pyridine 4b** (46 mg, 47 %) as a colorless oil. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4b**).

5-Bromo-2-((difluoromethyl)thio)-3-nitropyridine 4av

Prepared from 5-bromo-3-nitropyridin-2-yl trifluoromethanesulfonate (175 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (60 mg, 20 mol%) and XantPhos (88 mg, 30 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-2-((difluoromethyl)thio)-3-nitropyridine 4av** (74 mg, 52 %) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 2.2 Hz, 1 H), 8.69 (d, *J* = 2.1 Hz, 1 H), 7.78 (t, *J* = 55.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.98 (d, *J* = 55.7 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 154.52, 152.06 (t, *J* = 5.1 Hz), 141.27, 136.24, 119.28 (t, *J* = 271.2 Hz), 116.73. MS (EI): 187 (100), 284, 286. HRMS (EI) for

 $C_6H_3BrF_2N_2O_2S$ Calcd: 283.9067; Found: 283.9061. IR (KBr): v = 3072, 1580, 1545, 1518, 1420, 1337, 1282, 1062, 912, 887, 765 cm⁻¹.

2-((Difluoromethyl)thio)quinoline 4ap

Prepared from quinoxalin-2-yl trifluoromethanesulfonate (139 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (30 mg, 10 mol%) and XantPhos (44 mg, 15 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **2-((difluoromethyl)thio)quinoline 4ap** (91 mg, 86 %) as a pale yellow oil. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 3, 4ap**).

7-Bromo-1-((difluoromethyl)thio)isoquinoline 4aw

Prepared from 7-bromoisoquinolin-1-yl trifluoromethanesulfonate (177.5 mg, 0.5 mmol) according to general procedure **E** ($Pd(dba)_2(30 \text{ mg}, 10 \text{ mol}\%)$) and XantPhos (44 mg, 15 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **7-bromo-1-((difluoromethyl)thio)isoquinoline 4aw** (68 mg, 47 %) as a white solid.

Prepared from 7-bromoisoquinolin-1-yl trifluoromethanesulfonate (177.5 mg, 0.5 mmol) according to general procedure **F**. The crude residue was purified by flash column chromatography on silica gel to yield **7-bromo-1-((difluoromethyl)thio)isoquinoline 4aw** (66 mg, 46 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 5.7 Hz, 1 H), 8.19-8.13 (m, 1 H), 7.97 (t, *J* = 56.1 Hz, 1 H), 7.77 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.67 (d, *J* = 8.7 Hz, 1 H), 7.44 (dd, *J* = 5.7, 0.5 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.45 (d, *J* = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.67 (t, *J* = 3.7 Hz), 142.35, 134.51, 128.99, 127.88 (t, *J*

= 2.0 Hz), 126.68, 121.63, 118.83, 99.99 ppm. MS (EI): 207.1 (100), 289, 291. HRMS (EI) for $C_{10}H_6BrF_2NS$ Calcd: 288.9372; Found: 288.9373. IR (KBr): v = 3053, 1577, 1545, 1487, 1274, 1072, 1045, 989, 845, 828, 785, 680 cm⁻¹. Mp: 96.7- 98.2 °C. **1-((Difluoromethyl)thio)isoquinoline 4v**

Prepared from isoquinolin-1-yl trifluoromethanesulfonate (138.5 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (30 mg, 10 mol%) and XantPhos (44 mg, 15 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **1-((difluoromethyl)thio)isoquinoline 4v** (58 mg, 55 %) as a pale green yellow oil. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4v**).

5-Bromo-2-((difluoromethyl)thio)pyrimidine 4ac

Prepared from 5-bromopyrimidin-2-yl trifluoromethanesulfonate (153 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (60 mg, 20 mol%) and XantPhos (88 mg, 30 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **5-bromo-2-((difluoromethyl)thio)pyrimidine 4ac** (48 mg, 40 %) as a pale yellow oil. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in **Scheme 2, 4ac**).

2-((Difluoromethyl)thio)quinoxaline 4at

Prepared from quinoxalin-2-yl trifluoromethanesulfonate (139 mg, 0.5 mmol) according to general procedure **E** (Pd(dba)₂ (30 mg, 10 mol%) and XantPhos (44 mg, 15 mol%) was used). The crude residue was purified by flash column chromatography

on silica gel to yield 2-((difluoromethyl)thio)quinoxaline 4at (90 mg, 85 %) as a white solid.

Prepared from quinoxalin-2-yl trifluoromethanesulfonate (139 mg, 0.5 mmol) according to general procedure **F**. The crude residue was purified by flash column chromatography on silica gel to yield 2-((difluoromethyl)thio)quinoxaline 4at (64 mg, 60 %) as a white solid. (¹H, ¹⁹F and ¹³C NMR spectra are the same as those for the product in Scheme 3, 4at).

General Procedure for Difluoromethylthiolation of Aryl Iodide

Method G

Aryl iodide (0.5 mmol, 1.0 equiv), Pd(dba)₂, DPEPhos, and [(SIPr)Ag(SCF₂H)] (350.0 mg, 0.6 mmol, 1.2 equiv) were added in a 20.0 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 50 $^{\circ}$ C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100.0 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/Et₂O or pentane/EtOAc as the eluent to give the product.

[1,1'-Biphenyl]-4-yl(difluoromethyl)sulfane 5a^[2]

Prepared from 4-iodo-1,1'-biphenyl (140.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **[1,1'-biphenyl]-4-yl(difluoromethyl)sulfane 5a** (116.0 mg, 98 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.61 (m, 6 H), 7.50 (t, *J* = 7.5 Hz, 2 H), 7.42 (t, *J* = 7.3 Hz, 1 H), 6.89 (t, *J* = 56.9 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -91.24 (d, *J* = 56.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 142.85, 139.90, 135.79, 129.00, 128.09, 128.03, 127.21, 124.84 (t, *J* = 2.9 Hz), 121.02 (t, *J* = 275.3 Hz) ppm. **(4-(***tert***-Butyl)phenyl)(difluoromethyl)sulfane 5b**^[2]

Prepared from 1-(*tert*-butyl)-4-iodobenzene (130.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on

silica gel to yield (4-(*tert*-butyl)phenyl)(difluoromethyl)sulfane 5b (90.0 mg, 83 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 2 H), 7.43-7.40 (m, 2 H), 6.81 (t, *J* = 57.2 Hz, 1 H), 1.33 (s, 9 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.43 (d, *J* = 57.2 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.26, 135.23, 126.49, 122.55 (t, *J* = 3.0 Hz), 121.22 (t, *J* = 274.9 Hz), 34.77, 31.18 ppm.

[1,1'-Biphenyl]-2-yl(difluoromethyl)sulfane 5c^[2]

Prepared from 2-iodo-1,1'-biphenyl (140.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **[1,1'-Biphenyl]-2-yl(difluoromethyl)sulfane 5c** (86.0 mg, 73 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.73 (m, 1 H), 7.50-7.37 (m, 8 H), 6.68 (td, *J* = 57.0, 2.2 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.39 (dd, *J* = 56.9, 1.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 146.51, 140.41, 135.47, 131.08, 129.66, 129.53, 128.26, 128.05, 127.69, 125.43 (t, *J* = 3.0 Hz), 121.00 (t, *J* = 275.0 Hz) ppm.

(Diffuoromethyl) (3,4,5-trimethoxyphenyl) sulfane~5d

Prepared from 5-iodo-1,2,3-trimethoxybenzene (147.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(3,4,5-trimethoxyphenyl)sulfane 5d (80.0 mg, 64 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (t, *J* = 57.1 Hz, 1 H), 6.80 (s, 2 H), 3.86 (s, 6 H), 3.86 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.50 (d, *J* = 57.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 153.42, 139.70, 121.14 (t, *J* = 275.3 Hz), 120.25 (t, *J* = 3.2 Hz), 112.77, 60.88, 56.28 ppm. MS (EI): 250 (100). HRMS (EI)

for $C_{10}H_{12}F_2O_3S$ Calcd: 250.0475, Found: 250.0477. IR (KBr): v = 3158, 3095, 2940,2227, 1582, 1432, 1407, 1311, 1234, 1177, 1129, 1067, 925, 879, 833 cm⁻¹.

(Difluoromethyl)(naphthalen-1-yl)sulfane 5e^[2]

Prepared from 1-iodonaphthalene (127.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(**naphthalen-1-yl**)**sulfane 5e** (101.0 mg, 96 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.5 Hz, 1 H), 7.98 (d, *J* = 8.3 Hz, 1 H), 7.94 – 7.90 (m, 2 H), 7.66 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1 H), 7.59 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1 H), 7.50 (dd, *J* = 8.2, 7.2 Hz, 1 H), 6.86 (t, *J* = 57.1 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.65 (d, *J* = 57.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 136.36, 135.23, 134.26, 131.29, 128.59, 127.47, 126.66, 125.81, 125.62, 123.43 (t, *J* = 3.0 Hz), 121.36 (t, *J* = 275.9 Hz) ppm.

(Difluoromethyl)(9H-fluoren-2-yl)sulfane 5f

Prepared from 2-iodo-9*H*-fluorene (146.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(9*H*-fluoren-2-yl)sulfane 5f (99.0 mg, 80 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (t, *J* = 8.2 Hz, 2 H), 7.76 (s, 1 H), 7.61 (d, *J* = 7.5 Hz, 1 H), 7.57 (d, *J* = 7.5 Hz, 1 H), 7.42 (t, *J* = 7.3 Hz, 1 H), 7.39 (d, *J* = 7.3 Hz, 1 H), 6.88 (t, *J* = 57.1 Hz, 1 H), 3.90 (s, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.40 (d, *J* = 57.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 144.31, 143.54, 143.51, 140.51,

134.28, 132.23, 127.68, 127.03, 125.19, 123.49 (t, J = 3.0 Hz), 121.24 (t, J = 275.2 Hz), 120.50, 120.43, 36.78 ppm. MS (EI): 165.1 (100), 248. HRMS (EI) for C₁₄H₁₀F₂S Calcd: 248.0471, Found: 248.0469. IR (KBr): v = 3065, 2966, 2896, 2788, 1951, 1901, 1804, 1603, 1466, 1450, 1410, 1319, 1295, 1067, 1029, 955, 875, 831, 792 cm⁻¹. Mp: 42.0 - 43.1 °C.

(Difluoromethyl)(phenanthren-9-yl)sulfane 5g

Prepared from 9-iodophenanthrene (152.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(**phenanthren-9-yl**)**sulfane 5g** (130.0 mg, >99 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.72-8.63 (m, 3 H), 8.23 (s, 1 H), 7.89 (d, J = 7.2 Hz, 1 H), 7.76-7.70 (m, 3 H), 7.66-7.62 (m, 1 H), 6.91 (t, J = 57.1 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.65 (d, J = 57.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 138.24, 132.62, 131.34, 131.22, 131.14, 128.99, 128.38, 127.45, 127.36, 127.24, 126.73, 123.07, 122.71, 122.36 (t, J = 2.9 Hz), 121.46 (t, J = 276.0 Hz) ppm. MS (EI): 165.1 (100), 260. HRMS (EI) for C₁₅H₁₀F₂S Calcd: 260.0471, Found: 260.0467. IR (KBr): $\nu = 3075$, 3060, 2968, 1588, 1507, 1450, 1296.9, 1244, 1066, 1033, 942, 899, 856, 795 cm⁻¹. Mp: 47.6 – 49.1 °C.

(3-(Benzyloxy)phenyl)(difluoromethyl)sulfane 5h

Prepared from 1-(benzyloxy)-3-iodobenzene (155.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30.0 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on

silica gel to yield (**3-(benzyloxy)phenyl)(difluoromethyl)sulfane 5h** (125.0 mg, 94 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.31 (m, 6 H), 7.24-7.20 (m, 2 H), 7.06 (ddd, J = 8.3, 2.5, 0.9 Hz, 1 H), 6.86 (t, J = 57.0 Hz, 1 H), 5.09 (s, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.04 (d, J = 57.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 159.14, 136.43, 130.24, 128.72, 128.24, 127.62, 127.53, 127.29 (t, J = 3.0 Hz), 121.19 (t, J = 276.7 Hz), 116.59, 70.24 ppm. MS (EI): 91.1 (100), 266. HRMS (EI) for C₁₄H₁₂F₂OS Calcd: 266.0577, Found: 266.0576. IR (KBr): v = 3066.0, 3034, 2931, 2872, 1590, 1497, 1455, 1419, 1381, 1318, 1286, 1231, 1067, 892, 854, 796 cm⁻¹.

(Difluoromethyl)(4-nitrophenyl)sulfane 5i^[2]

Prepared from 1-iodo-4-nitrobenzene (124.5 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂(15.0 mg, 5.0 mol%) and DPEPhos (13.5 mg, 5.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(4-nitrophenyl)sulfane 5i (103 mg, >99 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.20 (m, 1 H), 7.73-7.70 (m, 1 H), 6.95 (t, *J* = 55.9 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.25 (d, *J* = 55.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 148.30, 135.02 (t, *J* = 2.8 Hz), 134.34, 124.18, 119.66 (t, *J* = 276.7 Hz) ppm.

(Difluoromethyl)(2-nitrophenyl)sulfane 5j^[2]

Prepared from 1-iodo-2-nitrobenzene (124.5 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (22.5 mg, 7.5 mol%) and DPEPhos (20.3 mg, 7.5 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(2-nitrophenyl)sulfane 5j (96.0 mg, 94 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 8.2, 1.3 Hz, 1 H), 7.73 (dd, *J* = 8.0,

1.1 Hz, 1 H), 7.64 (td, J = 7.8, 1.4 Hz, 1 H), 7.52-7.48 (m, 1 H), 6.99 (t, J = 55.9 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.95 (d, J = 55.9 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 149.33, 133.65, 131.97, 128.69, 126.08 (t, J = 3.0 Hz), 125.72, 119.97 (t, J = 275.2 Hz) ppm.

(Difluoromethyl)(3-fluoro-5-nitrophenyl)sulfane 5k

Prepared from 1-fluoro-3-iodo-5-nitrobenzene (133.5 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**difluoromethyl**)(3-fluoro-5-nitrophenyl)sulfane 5k (76.0 mg, 68%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1 H), 8.01 – 7.98 (m, 1 H), 7.66 (dd, *J* = 7.5, 1.5 Hz, 1 H), 6.94 (t, *J* = 55.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.56 (d, *J* = 55.6 Hz, 2 F), -106.90 (t, *J* = 7.8 Hz, 1 F); ¹³C NMR (101 MHz, CDCl₃) δ 161.93 (d, *J* = 255.6 Hz), 149.14 – 148.98 (m), 129.94 (dt, *J* = 8.3, 3.1 Hz), 127.72 (d, *J* = 22.7 Hz), 125.28 (dd, *J* = 2.6, 1.0 Hz), 119.17 (t, *J* = 277.7 Hz), 112.64 (d, *J* = 26.3 Hz) ppm. MS (EI): 223 (100). HRMS (EI) for C₇H₄F₃NO₂S Calcd: 222.9915, Found: 222.9918. IR (KBr): v = 3097, 2880, 1614, 1587, 1539, 1425, 1354, 1321, 1248, 1074, 1043, 956, 885, 789 cm⁻¹.

(3,4-Dichlorophenyl)(difluoromethyl)sulfane 51

Prepared from 1,2-dichloro-4-iodobenzene (136.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**3,4-Dichlorophenyl**)(**difluoromethyl**)**sulfane 51** (65.0 mg, 57 %) as a pale

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 2.0 Hz, 1 H), 7.47 (d, J = 8.3 Hz, 1 H), 7.42 (dd, J = 8.3, 2.0 Hz, 1 H), 6.83 (t, J = 56.4 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ = -91.57 (d, J=56.4, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 136.76, 134.85, 134.46, 133.35, 131.08, 125.57 (t, J = 3.1 Hz), 119.92 (t, J = 276.5 Hz) ppm. MS (EI): 178(100), 228. HRMS (EI) for C₇H₄Cl₂F₂S Calcd: 227.9379, Found: 227.9386. IR (KBr): v 2955, 2925, 2854, 1581, 1459, 1367, 1318, 1297, 1130, 1077, 1035, 882, 815, 752, 696, 555 cm⁻¹.

(3-Bromophenyl)(difluoromethyl)sulfane 5m

Prepared from 1-bromo-3-iodobenzene (141.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**3-Bromophenyl**)(**difluoromethyl**)**sulfane 5m** (96.0 mg, 81 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, *J* = 1.8 Hz, 1 H), 7.56 (ddd, *J* = 8.0, 1.9, 1.0 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 7.9 Hz, 1 H), 6.84 (t, *J* = 56.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.37 (d, *J* = 56.6 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 137.64, 133.74, 132.92, 130.60, 127.94 (t, *J* = 3.0 Hz), 122.84, 120.38 (t, *J* = 276.0 Hz) ppm. MS (EI): 238(100). HRMS (EI) for C₇H₅BrF₂S Calcd: 237.9263, Found: 237.9265.

(4-Bromophenyl)(difluoromethyl)sulfane 5n^[2]

Prepared from 1-bromo-4-iodobenzene (141.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield (**4-Bromophenyl**)(**difluoromethyl**)**sulfane 5n** (55.0 mg, 46 %) as a colorless

oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 2 H), 7.46-7.43 (m, 2 H), 6.81 (t, *J* = 56.6 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.60 (d, *J* = 56.6 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 136.93, 132.59, 124.88 (t, *J* = 3.0 Hz), 124.75, 120.25 (t, *J* = 275.8 Hz) ppm.

1-(4-((Difluoromethyl)thio)phenyl)ethanone 50^[2]

Prepared from 1-(4-iodophenyl)ethanone (123.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (22.5 mg, 7.5 mol%) and DPEPhos (20.3 mg, 7.5 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **1-(4-((difluoromethyl)thio)phenyl)ethanone 5o** (91.0 mg, 90 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.91 (m, 2 H), 7.63-7.60 (m, 2 H), 6.89 (t, *J* = 56.4 Hz, 1 H); ¹⁹F NMR (376 MHz, cdcl₃) δ -91.19 (d, *J* = 56.4 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 197.14, 137.49, 134.13, 132.37 (t, *J* = 2.7 Hz), 128.98, 120.30 (t, *J* = 275.8 Hz), 26.63 ppm.

Methyl 2-((difluoromethyl)thio)benzoate 5p^[2]

Prepared from methyl 2-iodobenzoate (131.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **Methyl 2-((difluoromethyl)thio)benzoate 5p** (65.0 mg, 60 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.8, 1.3 Hz, 1 H), 7.62 (d, *J* = 7.9 Hz, 1 H), 7.51 (td, *J* = 7.7, 1.4 Hz, 1 H), 7.40 (t, *J* = 7.6 Hz, 1 H), 7.00 (t, *J* = 56.7 Hz, 1 H), 3.94 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.72 (d, *J* = 56.7 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 166.82, 132.42, 132.35, 132.17, 130.93, 130.40 (t, *J* = 3.4 Hz), 127.94, 120.98 (t, *J* = 273.5 Hz), 52.53 ppm.

Methyl 4-((difluoromethyl)thio)benzoate 5q^[2]

Prepared from methyl 4-iodobenzoate (131.0 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (30 mg, 10.0 mol%) and DPEPhos (27.0 mg, 10.0 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **Methyl 4-((difluoromethyl)thio)benzoate 5q** (106.0 mg, 97 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2 H), 7.62-7.59 (m, 2 H), 6.89 (t, *J* = 56.4 Hz, 1 H), 3.92 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.12 (d, *J* = 56.4 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 166.24, 134.00, 132.19 (t, *J* = 3.0 Hz), 130.99, 130.30, 120.39 (t, *J* = 275.7 Hz), 52.39 ppm.

4-((Difluoromethyl)thio)benzonitrile 5r^[2]

Prepared from 4-iodobenzonitrile (114.5 mg, 0.5 mmol) according to general procedure **G** (Pd(dba)₂ (22.5 mg, 7.5 mol%) and DPEPhos (20.3 mg, 7.5 mol%) was used). The crude residue was purified by flash column chromatography on silica gel to yield **4-((Difluoromethyl)thio)benzonitrile 5r** (75.0 mg, 81 %) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 4 H), 6.91 (t, *J* = 56.0 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.19 (d, *J* = 56.0 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 134.54, 132.78 (d, *J* = 2.9 Hz), 132.73, 119.77 (t, *J* = 276.6 Hz), 117.94, 113.29 ppm.

Procedure for Difluoromethylthiolation of 4-bromo-1-*iso*butyl-1*H*-imidazo[4,5-*c*] quinolone 6

4-Bromo-1-*iso*butyl-1*H*-imidazo[4,5-*c*] quinoline (152 mg, 0.5 mmol, 1.0 equiv), Pd(dba)₂ (60 mg, 20 mol%), XantPhos (88 mg, 30 mol%), and [(SIPr)Ag(SCF₂H)] (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 80 °C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/EtOAc as the eluent to give the product.

4-((**Difluoromethyl**)**thio**)-**1**-**isobutyl**-**1H**-**imidazo**[**4**,**5**-**c**]**quinolone 6**. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (t, J = 56.0 Hz, 1 H), 8.04 (d, J = 8.3 Hz, 1 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.77 (s, 1 H), 7.58 (t, J = 7.6 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 4.24 (d, J = 7.4 Hz, 2 H), 2.31 – 2.20 (m, 1 H), 0.99 (d, J = 6.6 Hz, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -98.10 (d, J = 56.1 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 148.42 (t, J = 3.7 Hz), 144.50, 143.51, 135.47, 131.90, 129.82, 127.59, 126.17, 120.97 (t, J = 269.1 Hz), 120.08, 116.83, 55.13, 28.79, 19.72 ppm. MS (EI): 225.1 (100), 307. HRMS (EI) for C₁₅H₁₅F₂N₃S Calcd: 307.0955; Found: 307.0958. IR (KBr): v 2962, 2886, 1569, 1513, 1444, 1356, 1214, 1143, 1061, 1041, 1017, 927, 777, 755, 642 cm⁻¹. Mp: 143.4 – 145.6 °C.

Procedure for Difluoromethylthiolation of heptan-2-yl 2-((5-chloro-3-iodo quinolin-8-yl)oxy)acetate 7

Heptan-2-yl 2-((5-chloro-3-iodo quinolin-8-yl)oxy)acetate (230 mg, 0.5 mmol, 1.0 equiv), Pd(dba)₂ (30 mg, 15 mol%), XantPhos (44 mg, 15 mol%), and $[(SIPr)Ag(SCF_2H)]$ (350 mg, 0.6 mmol, 1.2 equiv) were added in a 20 mL schlenk tube under argon. To the tube was added 2.5 mL of anhydrous toluene and the mixture was stirred at 50 °C for 12 h. The dark solution was diluted with Et₂O (15.0 mL). The mixture was filtered through a short plug of silica gel, washed with Et₂O (100 mL). The organic layer was combined, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel with a mixed solvent of pentane/EtOAc as the eluent to give the product.

Heptan-2-yl 2-((5-chloro-3-((difluoromethyl)thio)quinolin-8-yl)oxy)acetate 7. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, J = 2.1 Hz, 1 H), 8.70 (d, J = 2.1 Hz, 1 H), 7.48 (d, J = 8.4 Hz, 1 H), 6.91 (s, 1 H), 6.89 (t, J = 48.5 Hz, 1H), 5.01 – 4.93 (m, 1 H), 4.89 (s, 2 H), 1.54 – 1.36 (m, 2 H), 1.29 (t, J = 6.5 Hz, 1 H), 1.20 – 1.14 (m, 8 H), 0.80 – 0.77 (m, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.11 (d, J = 56.2 Hz, 2 F); ¹³C NMR (101 MHz, CDCl₃) δ 167.87, 153.71, 152.93, 140.26, 139.94, 127.25, 126.89, 123.11, 121.98 (t, J = 2.7 Hz), 119.60 (t, J = 277.3 Hz), 110.90, 72.82, 66.39, 35.64, 31.44, 24.88, 22.45, 19.85, 13.91 ppm. MS (EI): 274 (100), 417. HRMS (EI) for C₁₉H₂₂ClF₂NO₃S Calcd: 417.0977; Found: 417.0972. IR (KBr): v 2958, 2933, 2861, 1753, 1606, 1578, 1481, 1366, 1314, 1212, 1159, 1120, 1070, 963, 851, 793, 753, 643 cm⁻¹.

Reference

- [1] Y. Gu, Q. Shen, Nat. Commun. 2014, 5, 5405, doi: 10.1038/ncomms6405.
- [2] J. Wu, Y. Gu, X. Leng, and Q. Shen, Angew. Chem. Int. Ed. 2015, 54, 7648.
- [3] L. Racane, H. Cicak, Z. Mihalic, G. Karminski-Zamola, V. Tralic-Kulenovic, *Tetrahedron* **2011**, 67, 2760.
- [4] A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 14844.
- [5] C. -H. Wang, X. -T. Liu, X. -H. Chao, Synthesis, 1982, 10, 858.
- [6] C. N. Johnson, S. F. Moss, D. R. Witty, WO2005030724A1, 2005.
- [7] E. Kiselev, K. Agama, Y. Pommier, M. Cushman, J. Med. Chem. 2012, 55,1682.
- [8] B. Bradshaw, A. Dinsmore, D. Collison, C. D. Garner, J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 2001, 24, 3232.
- [9] B. Bayarmagnai, C. Matheis, K. Jouvin, L. J. Goossen, Angew. Chem. Int. Ed.
 2015, 54, 5753.

Spectrum of the Starting Material

³¹P NMR (162 MHz, CDCl₃) (Xantphos)Pd(3-Py)(I) 2

¹H NMR (400 MHz, CDCl₃) tert-butyl 5-iodo-1H-indazole-1-carboxylate 3ai

¹³C NMR (101 MHz, CDCl₃) tert-butyl 5-iodo-1H-indazole-1-carboxylate 3ai

¹³C NMR (101 MHz, CDCl₃) 8-(benzyloxy)-5,7-dichloroquinoline 2u

¹H NMR (400 MHz, CDCl₃) 8-(benzyloxy)-5,7-dichloro-3-iodoquinoline 3u

¹³C NMR (101 MHz, CDCl₃) 8-(benzyloxy)-5,7-dichloro-3-iodoquinoline 3u

¹H NMR (400 MHz, CDCl₃) 2-((5-chloro-3-iodoquinolin-8-yl)oxy)acetate 3ay

¹³C NMR (101 MHz, CDCl₃) 2-((5-chloro-3-iodoquinolin-8-yl)oxy)acetate 3ay

¹H NMR (400 MHz, CDCl₃) 4-bromo-1-isobutyl-1*H*-imidazo[4,5-c]quinolone 3ax

¹³C NMR (126 MHz, CDCl₃) 4-bromo-1-*iso*butyl-1*H*-imidazo[4,5-c]quinolone 3ax

¹H NMR (400 MHz, CDCl₃) 5-bromopyridin-2-yl trifluoromethanesulfonate 3a

¹⁹F NMR (376 MHz, CDCl₃) 5-bromopyridin-2-yl trifluoromethanesulfonate 3a

¹³C NMR (101 MHz, CDCl₃) 5-bromopyridin-2-yl trifluoromethanesulfonate 3a

¹H NMR (400 MHz, CDCl₃) 5-chloropyridin-2-yl trifluoromethanesulfonate 3b

¹³C NMR (101 MHz, CDCl₃) 5-chloropyridin-2-yl trifluoromethanesulfonate 3b

¹³C NMR (101 MHz, CDCl₃) isoquinolin-1-yl trifluoromethanesulfonate 3v

¹H NMR (400 MHz, CDCl₃) 5-bromopyrimidin-2-yl trifluoromethanesulfonate 3ac

¹⁹F NMR (376 MHz, CDCl₃) 5-bromopyrimidin-2-yl trifluoromethanesulfonate

¹³C NMR (101 MHz, CDCl₃) 5-bromopyrimidin-2-yl trifluoromethanesulfonate

-110

-130

-150

-170

-190

-10 -20 -30 -40 -50 -60 -70 -80 -90

30 20 10 0

¹³C NMR (101 MHz, CDCl₃) quinolin-2-yl trifluoromethanesulfonate 3ap

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) quinoxalin-2-yl trifluoromethanesulfonate 3at

¹³C NMR (101 MHz, CDCl₃) quinoxalin-2-yl trifluoromethanesulfonate 3at

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) 5-bromo-3-nitropyridin-2-yl trifluorometh anesulfonate 3av

¹³C NMR (101 MHz, CDCl₃) 7-bromoisoquinolin-1-yl trifluoromethanesulfonate

¹⁹F NMR (376 MHz, CDCl₃) 7-bromoisoquinolin-1-yl trifluoromethanesulfonate

Spectrum of the Products

¹H NMR (400 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio)pyridine 4a

¹⁹F NMR (376 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio)pyridine 4a

¹³C NMR (101 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio)pyridine 4a

¹H NMR (400 MHz, CDCl₃) 5-chloro-2-((difluoromethyl)thio)pyridine 4b

¹³C NMR (101 MHz, CDCl₃) 5-chloro-2-((difluoromethyl)thio)pyridine 4b

¹H NMR (400 MHz, CDCl₃) methyl 6-((difluoromethyl)thio)nicotinate 4c

¹⁹F NMR (376 MHz, CDCl₃) methyl 6-((difluoromethyl)thio) nicotinate 4c

¹³C NMR (101 MHz, CDCl₃) methyl 6-((difluoromethyl)thio) nicotinate 4c

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)isonicotinonitrile 4d

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-nitropyridine 4e

¹⁹F NMR (376 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-nitropyridine 4e

¹³C NMR (101 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-nitropyridine 4e

¹⁹F NMR (376 MHz, CDCl₃) 3-((difluoromethyl)thio)pyridine 4f

¹³C NMR (101 MHz, CDCl₃) 3-((difluoromethyl)thio)pyridine 4f

¹H NMR (400 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyridine 4g

¹⁹F NMR (376 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyridine 4g

¹³C NMR (101 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyridine 4g

¹H NMR (400 MHz, CDCl₃) 5-((difluoromethyl)thio)-2-fluoropyridine 4h

¹³C NMR (101 MHz, CDCl₃) 5-((difluoromethyl)thio)-2-fluoropyridine 4h

¹⁹F NMR (376 MHz, CDCl₃) 5-bromo-3-((difluoromethyl)thio)-2-methoxy pyridine 4i

¹H NMR (400 MHz, CDCl₃) 3-((difluoromethyl)thio)-2-methoxypyridine 4j

¹³C NMR (101 MHz, CDCl₃) 3-((difluoromethyl)thio)-2-methoxypyridine 4j

¹H NMR (400 MHz, CDCl₃) 3-((difluoromethyl)thio)-2-nitro pyridine 4k

¹⁹F NMR (376 MHz, CDCl₃) 3-((difluoromethyl)thio)-2-nitro pyridine 4k

¹³C NMR (101 MHz, CDCl₃) 3-((difluoromethyl)thio)-2-nitro pyridine 4k

¹³C NMR (101 MHz, CDCl₃) 4-(5-((difluoromethyl)thio)pyridin-2-yl)morpholine

¹H NMR (400 MHz, CDCl₃) 2-chloro-4-((difluoromethyl)thio)pyridine 4m

¹⁹F NMR (376 MHz, CDCl₃) 2-chloro-4-((difluoromethyl)thio)pyridine 4m

¹³C NMR (101 MHz, CDCl₃) 2-chloro-4-((difluoromethyl)thio)pyridine 4m

¹H NMR (400 MHz, CDCl₃) 2-bromo-4-((difluoromethyl)thio)pyridine 4n

¹³C NMR (101 MHz, CDCl₃) 2-bromo-4-((difluoromethyl)thio)pyridine 4n

¹H NMR (400 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-fluoro-5-methylpyridine

¹⁹F NMR (376 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-fluoro-5-methylpyridine

¹³C NMR (101 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-fluoro-5-methylpyridine

¹H NMR (400 MHz, CDCl₃) 2-chloro-4-((difluoromethyl)thio)-5- (trifluoromethyl) pyridine 4p

¹H NMR (400 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-methoxypyridine 4q

¹⁹F NMR (376 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-methoxypyridine 4q

¹³C NMR (101 MHz, CDCl₃) 4-((difluoromethyl)thio)-2-methoxypyridine 4q

¹H NMR (400 MHz, CDCl₃) 3-((difluoromethyl)thio)quinolone 4r

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR (400 MHz, CDCl₃) 6-((difluoromethyl)thio)quinolone 4s

¹⁹F NMR (376 MHz, CDCl₃) 6-((difluoromethyl)thio)quinolone 4s

¹H NMR (400 MHz, CDCl₃) 7-chloro-4-((difluoromethyl)thio)quinolone 4t

¹³C NMR (101 MHz, CDCl₃) 6-((difluoromethyl)thio)quinolone 4s

¹³C NMR (101 MHz, CDCl₃) 7-chloro-4-((difluoromethyl)thio)quinolone 4t

¹⁹F NMR (376 MHz, CDCl₃) 8-(benzyloxy)-5,7-dichloro-3-((difluoromethyl)thio) quinolone 4u

¹H NMR (400 MHz, CDCl₃) 1-((difluoromethyl)thio)isoquinoline 4v

¹⁹F NMR (376 MHz, CDCl₃) 1-((difluoromethyl)thio)isoquinoline 4v

¹³C NMR (101 MHz, CDCl₃) 1-((difluoromethyl)thio)isoquinoline 4v

¹H NMR (400 MHz, CDCl₃) 5-((difluoromethyl)thio)-1-methyl-1*H*-indole 4w

¹⁹F NMR (376 MHz, CDCl₃) 5-((difluoromethyl)thio)-1-methyl-1*H*-indole 4w

¹³C NMR (101 MHz, CDCl₃) 5-((difluoromethyl)thio)-1-methyl-1*H*-indole 4w

¹H NMR (400 MHz, CDCl₃) 3-((difluoromethyl)thio)-9-phenyl-9*H*-carbazole 4x

¹⁹F NMR (376 MHz, CDCl₃) 3-((difluoromethyl)thio)-9-phenyl-9*H*-carbazole 4x

¹³C NMR (101 MHz, CDCl₃) 3-((difluoromethyl)thio)-9-phenyl-9*H*-carbazole 4x

¹H NMR (400 MHz, CDCl₃) 5-((difluoromethyl)thio)benzofuran 4y

¹⁹F NMR (376 MHz, CDCl₃) 5-((difluoromethyl)thio)benzofuran 4y

¹³C NMR (101 MHz, CDCl₃) 5-((difluoromethyl)thio)benzofuran 4y

¹H NMR (400 MHz, CDCl₃) 4-((difluoromethyl)thio)dibenzo[b,d]thiophene 4aa

¹⁹F NMR (376 MHz, CDCl₃) 4-((difluoromethyl)thio)dibenzo[b,d]thiophene 4aa

¹³C NMR (101 MHz, CDCl₃) 4-((difluoromethyl)thio)dibenzo[b,d]thiophene 4aa

¹H NMR (400 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyrimidine 4ab

¹³C NMR (101 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyrimidine 4ab

¹⁹F NMR (376 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio)pyrimidine 4ac

¹³C NMR (101 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio)pyrimidine 4ac

¹H NMR (400 MHz, CDCl₃) 5-chloro-2-((difluoromethyl)thio)pyrimidine 4ad

¹³C NMR (101 MHz, CDCl₃) 5-chloro-2-((difluoromethyl)thio)pyrimidine 4ad

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)pyrazine 4ae

¹⁹F NMR (376 MHz, CDCl₃) 2-((difluoromethyl)thio)pyrazine 4ae

¹³C NMR (101 MHz, CDCl₃) 2-((difluoromethyl)thio)pyrazine 4ae

¹H NMR (400 MHz, CDCl₃) 2,5-bis((difluoromethyl)thio)pyrazine 4af

¹³C NMR (101 MHz, CDCl₃) 2,5-bis((difluoromethyl)thio)pyrazine 4af

¹⁹F NMR (376 MHz, CDCl₃) methyl 3-((difluoromethyl)thio)pyrazine-2carboxylate 4ag

¹H NMR (400 MHz, CDCl₃) 4-chloro-6-((difluoromethyl)thio)quinazoline 4ah

¹⁹F NMR (376 MHz, CDCl₃) 4-chloro-6-((difluoromethyl)thio)quinazoline 4ah

¹³C NMR (101 MHz, CDCl₃) 4-chloro-6-((difluoromethyl)thio)quinazoline 4ah

¹H NMR (400 MHz, CDCl₃) *tert*-butyl 5-((difluoromethyl)thio)-1*H*-indazole-1carboxylate 4ai

¹⁹F NMR (376 MHz, CDCl₃) *tert*-butyl 5-((difluoromethyl)thio)-1*H*-indazole-1carboxylate 4ai

¹H NMR (400 MHz, CDCl₃) 7-chloro-2-((difluoromethyl)thio)thieno[3,2-b] pyridine-6-carbonitrile 4aj

¹³C NMR (101 MHz, CDCl₃) 7-chloro-2-((difluoromethyl)thio)thieno[3,2-b] pyridine-6-carbonitrile 4aj

¹H NMR (400 MHz, CDCl₃) 6-((difluoromethyl)thio)benzo[d]thiazole 4ak

¹⁹F NMR (376 MHz, CDCl₃) 6-((difluoromethyl)thio)benzo[d]thiazole 4ak

¹³C NMR (101 MHz, CDCl₃) 6-((difluoromethyl)thio)benzo[d]thiazole 4ak

¹H NMR (400 MHz, CDCl₃) 6-((difluoromethyl)thio)nicotinonitrile 4al

¹⁹F NMR (376 MHz, CDCl₃) 6-((difluoromethyl)thio)nicotinonitrile 4al

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) 3,5-dichloro-2-((difluoromethyl)thio)pyridine 4am

¹⁹F NMR (376 MHz, CDCl₃) 3,5-dichloro-2-((difluoromethyl)thio)pyridine 4am

¹³C NMR (101 MHz, CDCl₃) 3,5-dichloro-2-((difluoromethyl)thio)pyridine 4am

¹H NMR (400 MHz, CDCl₃) 1-(6-((difluoromethyl)thio)pyridin-3-yl) ethanone 4an

¹H NMR (400 MHz, CDCl₃) 4-bromo-2-((difluoromethyl)thio)pyridine 4ao

¹⁹F NMR (376 MHz, CDCl₃) 4-bromo-2-((difluoromethyl)thio)pyridine 4ao

¹³C NMR (101 MHz, CDCl₃) 4-bromo-2-((difluoromethyl)thio)pyridine 4ao

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)quinolone 4ap

¹⁹F NMR (376 MHz, CDCl₃) 6-((difluoromethyl)thio)pyrazine-2-carbonitrile 4aq

¹³C NMR (101 MHz, CDCl₃) 6-((difluoromethyl)thio)pyrazine-2-carbonitrile 4aq

¹H NMR (400 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyrazine 4ar

¹³C NMR (101 MHz, CDCl₃) 2-chloro-5-((difluoromethyl)thio)pyrazine 4ar

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-(methylthio)pyrazine 4as

¹⁹F NMR (376 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-(methylthio)pyrazine 4as

¹³C NMR (101 MHz, CDCl₃) 2-((difluoromethyl)thio)-5-(methylthio)pyrazine 4as

¹H NMR (400 MHz, CDCl₃) 2-((difluoromethyl)thio)quinoxaline 4at

¹³C NMR (101 MHz, CDCl₃) 2-((difluoromethyl)thio)quinoxaline 4at

¹H NMR (400 MHz, CDCl₃) 6-((difluoromethyl)thio)-2,2'-bipyridine 4u

¹⁹F NMR (376 MHz, CDCl₃) 6-((difluoromethyl)thio)-2,2'-bipyridine 4u

¹³C NMR (101 MHz, CDCl₃) 6-((difluoromethyl)thio)-2,2'-bipyridine 4u

¹H NMR (400 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio) -3-nitropyridine 4av

¹³C NMR (101 MHz, CDCl₃) 5-bromo-2-((difluoromethyl)thio) -3-nitropyridine 4av

¹H NMR (400 MHz, CDCl₃) 7-bromo-1-((difluoromethyl)thio)isoquinoline 4aw

¹⁹F NMR (376 MHz, CDCl₃) 7-bromo-1-((difluoromethyl)thio)isoquinoline 4aw

¹³C NMR (101 MHz, CDCl₃) 7-bromo-1-((difluoromethyl)thio)isoquinoline 4aw

¹H NMR (400 MHz, CDCl₃) [1,1'-biphenyl]-4-yl(difluoromethyl)sulfane 5a

¹⁹F NMR (376 MHz, CDCl₃) [1,1'-biphenyl]-4-yl(difluoromethyl)sulfane 5a

¹³C NMR (101 MHz, CDCl₃) [1,1'-biphenyl]-4-yl(difluoromethyl)sulfane 5a

¹H NMR (400 MHz, CDCl₃) (4-(*tert*-butyl)phenyl)(difluoromethyl)sulfane 5b

¹⁹F NMR (376 MHz, CDCl₃) (4-(*tert*-butyl)phenyl)(difluoromethyl)sulfane 5b

¹³C NMR (101 MHz, CDCl₃) (4-(*tert*-butyl)phenyl)(difluoromethyl)sulfane 5b

¹H NMR (400 MHz, CDCl₃) [1,1'-biphenyl]-2-yl(difluoromethyl)sulfane 5c

¹³C NMR (101 MHz, CDCl₃) [1,1'-biphenyl]-2-yl(difluoromethyl)sulfane 5c

¹⁹F NMR (376 MHz, CDCl₃) [1,1'-biphenyl]-2-yl(difluoromethyl)sulfane 5c

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(3,4,5-trimethoxyphenyl)sulfane 5d

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(3,4,5-trimethoxyphenyl)sulfane 5d

¹H NMR (400 MHz, CDCl₃) (difluoromethyl)(naphthalen-1-yl)sulfane 5e

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(naphthalen-1-yl)sulfane 5e

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(naphthalen-1-yl)sulfane 5e

¹H NMR (400 MHz, CDCl₃) (difluoromethyl)(9*H*-fluoren-2-yl)sulfane 5f

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(9*H*-fluoren-2-yl)sulfane 5f

¹H NMR (400 MHz, CDCl₃) (Difluoromethyl)(phenanthren-9-yl)sulfane 5g

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(phenanthren-9-yl)sulfane 5g

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(phenanthren-9-yl)sulfane 5g

¹H NMR (400 MHz, CDCl₃) (3-(benzyloxy)phenyl)(difluoromethyl)sulfane 5h

¹⁹F NMR (376 MHz, CDCl₃) (3-(benzyloxy)phenyl)(difluoromethyl)sulfane 5h

¹³C NMR (101 MHz, CDCl₃ (3-(benzyloxy)phenyl)(difluoromethyl)sulfane 5h

¹H NMR (400 MHz, CDCl₃) (difluoromethyl)(4-nitrophenyl)sulfane 5i

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(4-nitrophenyl)sulfane 5i

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(4-nitrophenyl)sulfane 5i

¹H NMR (400 MHz, CDCl₃) (difluoromethyl)(2-nitrophenyl)sulfane 5j

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(2-nitrophenyl)sulfane 5j

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(2-nitrophenyl)sulfane 5j

¹H NMR (400 MHz, CDCl₃) (difluoromethyl)(3-fluoro-5-nitrophenyl)sulfane 5k

¹⁹F NMR (376 MHz, CDCl₃) (difluoromethyl)(3-fluoro-5-nitrophenyl)sulfane 5k

¹³C NMR (101 MHz, CDCl₃) (difluoromethyl)(3-fluoro-5-nitrophenyl)sulfane 5k

¹H NMR (400 MHz, CDCl₃) (3,4-dichlorophenyl)(difluoromethyl)sulfane 5l

¹⁹F NMR (376 MHz, CDCl₃) (3,4-dichlorophenyl)(difluoromethyl)sulfane 5l

¹³C NMR (101 MHz, CDCl₃) (3,4-dichlorophenyl)(difluoromethyl)sulfane 51

¹H NMR (400 MHz, CDCl₃) (3-bromophenyl)(difluoromethyl)sulfane 5m

¹³C NMR (101 MHz, CDCl₃) (3-bromophenyl)(difluoromethyl)sulfane 5m

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR (400 MHz, CDCl₃) (4-bromophenyl)(difluoromethyl)sulfane 5n

¹⁹F NMR (376 MHz, CDCl₃) (4-bromophenyl)(difluoromethyl)sulfane 5n

¹³C NMR (101 MHz, CDCl₃) (4-bromophenyl)(difluoromethyl)sulfane 5n

¹H NMR (400 MHz, CDCl₃) 1-(4-((difluoromethyl)thio)phenyl)ethanone 50

¹⁹F NMR (376 MHz, CDCl₃) 1-(4-((difluoromethyl)thio)phenyl)ethanone 50

¹³C NMR (101 MHz, CDCl₃) 1-(4-((difluoromethyl)thio)phenyl)ethanone 50

¹⁹F NMR (376 MHz, CDCl₃) Methyl 2-((difluoromethyl)thio)benzoate 5p

178

¹H NMR (400 MHz, CDCl₃) Methyl 4-((difluoromethyl)thio)benzoate 5q

¹³C NMR (101 MHz, CDCl₃) Methyl 4-((difluoromethyl)thio)benzoate 5q

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹⁹F NMR (376 MHz, CDCl₃) 4-((difluoromethyl)thio)benzonitrile 5r

¹H NMR (400 MHz, CDCl₃) 4-((difluoromethyl)thio)-1-isobutyl-1*H*imidazo[4,5-c]quinolone 6

¹⁹F NMR (376 MHz, CDCl₃) heptan-2-yl 2-((5-chloro-3-((difluoromethyl)thio) quinolin-8-yl)oxy)acetate 7

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

X-ray structure of [(Xantphos)Pd(3-py)(Br)]

Figure S1. X-ray structure of [(Xantphos)Pd(3-py)(Br)].

Table S1. Crystal data and structure refinement for	[(Xantphos)Pd(3-py)(Br)].	
Identification code	mo_dm15772_0m	
Empirical formula	C44 H36 Br N O P2 Pd	
Formula weight	842.99	
Temperature	130 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 11.120(2) Å	α= 69.218(4) °.
	b = 12.074(3) Å	β=72.309(4) °.
	c = 15.487(4) Å	$\gamma = 70.811(4)$ °.
Volume	1794.2(7) Å ³	
Z	2	
Density (calculated)	1.560 Mg/m ³	
Absorption coefficient	1.757 mm ⁻¹	
F(000)	852	
Crystal size	$0.15 \text{ x } 0.1 \text{ x } 0.08 \text{ mm}^3$	
Theta range for data collection	1.862 to 27.714 °.	
Index ranges	-14<=h<=12, -14<=k<=15, -20)<=l<=20
Reflections collected	14978	
Independent reflections	8389 [R(int) = 0.0553]	
Completeness to theta = 26.000 $^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.7456 and 0.4851	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	8389 / 0 / 453	
Goodness-of-fit on F ²	0.972	
Final R indices [I>2sigma(I)]	R1 = 0.0544, wR2 = 0.1207	
R indices (all data)	R1 = 0.0928, wR2 = 0.1383	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.368 and -1.253 e.Å ⁻³	

	Х	у	Z	U(eq)
Pd(1)	4779(1)	1184(1)	3119(1)	19(1)
Br(1)	3435(1)	47(1)	2818(1)	27(1)
P(1)	6583(1)	387(1)	2111(1)	21(1)
P(2)	2956(1)	2736(1)	3373(1)	21(1)
O (1)	4426(3)	2597(3)	1387(2)	20(1)
N(1)	7079(4)	3428(4)	3087(4)	33(1)
C(1)	5056(4)	1902(5)	749(4)	21(1)
C(2)	6066(5)	882(5)	985(4)	22(1)
C(3)	6715(5)	237(5)	321(4)	25(1)
C(4)	6353(5)	582(5)	-529(4)	27(1)
C(5)	5314(5)	1591(5)	-728(4)	24(1)
C(6)	4664(5)	2271(5)	-103(4)	23(1)
C(7)	3601(6)	3429(5)	-306(4)	33(1)
C(8)	2620(5)	3507(5)	620(4)	28(1)
C(9)	1298(6)	4017(6)	700(5)	43(2)
C(10)	481(6)	4086(6)	1565(5)	47(2)
C(11)	980(5)	3677(5)	2362(4)	34(1)
C(12)	2316(5)	3185(5)	2315(4)	25(1)
C(13)	3110(5)	3105(4)	1434(4)	24(1)
C(14)	2956(7)	3463(7)	-1058(5)	62(2)
C(15)	4189(8)	4532(6)	-655(5)	62(2)
C(16)	7253(5)	-1265(5)	2395(4)	24(1)
C(17)	8543(5)	-1782(5)	2026(4)	33(1)
C(18)	9028(6)	-3040(6)	2314(5)	39(2)
C(19)	8250(6)	-3790(5)	2952(4)	37(1)
C(20)	6994(6)	-3274(5)	3321(4)	37(1)
C(21)	6501(5)	-2024(5)	3051(4)	27(1)
C(22)	8053(5)	926(5)	1771(4)	26(1)
C(23)	8487(5)	1597(6)	869(4)	39(2)
C(24)	9700(6)	1872(7)	628(5)	46(2)
C(25)	10444(6)	1468(6)	1300(5)	46(2)
C(26)	9986(6)	817(6)	2205(5)	41(2)
C(27)	8796(5)	554(5)	2450(4)	33(1)
		188		

Table S2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for mo_dm15772_0m.U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	1572(5)	2477(5)	4359(4)	26(1)
C(29)	1319(5)	1340(5)	4673(4)	30(1)
C(30)	272(6)	1106(6)	5405(4)	35(1)
C(31)	-507(5)	1983(5)	5839(4)	31(1)
C(32)	-247(6)	3105(6)	5532(5)	50(2)
C(33)	788(6)	3363(5)	4792(5)	42(2)
C(34)	3185(4)	4174(5)	3359(4)	23(1)
C(35)	2922(5)	5232(5)	2651(4)	30(1)
C(36)	3147(6)	6300(6)	2649(4)	38(1)
C(37)	3605(5)	6312(6)	3371(5)	38(2)
C(38)	3828(5)	5267(6)	4105(5)	39(2)
C(39)	3622(5)	4197(5)	4103(4)	32(1)
C(40)	5863(4)	1922(5)	3483(4)	21(1)
C(41)	6355(5)	2909(5)	2874(4)	25(1)
C(42)	7340(6)	2938(5)	3944(5)	36(1)
C(43)	6895(5)	1974(5)	4601(4)	33(1)
C(44)	6138(5)	1449(5)	4373(4)	24(1)

Pd(1)-Br(1)	2.5605(7)
Pd(1)-P(1)	2.2982(14)
Pd(1)-P(2)	2.3059(14)
Pd(1)-C(40)	2.010(5)
P(1)-C(2)	1.835(5)
P(1)-C(16)	1.824(5)
P(1)-C(22)	1.818(5)
P(2)-C(12)	1.820(5)
P(2)-C(28)	1.830(5)
P(2)-C(34)	1.827(5)
O(1)-C(1)	1.398(6)
O(1)-C(13)	1.379(6)
N(1)-C(41)	1.337(7)
N(1)-C(42)	1.326(7)
C(1)-C(2)	1.390(7)
C(1)-C(6)	1.391(7)
C(2)-C(3)	1.391(7)
C(3)-H(3)	0.9500
C(3)-C(4)	1.375(7)
C(4)-H(4)	0.9500
C(4)-C(5)	1.392(7)
C(5)-H(5)	0.9500
C(5)-C(6)	1.372(7)
C(6)-C(7)	1.509(7)
C(7)-C(8)	1.528(8)
C(7)-C(14)	1.526(8)
C(7)-C(15)	1.530(9)
C(8)-C(9)	1.379(8)
C(8)-C(13)	1.390(7)
C(9)-H(9)	0.9500
C(9)-C(10)	1.384(9)
C(10)-H(10)	0.9500
C(10)-C(11)	1.372(8)
C(11)-H(11)	0.9500
C(11)-C(12)	1.396(7)
C(12)-C(13)	1.398(7)

Table S3. Bond lengths [Å] and angles [] for mo_dm15772_0m.

C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1.393(7)
C(16)-C(21)	1.377(7)
C(17)-H(17)	0.9500
C(17)-C(18)	1.387(8)
C(18)-H(18)	0.9500
C(18)-C(19)	1.380(9)
C(19)-H(19)	0.9500
C(19)-C(20)	1.364(8)
C(20)-H(20)	0.9500
C(20)-C(21)	1.378(8)
C(21)-H(21)	0.9500
C(22)-C(23)	1.373(8)
C(22)-C(27)	1.392(7)
C(23)-H(23)	0.9500
C(23)-C(24)	1.403(8)
C(24)-H(24)	0.9500
C(24)-C(25)	1.380(9)
C(25)-H(25)	0.9500
C(25)-C(26)	1.374(9)
C(26)-H(26)	0.9500
C(26)-C(27)	1.372(8)
C(27)-H(27)	0.9500
C(28)-C(29)	1.377(8)
C(28)-C(33)	1.376(7)
C(29)-H(29)	0.9500
C(29)-C(30)	1.381(8)
C(30)-H(30)	0.9500
C(30)-C(31)	1.367(8)
C(31)-H(31)	0.9500
C(31)-C(32)	1.365(8)
C(32)-H(32)	0.9500
C(32)-C(33)	1.385(8)

C(33)-H(33)	0.9500
C(34)-C(35)	1.369(8)
C(34)-C(39)	1.392(7)
C(35)-H(35)	0.9500
C(35)-C(36)	1.391(8)
C(36)-H(36)	0.9500
C(36)-C(37)	1.369(9)
C(37)-H(37)	0.9500
C(37)-C(38)	1.376(9)
C(38)-H(38)	0.9500
C(38)-C(39)	1.386(8)
C(39)-H(39)	0.9500
C(40)-C(41)	1.389(7)
C(40)-C(44)	1.379(7)
C(41)-H(41)	0.9500
C(42)-H(42)	0.9500
C(42)-C(43)	1.366(8)
C(43)-H(43)	0.9500
C(43)-C(44)	1.388(7)
C(44)-H(44)	0.9500
P(1)-Pd(1)-Br(1)	90.38(4)
P(1)-Pd(1)-P(2)	149.77(5)
P(2)-Pd(1)-Br(1)	91.24(4)
C(40)-Pd(1)-Br(1)	173.67(15)
C(40)-Pd(1)-P(1)	90.35(14)
C(40)-Pd(1)-P(2)	91.30(14)
C(2)-P(1)-Pd(1)	104.33(16)
C(16)-P(1)-Pd(1)	119.20(18)
C(16)-P(1)-C(2)	107.6(2)
C(22)-P(1)-Pd(1)	120.31(18)
C(22)-P(1)-C(2)	102.5(2)
C(22)-P(1)-C(16)	101.3(2)
C(12)-P(2)-Pd(1)	102.70(17)
C(12)-P(2)-C(28)	105.0(2)
C(12)-P(2)-C(34)	102.2(2)
C(28)-P(2)-Pd(1)	122.11(18)
C(34)-P(2)-Pd(1)	118.37(16)

C(34)-P(2)-C(28)	103.9(2)
C(13)-O(1)-C(1)	116.1(4)
C(42)-N(1)-C(41)	116.2(5)
C(2)-C(1)-O(1)	118.5(4)
C(2)-C(1)-C(6)	122.7(5)
C(6)-C(1)-O(1)	118.7(4)
C(1)-C(2)-P(1)	122.9(4)
C(1)-C(2)-C(3)	117.4(5)
C(3)-C(2)-P(1)	119.7(4)
C(2)-C(3)-H(3)	119.4
C(4)-C(3)-C(2)	121.2(5)
C(4)-C(3)-H(3)	119.4
C(3)-C(4)-H(4)	120.2
C(3)-C(4)-C(5)	119.6(5)
C(5)-C(4)-H(4)	120.2
C(4)-C(5)-H(5)	119.3
C(6)-C(5)-C(4)	121.3(5)
C(6)-C(5)-H(5)	119.3
C(1)-C(6)-C(7)	118.1(5)
C(5)-C(6)-C(1)	117.7(5)
C(5)-C(6)-C(7)	124.0(5)
C(6)-C(7)-C(8)	108.3(4)
C(6)-C(7)-C(14)	111.1(5)
C(6)-C(7)-C(15)	109.2(5)
C(8)-C(7)-C(15)	107.3(5)
C(14)-C(7)-C(8)	111.8(5)
C(14)-C(7)-C(15)	109.0(6)
C(9)-C(8)-C(7)	125.0(5)
C(9)-C(8)-C(13)	117.6(5)
C(13)-C(8)-C(7)	117.3(5)
C(8)-C(9)-H(9)	119.3
C(8)-C(9)-C(10)	121.3(5)
C(10)-C(9)-H(9)	119.3
C(9)-C(10)-H(10)	119.9
C(11)-C(10)-C(9)	120.3(5)
C(11)-C(10)-H(10)	119.9
C(10)-C(11)-H(11)	119.7
C(10)-C(11)-C(12)	120.7(6)

C(12)-C(11)-H(11)	119.7
C(11)-C(12)-P(2)	119.4(4)
C(11)-C(12)-C(13)	117.6(5)
C(13)-C(12)-P(2)	122.9(4)
O(1)-C(13)-C(8)	119.6(5)
O(1)-C(13)-C(12)	117.8(4)
C(8)-C(13)-C(12)	122.6(5)
C(7)-C(14)-H(14A)	109.5
C(7)-C(14)-H(14B)	109.5
C(7)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(7)-C(15)-H(15A)	109.5
C(7)-C(15)-H(15B)	109.5
C(7)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(17)-C(16)-P(1)	121.8(4)
C(21)-C(16)-P(1)	119.4(4)
C(21)-C(16)-C(17)	118.6(5)
C(16)-C(17)-H(17)	120.3
C(18)-C(17)-C(16)	119.5(6)
C(18)-C(17)-H(17)	120.3
C(17)-C(18)-H(18)	119.4
C(19)-C(18)-C(17)	121.1(5)
C(19)-C(18)-H(18)	119.4
C(18)-C(19)-H(19)	120.5
C(20)-C(19)-C(18)	119.0(5)
C(20)-C(19)-H(19)	120.5
C(19)-C(20)-H(20)	119.7
C(19)-C(20)-C(21)	120.6(6)
C(21)-C(20)-H(20)	119.7
C(16)-C(21)-C(20)	121.2(5)
C(16)-C(21)-H(21)	119.4
C(20)-C(21)-H(21)	119.4
C(23)-C(22)-P(1)	122.6(4)

C(23)-C(22)-C(27)	120.0(5)
C(27)-C(22)-P(1)	117.2(4)
C(22)-C(23)-H(23)	120.1
C(22)-C(23)-C(24)	119.7(6)
C(24)-C(23)-H(23)	120.1
C(23)-C(24)-H(24)	120.2
C(25)-C(24)-C(23)	119.7(6)
C(25)-C(24)-H(24)	120.2
C(24)-C(25)-H(25)	120.0
C(26)-C(25)-C(24)	120.0(6)
C(26)-C(25)-H(25)	120.0
C(25)-C(26)-H(26)	119.6
C(27)-C(26)-C(25)	120.8(6)
C(27)-C(26)-H(26)	119.6
C(22)-C(27)-H(27)	120.1
C(26)-C(27)-C(22)	119.8(6)
C(26)-C(27)-H(27)	120.1
C(29)-C(28)-P(2)	117.8(4)
C(33)-C(28)-P(2)	122.8(4)
C(33)-C(28)-C(29)	119.4(5)
C(28)-C(29)-H(29)	120.0
C(28)-C(29)-C(30)	119.9(5)
C(30)-C(29)-H(29)	120.0
C(29)-C(30)-H(30)	119.6
C(31)-C(30)-C(29)	120.9(5)
C(31)-C(30)-H(30)	119.6
C(30)-C(31)-H(31)	120.4
C(32)-C(31)-C(30)	119.1(5)
C(32)-C(31)-H(31)	120.4
C(31)-C(32)-H(32)	119.6
C(31)-C(32)-C(33)	120.9(6)
C(33)-C(32)-H(32)	119.6
C(28)-C(33)-C(32)	119.8(6)
C(28)-C(33)-H(33)	120.1
C(32)-C(33)-H(33)	120.1
C(35)-C(34)-P(2)	122.4(4)
C(35)-C(34)-C(39)	118.9(5)
C(39)-C(34)-P(2)	118.7(4)

C(34)-C(35)-H(35)	119.6
C(34)-C(35)-C(36)	120.7(5)
C(36)-C(35)-H(35)	119.6
C(35)-C(36)-H(36)	119.9
C(37)-C(36)-C(35)	120.2(6)
C(37)-C(36)-H(36)	119.9
C(36)-C(37)-H(37)	120.1
C(36)-C(37)-C(38)	119.7(5)
C(38)-C(37)-H(37)	120.1
C(37)-C(38)-H(38)	119.9
C(37)-C(38)-C(39)	120.3(6)
C(39)-C(38)-H(38)	119.9
C(34)-C(39)-H(39)	119.9
C(38)-C(39)-C(34)	120.2(6)
C(38)-C(39)-H(39)	119.9
C(41)-C(40)-Pd(1)	122.8(4)
C(44)-C(40)-Pd(1)	119.9(4)
C(44)-C(40)-C(41)	117.4(5)
N(1)-C(41)-C(40)	124.7(5)
N(1)-C(41)-H(41)	117.6
C(40)-C(41)-H(41)	117.6
N(1)-C(42)-H(42)	118.1
N(1)-C(42)-C(43)	123.8(5)
C(43)-C(42)-H(42)	118.1
C(42)-C(43)-H(43)	120.3
C(42)-C(43)-C(44)	119.4(5)
C(44)-C(43)-H(43)	120.3
C(40)-C(44)-C(43)	118.5(5)
C(40)-C(44)-H(44)	120.8
C(43)-C(44)-H(44)	120.8

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pd(1)	17(1)	19(1)	21(1)	-8(1)	-5(1)	-2(1)
Br(1)	25(1)	29(1)	30(1)	-12(1)	-6(1)	-7(1)
P(1)	16(1)	22(1)	23(1)	-8(1)	-6(1)	-2(1)
P(2)	20(1)	19(1)	23(1)	-9(1)	-5(1)	-2(1)
O(1)	20(2)	22(2)	20(2)	-10(2)	-5(1)	-4(1)
N(1)	33(3)	28(3)	38(3)	-8(2)	-7(2)	-10(2)
C(1)	16(2)	25(3)	24(3)	-11(2)	-2(2)	-8(2)
C(2)	20(2)	27(3)	21(3)	-8(2)	-1(2)	-9(2)
C(3)	22(3)	29(3)	24(3)	-6(2)	-3(2)	-9(2)
C(4)	28(3)	29(3)	25(3)	-12(2)	0(2)	-9(2)
C(5)	31(3)	23(3)	23(3)	-2(2)	-9(2)	-14(2)
C(6)	21(2)	18(3)	29(3)	-2(2)	-9(2)	-7(2)
C(7)	50(4)	21(3)	24(3)	-5(2)	-20(3)	6(3)
C(8)	34(3)	22(3)	31(3)	-10(2)	-14(2)	-1(2)
C(9)	43(4)	46(4)	45(4)	-24(3)	-32(3)	17(3)
C(10)	28(3)	57(4)	58(4)	-32(4)	-24(3)	18(3)
C(11)	27(3)	34(3)	40(3)	-19(3)	-10(3)	6(2)
C(12)	28(3)	19(3)	30(3)	-8(2)	-16(2)	0(2)
C(13)	28(3)	13(2)	31(3)	-9(2)	-14(2)	5(2)
C(14)	59(5)	75(5)	54(5)	-40(4)	-39(4)	30(4)
C(15)	94(6)	25(3)	41(4)	-3(3)	4(4)	-6(4)
C(16)	24(3)	26(3)	25(3)	-13(2)	-11(2)	1(2)
C(17)	25(3)	37(3)	34(3)	-15(3)	-7(2)	-1(3)
C(18)	24(3)	37(4)	51(4)	-20(3)	-13(3)	9(3)
C(19)	42(4)	25(3)	39(3)	-11(3)	-16(3)	7(3)
C(20)	44(4)	26(3)	32(3)	-2(3)	-6(3)	-9(3)
C(21)	29(3)	23(3)	23(3)	-7(2)	-4(2)	-1(2)
C(22)	20(3)	27(3)	34(3)	-14(2)	-2(2)	-5(2)
C(23)	29(3)	56(4)	34(3)	-15(3)	-5(2)	-13(3)
C(24)	33(3)	64(5)	41(4)	-13(3)	8(3)	-29(3)
C(25)	23(3)	50(4)	64(5)	-18(4)	-2(3)	-14(3)
C(26)	27(3)	45(4)	59(4)	-15(3)	-20(3)	-8(3)
C(27)	26(3)	38(3)	34(3)	-9(3)	-7(2)	-9(3)

Table S4. Anisotropic displacement parameters (Å²x 10³) for mo_dm15772_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(28)	21(3)	25(3)	33(3)	-10(2)	-7(2)	-4(2)
C(29)	33(3)	29(3)	29(3)	-16(2)	-2(2)	-5(2)
C(30)	43(3)	33(3)	33(3)	-14(3)	4(3)	-20(3)
C(31)	23(3)	35(3)	35(3)	-14(3)	1(2)	-10(2)
C(32)	47(4)	30(3)	66(5)	-26(3)	18(3)	-14(3)
C(33)	38(3)	22(3)	56(4)	-15(3)	12(3)	-10(3)
C(34)	14(2)	23(3)	30(3)	-15(2)	2(2)	-2(2)
C(35)	27(3)	28(3)	33(3)	-9(3)	0(2)	-11(2)
C(36)	40(3)	29(3)	40(4)	-6(3)	5(3)	-17(3)
C(37)	23(3)	35(3)	60(4)	-26(3)	7(3)	-13(3)
C(38)	29(3)	43(4)	59(4)	-36(3)	-8(3)	-5(3)
C(39)	28(3)	32(3)	38(3)	-15(3)	-10(2)	0(2)
C(40)	15(2)	23(3)	24(3)	-11(2)	-7(2)	2(2)
C(41)	22(3)	24(3)	28(3)	-7(2)	-5(2)	-6(2)
C(42)	37(3)	36(3)	49(4)	-16(3)	-16(3)	-17(3)
C(43)	34(3)	37(3)	35(3)	-12(3)	-18(3)	-7(3)
C(44)	25(3)	24(3)	27(3)	-9(2)	-5(2)	-7(2)

	Х	У	Z	U(eq)
H(3)	7421	-455	457	30
H(4)	6808	135	-977	32
H(5)	5050	1813	-1308	29
H(9)	942	4328	151	52
H(10)	-430	4417	1606	56
H(11)	412	3731	2952	41
H(14A)	3625	3326	-1617	94
H(14B)	2348	4263	-1233	94
H(14C)	2480	2822	-807	94
H(15A)	4649	4490	-191	93
H(15B)	3492	5287	-735	93
H(15C)	4802	4527	-1262	93
H(17)	9086	-1277	1580	39
H(18)	9911	-3392	2069	46
H(19)	8583	-4652	3131	44
H(20)	6454	-3780	3769	44
H(21)	5628	-1680	3321	32
H(23)	7969	1874	410	46
H(24)	10007	2334	5	55
H(25)	11272	1641	1138	55
H(26)	10499	546	2666	49
H(27)	8481	118	3081	39
H(29)	1865	718	4388	36
H(30)	90	326	5610	42
H(31)	-1220	1813	6347	37
H(32)	-784	3718	5831	60
H(33)	957	4149	4583	51
H(35)	2582	5237	2156	36
H(36)	2982	7023	2146	46
H(37)	3768	7040	3366	45
H(38)	4126	5278	4615	47
H(39)	3778	3478	4611	39
		199		

Table S5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx\ 10\ ^3) for mo_dm15772_0m.

H(41)	6164	3240	2261	30	
H(42)	7867	3277	4110	43	
H(43)	7102	1666	5208	39	
H(44)	5817	779	4819	29	

Pd(1)-P(1)-C(2)-C(1)	23.9(5)
Pd(1)-P(1)-C(2)-C(3)	-157.3(4)
Pd(1)-P(1)-C(16)-C(17)	-157.6(4)
Pd(1)-P(1)-C(16)-C(21)	17.1(5)
Pd(1)-P(1)-C(22)-C(23)	-111.5(5)
Pd(1)-P(1)-C(22)-C(27)	73.2(5)
Pd(1)-P(2)-C(12)-C(11)	151.5(4)
Pd(1)-P(2)-C(12)-C(13)	-31.1(5)
Pd(1)-P(2)-C(28)-C(29)	-30.2(5)
Pd(1)-P(2)-C(28)-C(33)	149.7(4)
Pd(1)-P(2)-C(34)-C(35)	110.2(4)
Pd(1)-P(2)-C(34)-C(39)	-70.9(4)
Pd(1)-C(40)-C(41)-N(1)	180.0(4)
Pd(1)-C(40)-C(44)-C(43)	179.6(4)
P(1)-C(2)-C(3)-C(4)	179.9(4)
P(1)-C(16)-C(17)-C(18)	175.7(4)
P(1)-C(16)-C(21)-C(20)	-176.7(4)
P(1)-C(22)-C(23)-C(24)	-173.1(5)
P(1)-C(22)-C(27)-C(26)	172.8(5)
P(2)-C(12)-C(13)-O(1)	3.8(7)
P(2)-C(12)-C(13)-C(8)	-176.6(4)
P(2)-C(28)-C(29)-C(30)	-178.9(4)
P(2)-C(28)-C(33)-C(32)	179.8(5)
P(2)-C(34)-C(35)-C(36)	-178.0(4)
P(2)-C(34)-C(39)-C(38)	178.8(4)
O(1)-C(1)-C(2)-P(1)	1.5(6)
O(1)-C(1)-C(2)-C(3)	-177.3(4)
O(1)-C(1)-C(6)-C(5)	178.6(4)
O(1)-C(1)-C(6)-C(7)	1.8(7)
N(1)-C(42)-C(43)-C(44)	0.9(9)
C(1)-O(1)-C(13)-C(8)	-35.0(7)
C(1)-O(1)-C(13)-C(12)	144.6(5)
C(1)-C(2)-C(3)-C(4)	-1.2(7)
C(1)-C(6)-C(7)-C(8)	-36.4(7)
C(1)-C(6)-C(7)-C(14)	-159.6(5)
C(1)-C(6)-C(7)-C(15)	80.1(6)

 Table S6. Torsion angles [°] for mo_dm15772_0m.

C(2)-P(1)-C(16)-C(17)	84.1(5)
C(2)-P(1)-C(16)-C(21)	-101.2(4)
C(2)-P(1)-C(22)-C(23)	3.5(5)
C(2)-P(1)-C(22)-C(27)	-171.7(4)
C(2)-C(1)-C(6)-C(5)	-0.2(7)
C(2)-C(1)-C(6)-C(7)	-177.0(5)
C(2)-C(3)-C(4)-C(5)	-0.4(8)
C(3)-C(4)-C(5)-C(6)	1.8(8)
C(4)-C(5)-C(6)-C(1)	-1.5(7)
C(4)-C(5)-C(6)-C(7)	175.1(5)
C(5)-C(6)-C(7)-C(8)	147.0(5)
C(5)-C(6)-C(7)-C(14)	23.9(8)
C(5)-C(6)-C(7)-C(15)	-96.4(6)
C(6)-C(1)-C(2)-P(1)	-179.7(4)
C(6)-C(1)-C(2)-C(3)	1.6(7)
C(6)-C(7)-C(8)-C(9)	-147.0(6)
C(6)-C(7)-C(8)-C(13)	37.4(7)
C(7)-C(8)-C(9)-C(10)	-177.9(6)
C(7)-C(8)-C(13)-O(1)	-3.6(7)
C(7)-C(8)-C(13)-C(12)	176.9(5)
C(8)-C(9)-C(10)-C(11)	2.0(11)
C(9)-C(8)-C(13)-O(1)	-179.5(5)
C(9)-C(8)-C(13)-C(12)	0.9(8)
C(9)-C(10)-C(11)-C(12)	-0.2(10)
C(10)-C(11)-C(12)-P(2)	176.3(5)
C(10)-C(11)-C(12)-C(13)	-1.2(9)
C(11)-C(12)-C(13)-O(1)	-178.8(5)
C(11)-C(12)-C(13)-C(8)	0.8(8)
C(12)-P(2)-C(28)-C(29)	85.8(4)
C(12)-P(2)-C(28)-C(33)	-94.4(5)
C(12)-P(2)-C(34)-C(35)	-1.6(5)
C(12)-P(2)-C(34)-C(39)	177.3(4)
C(13)-O(1)-C(1)-C(2)	-145.1(5)
C(13)-O(1)-C(1)-C(6)	36.0(6)
C(13)-C(8)-C(9)-C(10)	-2.3(10)
C(14)-C(7)-C(8)-C(9)	-24.2(8)
C(14)-C(7)-C(8)-C(13)	160.1(5)
C(15)-C(7)-C(8)-C(9)	95.2(7)

C(15)-C(7)-C(8)-C(13)	-80.4(6)
C(16)-P(1)-C(2)-C(1)	151.4(4)
C(16)-P(1)-C(2)-C(3)	-29.8(5)
C(16)-P(1)-C(22)-C(23)	114.6(5)
C(16)-P(1)-C(22)-C(27)	-60.6(5)
C(16)-C(17)-C(18)-C(19)	0.9(9)
C(17)-C(16)-C(21)-C(20)	-1.8(8)
C(17)-C(18)-C(19)-C(20)	-1.9(9)
C(18)-C(19)-C(20)-C(21)	1.1(9)
C(19)-C(20)-C(21)-C(16)	0.8(9)
C(21)-C(16)-C(17)-C(18)	1.0(8)
C(22)-P(1)-C(2)-C(1)	-102.3(4)
C(22)-P(1)-C(2)-C(3)	76.5(4)
C(22)-P(1)-C(16)-C(17)	-23.0(5)
C(22)-P(1)-C(16)-C(21)	151.7(4)
C(22)-C(23)-C(24)-C(25)	-0.2(10)
C(23)-C(22)-C(27)-C(26)	-2.6(9)
C(23)-C(24)-C(25)-C(26)	-1.0(10)
C(24)-C(25)-C(26)-C(27)	0.4(10)
C(25)-C(26)-C(27)-C(22)	1.4(10)
C(27)-C(22)-C(23)-C(24)	2.0(9)
C(28)-P(2)-C(12)-C(11)	22.9(5)
C(28)-P(2)-C(12)-C(13)	-159.8(4)
C(28)-P(2)-C(34)-C(35)	-110.7(4)
C(28)-P(2)-C(34)-C(39)	68.2(4)
C(28)-C(29)-C(30)-C(31)	-1.4(9)
C(29)-C(28)-C(33)-C(32)	-0.4(9)
C(29)-C(30)-C(31)-C(32)	0.7(9)
C(30)-C(31)-C(32)-C(33)	0.1(10)
C(31)-C(32)-C(33)-C(28)	-0.3(11)
C(33)-C(28)-C(29)-C(30)	1.2(8)
C(34)-P(2)-C(12)-C(11)	-85.3(5)
C(34)-P(2)-C(12)-C(13)	92.0(5)
C(34)-P(2)-C(28)-C(29)	-167.3(4)
C(34)-P(2)-C(28)-C(33)	12.5(5)
C(34)-C(35)-C(36)-C(37)	-1.7(8)
C(35)-C(34)-C(39)-C(38)	-2.3(8)
C(35)-C(36)-C(37)-C(38)	-0.7(9)

C(36)-C(37)-C(38)-C(39)	1.6(9)
C(37)-C(38)-C(39)-C(34)	-0.1(8)
C(39)-C(34)-C(35)-C(36)	3.1(8)
C(41)-N(1)-C(42)-C(43)	-1.2(9)
C(41)-C(40)-C(44)-C(43)	-0.7(7)
C(42)-N(1)-C(41)-C(40)	0.6(8)
C(42)-C(43)-C(44)-C(40)	0.1(8)
C(44)-C(40)-C(41)-N(1)	0.3(8)

Symmetry transformations used to generate equivalent atoms: