Chemoselective Dehydrogenative Esterification of Aldehydes and Alcohols with a Dimeric Rhodium(II) Catalyst

Junjie Cheng^a Meijuan Zhu,^a Chao Wang, ^{*a} Junjun Li,^a Xue Jiang,^a Yawen Wei,^a Weijun Tang,^a Dong Xue,^a and Jianliang Xiao ^{*a,b}

 ^a Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China, Email: c.wang@snnu.edu.cn
 ^b Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK, Email: j.xiao@liverpool.ac.uk

Supporting Information

Contents

1. General information	S2
2. Evidence for high chemoselectivity in cross-coupling of aldehyde with	alcoholS3
3. Optimization of conditions for cross-coupling of alcohols	S4
4. Comparison of activity of in situ catalyst and isolated complexes	S5
5. Evidence supporting 16 as the real catalyst	
6. Chemoselectivity studies for 16	S6-S8
7. Procedure for isolation of metal complexes	
8. General procedure for the esterification reaction	S9-S11
9. Detection of hydrogen gas	S11
10. Analytic data of metal complexes	S12-S13
11. Analytic data of intermediates and products	S14-S34
12. References	S34-S35
13. Traces of ¹ H NMR, ¹³ C NMR, HRMS, IR, UV, and GC spectra	S36-S100
14. Crystallographic data for complex 11	S101-106

1. General information

Unless otherwise specified, the chemicals were obtained commercially and used without further purification. NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer with TMS as the internal standard. GC and GC-MS analysis was carried out on an Agilent 7890A GC with a HP-5 MS column (quartz capillary column, 30 m x 0.25 mm x 0.25 μ m) and an Agilent 5975C mass-selective detector (58 psi helium gas, 58 psi hydrogen gas, injector temperature 250 °C, FID detector, temperature 300 °C). The GC trace of hydrogen gas was recorded on a HT SP-6890 instrument with a 5 Å molecular sieves column (3 m x 4 mm) and a TCD detector. HRMS (ESI) data were recorded on a Bruker Apex IV FTMS spectrometer.

2. Evidence for high chemoselectivity in cross-coupling of aldehyde with alcohol

Figure S1. The crude ¹H NMR of a mixture resulting from reacting 0.5 mmol of 4-methylbenzaldehyde with 1.5 mmol MeOH (1,3,5-trimethoxybenzene as internal standard in CDCl₃). *The crude ¹H NMR showed that no 4-methylbenzylalcohol was observed in the reaction mixture*. Reaction conditions: 4-methylbenzaldehyde (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol), NaOAc (0.5 mmol), MeOH (1.5 mL), 90 °C, 12 h.

3. Optimisation of conditions for cross-coupling of alcohols

Table S1 The effect of base on 11 catalysed cross-coupling of alcohols

H ₃ C	1 mol% 11 + Me-OH	$ \begin{array}{c} $	O_CH ₃
Entry	Base	Equivalent	Yield (%)
1	Pyridine	1	0
2	DBU	1	0
3	Triethylamine	1	40
4	Diisopropylamine	1	44
5	NaOAc	1	22
6	NaOH	1	20
7	t-BuOK	1	44
8	NaHCO ₃	1	58
9	NaHCO ₃	0.5	70

Reaction conditions: 4-methylbenzaldehyde (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), base, 90 °C. Yields were determined by 1 H NMR with 1,3,5-trimethoxybenzene as internal standard.

4. Comparison of activity of in situ catalyst and isolated complexes

MeO	O H + Me-OH - DMe	Catalyst NaOAc 90 °C, under Ar	MeO OMe	O CH ₃
Entry	Catalys	it	Time (h)	Yield (%)
1	$[Cp*RhCl_2]_2 + 1$	tpy in situ	3	23
2	11		3	33
3	13		3	37
4	14		3	9
5	16		3	39

Table S2 Results obtained in a model reaction

Reaction conditions: aldehyde (0.5 mmol), NaOAc (0.5 mmol) (no NaOH added), MeOH (2 mL), under Ar atmosphere, 90 °C, substrate/Rh molar ratio = 50:1. Yields were determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Catalyst MeOH NaOAc (1 equiv), 90 °C 0₂N $O_2 N'$ Methyl group from the signals of 16 bridging acetate group of 16 17 Methoxyl group Mixture catalyzed from product with 16 Mixture catalyzed Methyl group with 11 from MeOH Mixture catalyzed with [Cp*RhCl₂]₂ + tpy [ppm]

5. Evidence supporting 16 as the real catalyst

Figure S2. The ¹H NMR traces of **16** and those of reaction mixtures using 50% of **16**, **11**, and $[Cp*RhCl_2]_2 + tpy$, respectively (D₂O as solvent). Reaction conditions: catalyst (0.025 mmol), *p*-nitrobenzaldehyde (0.05 mmol), NaOAc (0.05 mmol),

MeOH (1.5 mL), 90 °C, 6 h. After each reaction, MeOH was removed under reduced pressure and the mixture dissolved in D_2O for ¹H NMR measurement. The low intensity of the product peaks is due to its low solubility in D_2O .

6. Chemoselectivity studies for 16

Table S3 Chemoselectivity for 16 catalysed couplings

Reaction conditions: **A** or **B** (0.5 mmol), octan-1-ol (1.5 mmol, 6.4 mmol or 8 mmol), **16** (2 mol%), NaOAc (0.5 mmol), NaOH (5 mol%), under Ar atmosphere with an empty balloon, 90 °C, 24 h. Yields were determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard (0.2 mmol). ^{*a*} Yields based on octan-1-ol. ^{*b*} The mass balance for octan-1-ol was less than 100% when a relatively small amount of starting material was used, probably due to its evaporation.

7. Procedure for isolation of metal complexes

7.1 Formation of complex 13

[Cp*RhCl₂]₂ (0.062 g, 0.1 mmol) was placed in a flask. MeOH (8 mL) and 2,2':6',2"-tripyridine (0.046 g, 0.2 mmol) were added, and the mixture was stirred for 60 min at room temperature. The solvent was evaporated, and the product purified by flash chromatography using methylene chloride and methanol as eluent. Yield: 0.071 g, 70%. Single crystals of **11** were formed in a methanol solution of **13** at room temperature.

7.2 Isolation of complexes 11 and 14

 $[Cp*RhCl_2]_2$ (0.062 mg, 0.1 mmol) was placed in a flask. MeOH (8 mL) and 2,2':6',2"-tripyridine (0.046 g, 0.2 mmol) were added, and the mixture was refluxed for 6 h. After evaporation of solvent, the residue was washed with 30 mL of methylene chloride. The resulting solid was then dissolved in methanol. The insoluble deep orange solid was identified to be **11** (ca. 10% yield), whilst evaporation of the solvent from the methanol solution gave an orange solid of **8**. Yield: 0.047 g, 50%.

7.3 Preparation of 11 with a known method^[1]

A solution of $RhCl_3(H_2O)_3$ (0.253 g, 0.96 mmol) in EtOH (4 mL) was poured into a solution of 2,2':6',2"-tripyridine (0.224 g, 0.96 mmol) in 4 mL of EtOH. The dark orange mixture was heated under reflux for 2 h. After cooling to room temperature, the resulting yellow microcrystalline solid was filtered off, washed with EtOH and Et₂O sequentially, and then dried in vacuo. Yield: 0.425 g, 76%.

7.4 Isolation of complex 16^[2]

CH₃COOAg (0.05 g, 0.3 mmol) and **11** (0.066 g, 0.15 mmol) were refluxed in methanol (6 mL) for 12 h. After cooling to rt, the reaction mixture was filtered. The solvent of the filtrate was removed under reduced pressure, and the residue washed with 30 mL of methylene chloride. The resulting solid was dissolved in 50 mL of methanol and the insoluble solid removed by filtration. The methanol solution was

concentrated to 15 mL, to which were added 5 mL of methylene chloride and 20 mL of petroleum ether sequentially. The resulting red precipitate was collected by filtration and dried in vacuo. Yield: 0.030 g, 48%.

7.5 Preparation of [Rh(tpy)₂][PF₆]₃^[3]

[RhCl₃(tpy)] (0.022 g, 0.05 mmol) and 2,2':6',2"-tripyridine (0.012 g, 0.05 mmol) and were refluxed in ethanol-water (1:1, 7 mL) for 5 h. The reaction mixture was filtered, and NH₄PF₆ (0.025 g, 0.15 mmol) was added to the filtrate. The pink precipitate thus produced was isolated by filtration and washed sequentially with 1.5 mL of water, ethanol and diethyl ether. The resulting solid was dissolved in a minimum volume of acetonitrile and then precipitated by addition of diethyl ether, yielding [Rh(tpy)₂][PF₆]₃ in 70% yield (0.035 g). This complex has the same cation as **14**.

8. General procedure for the esterification reaction

8.1 General procedure for coupling of aldehydes with alcohols

Aldehyde (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), 2,2':6',2"-tripyridine (0.012 mmol), CH₃COONa (0.5 mmol), NaOH (0.0125 mmol), MeOH (2 mL) and a magnetic stir bar were placed in a Radleys Carousel tube. The mixture was bubbled with argon for 15 min and the tube was sealed and connected to an empty balloon. The mixture was then heated at 90 °C for 6-48 h. After cooling to room temperature, the mixture was extracted with methylene chloride (3 x 10 mL). The organic layers were washed with brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the product purified by flash chromatography using petroleum ether and ethyl acetate as eluent. The reactions of aldehydes with other alcohols were carried out with [Cp*RhCl₂]₂ (0.010 mmol), 2,2':6',2"-tripyridine (0.024 mmol) and 1 mL of alcohol.

8.2 General procedure for cross-coupling of alcohols

A benzyl alcohol (0.5 mmol), 11 (0.005 mmol), NaHCO₃ (0.25 mmol), an aliphatic

alcohol (2 mL, but 1 mL for alcohols other than MeOH) and a magnetic stir bar were placed in a Radleys Carousel tube. The mixture was bubbled with argon for 15 min and the tube was sealed and connected to an empty balloon. The mixture was then heated at 90 °C for 12-48 h. After cooling to room temperature, the mixture was extracted with methylene chloride (3 x 10 mL). The organic layers were washed with brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the product purified by flash chromatography using petroleum ether and ethyl acetate as eluent.

9. Detection of hydrogen gas

In a Radleys Carousel tube, *p*-nitrobenzaldehyde (2 mmol), methanol (4 mL), $[Cp*RhCl_2]_2$ (2 mol%), tpy (4.8 mol%), and NaOAc (2 mmol) were stirred under a nitrogen atmosphere for 3 h at 90 °C. The head gas was collected by a gas-tight syringe and analyzed by GC. H₂ was detected (Figure S3).

Figure S3. Detection of hydrogen gas with GC. GC parameters: injection temperature = $120 \,^{\circ}$ C, column temperature = $70 \,^{\circ}$ C, detector temperature = $120 \,^{\circ}$ C. 5 Å molecular sieves column was used, and the carrier gas was N₂.

10. Analytic data of metal complexes

5:^[1] deep orange solid; ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 9.28 (d, J = 5.6 Hz, 2H), 8.82 (d, J = 8.0 Hz, 2H), 8.78 (d, J = 8.0 Hz, 2H), 8.55 (t, J = 8.0 Hz, 1H), 8.39 (t, J = 8.0 Hz, 2H), 7.94-7.98 (m, 2H). ¹³C NMR (DMSO-d₆, 100 MHz) δ (ppm): 157.2, 155.2, 153.2, 140.5, 140.3, 128.4, 125.1, 124.4.

13: red solid; ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.93 (d, *J* = 4.8 Hz, 2H), 8.87 (d, *J* = 8.0 Hz, 2H), 8.58 (d, *J* = 8.0 Hz, 2H), 8.44 (t, *J* = 8.0 Hz, 1H), 8.21 (td, *J* = 1.6, 8.0 Hz, 2H), 7.78-7.82 (m, 2H), 1.19 (s, 15H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 161.0, 156.8, 152.7, 142.2, 140.5, 128.3, 128.1, 127.1, 99.0, 8.62; HRMS (ESI) for C₂₅H₂₆ClN₃Rh[M+Cl]⁺: calc.: 506.0870; found: 506.0868.

14: orange solid; ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 9.17 (d, J = 8.0 Hz, 2H),

9.01 (t, J = 8.0 Hz, 1H), 8.92 (d, J = 8.0 Hz, 2H), 8.39 (td, J = 8.0, 1.2 Hz, 2H), 7.91 (d, J = 5.6 Hz, 2H), 7.60-7.64 (m, 2H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 158.5, 155.4, 153.8, 145.5, 144.2, 131.5, 129.0, 128.7; HRMS (ESI) for C₃₀H₂₂Cl₂N₆Rh [M+2Cl]⁺: calc.: 639.0338; found: 639.0348.

[[**Rh**(**tpy** $)_2][$ **PF** $_6]_3]:^{[3]} \text{ pink solid; }^1\text{H NMR (CD}_3\text{OD, 400 MHz) } \delta (ppm): 9.09 (d, J = 8.4 \text{ Hz}, 2\text{H}), 8.94-8.98 (m, 1\text{H}), 8.83 (d, J = 8.4 \text{ Hz}, 2\text{H}), 8.32-8.35 (m, 2\text{H}), 7.81 (d, J = 5.2 \text{ Hz}, 2\text{H}), 7.55-7.56 (m, 2\text{H}).$

16:^[2] red solid; ¹H NMR (D₂O, 400 MHz) δ (ppm): 8.14 (d, J = 5.6 Hz, 4H), 7.85-8.02 (m, 14H), 7.44 (t, J = 6.6 Hz, 4H), 2.72 (s, 3H). ¹³C NMR (D₂O, 100 MHz) δ (ppm): 192.3, 155.2, 154.7, 151.5, 140.2, 139.2, 129.1, 124.6, 123.8, 24.5; HRMS (ESI) for C₃₂H₂₅Cl₂N₆O₂Rh₂ [M]⁺: calc.: 800.9526; found: 800.9530; IR (in KBr, cm⁻¹): 1447 (V⁸ COO), 1546 (V^{as}, COO); UV-Vis (H₂O, nm): 230, 270, 315, 345.

11. Analytic data of intermediates and products

1-(Dimethoxymethyl)-4-methylbenzene: ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.34 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.37 (s, 1H), 3.33 (s, 6H), 2.36 (s, 3H).

1-(Dimethoxymethyl)-4-nitrobenzene: ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.21 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 5.46 (s, 1H), 3.33 (s, 6H).

¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.19 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 5.60 (s, 1H).

1,2,3,4-Tetramethyl-5-methylenecyclopenta-1,3-diene: ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 5.41 (s, 2H), 1.86 (s, 6H), 1.81 (s, 6H). MS (EI) for C₁₀H₁₄ [M]⁺: 134.

Methyl 4-methylbenzoate:^[4] Starting from aldehyde: substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 94% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 96% yield in 12 h; both yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.92 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.2, 143.5, 129.6, 129.1, 127.5, 51.9, 21.6; MS (EI) for C₉H₁₀O₂ [M]⁺: 150.

Methl 3-methylbenzoate:^[5] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 92% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 89% yield in 18 h; both yields determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.83-7.86 (m, 2H), 7.26-7.36 (m, 2H), 3.90 (s, 3H), 2.39 (s, 3H), ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.2, 137.1, 132.6, 129.1, 127.2, 125.6, 50.9, 20.2; MS (EI) for C₉H₁₀O₂ [M]⁺: 150.

Methyl 4-methylbenzoate:^[5] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 75% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 59% yield in 24 h; both yields determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.91-7.93 (m, 1H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1H), 7.23-7.27 (m, 2H), 3.89 (s, 3H), 2.60 (s, 3H);¹³C NMR (CDCl₃, 100

MHz) δ (ppm): 168.0, 140.1, 131.9, 131.6, 130.5, 129.5, 125.6, 51.7, 21.7; MS (EI) for C₉H₁₀O₂ [M]⁺: 150.

Methyl benzoate:^[4] Starting from aldehyde: substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 90% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 85% yield in 12 h; both yields determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.04 (d, *J* = 6.8 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.1, 132.9, 130.2, 129.6, 128.3, 52.1; MS (EI) for C₈H₈O₂ [M]⁺: 136.

Methyl 4-methoxybenzoate:^[4] Starting from aldehyde: substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 78 mg; 94% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 94% yield in 18 h; white solid; m.p. = 49-50 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.99 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.9, 163.3, 131.6, 122.6, 113.6, 55.4, 51.8; MS (EI) for C₉H₁₀O₃ [M]⁺: 166.

Methyl 3-methoxybenzoate:^[8] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 76 mg; 92% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 73% yield in 18 h; white solid; m.p. = 45-46 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.63 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.56 (q, *J* = 1.2 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.08-7.11(m, 1H), 3.91 (s, 3H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.0, 159.6, 131.5, 129.4, 122.0, 119.5, 114.0, 55.4, 52.2; MS (EI) for C₉H₁₀O₃ [M]⁺: 166.

Methyl 3,4-dimethoxybenzoate:^[4] Starting from aldehyde: substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 93 mg; 95% yield in 6 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 96% yield in 18 h; white solid; m.p. = 55-56 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 3.93 (s, 3H), 3.927 (s, 3H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.9, 153.0, 148.6, 123.6, 122.7, 112.0, 110.3, 56.0, 52.0; MS (EI) for C₁₀H₁₂O₄ [M]⁺: 196.

Methyl 2,4,5-trimethoxybenzoate:^[10] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 105 mg; 93% yield in 6 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 88% yield in 18 h; white solid; m.p. = 89-90 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.40 (s, 1H), 6.52 (s, 1H), 3.93 (s, 3H) 3.90 (s, 3H), 3.86 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.1, 155.7, 153.6, 142.6, 114.5, 110.7, 97.8, 57.1, 56.4, 56.0, 51.8; MS (EI) for $C_{11}H_{14}O_5$ [M]⁺: 226.

Methyl 4-hydroxybenzoate:^[4] Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 65 mg; 86% yield in 24 h; white solid; m.p = 115-116 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.95 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.4, 160.2, 132.0, 122.4, 115.3, 52.1; MS (EI) for C₈H₈O₃ [M]⁺: 152.

Methyl 4-hydroxy-3-methoxybenzoate:^[4] Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 76 mg; 83% yield in 24 h; white solid; m.p. = 64-65 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.64 (dd, J = 8.0, 1.6 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.02, (s, 1H), 3.95 (s, 3H) 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.9, 150.0, 146.2, 124.2, 122.3, 114.1, 111.7, 56.1, 52.0; MS (EI) for $C_9H_{10}O_{34}$ [M]⁺: 182.

Methyl 4-(dimethylamino)benzoate:^[9] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 85 mg; 95% yield in 6 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **5** (0.005 mmol), NaHCO₃ (0.25 mmol); 94% yield in 24 h; white solid; m.p. = 101-102 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.91 (d, *J* = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 3.85, (s, 3H), 3.04 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.5, 153.3, 131.3, 117.0, 110.7, 51.5, 40.0; MS (EI) for C₁₀H₁₃NO₂ [M]⁺: 179.

Methyl 4-fluorobenzoate:^[5] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 90% yield in 24 h; Yield was determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.03-8.08 (m, 2H), 7.11 (t, J = 8.8 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.1, 165.8 (d, ¹ $J_{C-F} = 252.2$ Hz), 132.1 (d, ³ $J_{C-F} = 9.4$ Hz), 126.4 (d, ⁴ $J_{C-F} = 3.0$ Hz), 115.5 (d, ² $J_{C-F} = 21.9$ Hz), 52.2; MS (EI) for C₈H₇FO₂ [M]⁺: 154.

Methyl 2-fluorobenzoate:^[9] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 90% yield in 24 h; determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm):7.94 (td, J = 2.0, 7.6 Hz, 1H), 7.49-7.54 (m, 1H), 7.18-7.22 (m, 1H), 7.10-7.16 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 164.9 (d, ⁴ J_{C-F} = 3.6 Hz), 161.9 (d, ¹ J_{C-F} = 258.1 Hz), 134.4 (d, ³ J_{C-F} = 9.0 Hz), 132.1, 123.9 (d, ⁴ J_{C-F} = 4.0 Hz), 118.6 (d, ³ J_{C-F} = 9.9 Hz), 116.9 (d, ² J_{C-F} = 22.2 Hz), 52.3; MS (EI) for C₈H₇FO₂ [M]⁺: 154.

Methyl 4-chlorobenzoate:^[4] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 94% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2

mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 97% yield in 18 h; both yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.96 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.2, 138.3, 129.9, 127.7, 127.6, 51.2; MS (EI) for C₈H₇ClO₂ [M]⁺: 170.

Methyl 3-chlorobenzoate:^[8] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 92% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 85% yield in 24 h; both yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.99-8.00 (m, 1H), 7.89-7.92 (m, 1H), 7.50-7.52 (m, 1H), 7.34-7.38 (m, 1H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.8, 134.5, 132.9, 131.9, 129.7, 127.7, 52.4; MS (EI) for C₈H₇ClO₂ [M]⁺: 170.

Methyl 4-bromobenzoate:^[5] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 95 mg; 89% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.01 mmol), NaHCO₃ (0.5 mmol); 85% yield in 24 h; white solid; m.p. = 77-78 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.90 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 131.7, 131.1, 129.1, 128.0, 52.3; MS (EI) for C₈H₇BrO₂ [M]⁺: 213.

Methyl 3-bromobenzoate:^[4] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 93 mg; 87% yield in 24 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.17 (t, J = 1.6 Hz, 1H), 7.95-7.97 (m, 1H), 7.66-7.69 (m, 1H), 7.31 (t, J = 8.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.7, 135.8, 132.6, 132.0, 129.9, 128.1, 122.4, 52.4; MS (EI) for C₈H₇BrO₂ [M]⁺: 213.

Methyl 4-cyanobenzoate:^[6] Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 72 mg; 90% yield in 24 h; white solid; m.p. = 61-62 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.14 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 3.96 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.4, 134.0, 132.2, 130.1, 117.9, 116.4, 52.7; MS (EI) for C₉H_{7N}O₂ [M]⁺: 161.

Dimethyl terephthalate:^[7] Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 89 mg; 92% yield in 12 h; 85% yield in 24 h starting from terephthalaldehyde; white solid; m.p. = 134-135 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.1 (s, 4H), 3.95 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.3, 133.9, 129.6, 52.4; MS (EI) for C₁₀H₁₀O₄ [M]⁺: 194.

Methyl 4-nitrobenzoate:^[4] Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOAc (0.5 mmol); 83 mg; 92% yield in 6 h; white solid; m.p. = 87-88 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.29 (d, *J* = 9.2 Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 2H), 3.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.2, 150.6, 135.5, 130.7, 123.5, 52.8; HRMS (ESI) for C₈H₇NO₄ [M+Na]⁺: calc.: 204.0273; found: 204.0269.

Methyl 3-nitrobenzoate:^[7] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOAc (0.5 mmol); 83 mg; 91% yield in 6 h; white solid; m.p. = 72-73 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.86-8.87 (m, 1H), 8.40-8.43 (m, 1H), 8.35-8.38 (m, 1H), 7.66 (t, J = 8.0 Hz, 1H), 3.99 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.0, 148.3, 135.3, 131.9, 129.6, 127.4, 124.6, 52.8; MS (EI) for C₈H₇NO₄ [M]⁺: 181.

Methyl 2-naphthpate:^[6] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 74 mg; 80% yield in 12 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 89% yield in 48 h; white solid; m.p. = 72-73 $^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.62 (s, 1H), 8.07 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.53-7.62 (m, 2H), 3.99 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.3, 135.5, 132.5, 131.1, 129.4, 128.23, 128.15, 127.8, 127.4, 126.6, 125.2, 52.2; MS (EI) for C₁₂H₁₀O₂ [M]⁺: 186.

Methyl 3a¹, 5a¹-dihydropyrene-1-carboxylate: Aldehyde substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 126 mg; 96% yield in 12 h; white solid; m.p. = 79-80 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 9.27 (d, *J* = 9.6 Hz, 1H), 8.63 (d, *J* = 8.0 Hz, 1H), 8.23-8.28 (m, 3H), 8.16-8.19 (m, 2H), 8.04-8.09 (m, 2H), 4.11 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 168.5, 134.3, 131.1, 131.0, 130.4, 129.6, 129.5, 128.4, 127.2, 126.32, 126.30, 126.2, 124.92, 124.86, 124.2, 124.1, 123.5, 52.3; HRMS (ESI) for C₁₈H₁₄O₂ [M+Na]⁺: calc.: 283.0735; found: 283.0755.

Methyl cinnamate:^[4] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 71 mg; 88% yield in 24 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.70 (d, *J* = 16 Hz, 1H), 7.51-7.54 (m, 2H), 7.37-7.39 (m, 3H), 6.45 (d, *J* = 16 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.4, 144.9, 134.4, 130.3, 128.9, 128.1, 117.8, 51.7; MS (EI) for C₁₀H₁₀O₂ [M]⁺: 162.

(E)-methyl 3-(4-methoxyphenyl)acrylate:^[19] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 77 mg; 80% yield in 24 h; white solid; m.p. = 81-82 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.65 (d, *J* = 16.0 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* =

8.8 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.8, 161.4, 144.5, 129.7, 127.1, 115.3, 114.3, 55.4, 51.6; MS (EI) for C₁₁H₁₂O₃ [M]⁺: 192.

(E)-methyl 3-(funan-2-yl)acrylate:^[18] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 85% yield in 24 h; yield was determined by NMR analysis; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.46 (d, *J* = 1.2 Hz, 1H), 7.42 (d, *J* = 15.6 Hz, 1H), 6.59 (d, *J* = 3.6 Hz, 1H), 6.45 (dd, *J* = 3.6, 1.6 Hz, 1H), 6.31 (d, *J* = 15.6 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.4, 150.8, 144.7, 131.1, 115.4, 114.8, 112.2, 51.6; MS (EI) for C₈H₈O₃ [M]⁺: 152.

Methyl cyclohexanecarboxylate:^[22] 75% yield in 24 h determined by GC analysis; colorless oil; MS (EI) for $C_8H_{14}O_2$ [M]⁺: Found: 142.

Methyl isonicotinate:^[13] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 87% yield in 24 h; determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.69 (d, J = 4.4 Hz, 2H), 7.75 (d, J = 4.4 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.3, 150.4, 137.1, 122.6, 52.5; MS (EI) for C₇H₇NO₂ [M]⁺: 137.

Methyl 1-methyl-1 N-pyrrole-2-carboxylate:^[14] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOH (0.024 mmol) and NaOAc (0.5 mmol); 75% yield in 48 h; yield was determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.94 (dd, J = 4.0, 2.4 Hz, 1H), 6.78 (t, J = 2.0 Hz, 1H), 6.11 (dd, J = 4.0, 2.4 Hz, 1H), 3.92 (s, 3H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 161.7, 129.4, 122.3, 117.7, 107.8, 50.9, 36.7; MS (EI) for C₇H₉NO₂ [M]⁺: 139.

Methyl funan-2-carboxylate:^[4] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 80% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 62% yield in 24 h; both yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.57 (s, 1H), 7.18 (d, *J* = 3.2 Hz, 1H), 6.51 (dd, *J* = 3.2, 1.6 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 159.1, 146.3, 144.6, 117.9, 111.8, 51.9; MS (EI) for C₆H₆O₃ [M]⁺: 126.

Methyl 5-(hydroxymethyl)furan-2-carboxylate:^[17] Starting from aldehyde: substrate (0.5 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 64 mg; 82% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.01 mmol), NaHCO₃ (0.25 mmol); 63% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.08 (d, *J* = 3.6 Hz,

1H), 6.37 (d, J = 3.2 Hz, 1H), 4.62 (s, 2H), 3.84 (s, 3H), 3.32 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 159.2, 158.6, 143.7, 118.9, 109.3, 57.3, 51.8; MS (EI) for C₇H₈O₄ [M]⁺: 156.

Methyl thiophene-2-carboxylate:^[5] Starting from aldehyde: substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 82% yield in 24 h; Starting from alcohol: RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 76% yield in 24 h; both yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.79 (dd, J = 4.0, 0.8 Hz, 1H), 7.54 (dd, J = 4.8, 0.8 Hz, 1H), 7.08-7.10 (m, 1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.5, 133.5, 133.4, 132.3, 127.7, 52.0; MS (EI) for C₆H₆O₂S [M]⁺: 142.

Methyl quinoline-2-carboxylate:^[14] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 75 mg; 80% yield in 24 h; white solid; m.p. = 77-78 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.32 (dd, J = 8.4, 1.6 Hz, 2H), 8.21 (d, J = 8.4 Hz, 1H), 7.90 (dd, J = 8.0, 1.2 Hz, 1H), 7.78-7.82 (m, 1H), 7.64-7.68 (m, 1H), 4.09 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.0, 147.9, 147.6, 137.3, 130.7, 130.3, 129.4, 128.7, 127.6, 121.0, 53.2; MS (EI) for C₁₁H₉NO₂ [M]⁺: 187.

Methyl 1-methyl-1N-indole-2-carboxylate:^[15] Aldehyde substrate (0.5 mmol),

[Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 91 mg; 96% yield in 24 h; white solid; m.p. = 90-91 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (d, J = 8.0 Hz, 1H), 7.34-7.41 (m, 2H), 7.30 (s, 1H), 7.14-7.18 (m, 1H), 4.09 (s, 3H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.7, 139.7, 127.7, 125.9, 125.0, 122.6, 120.6, 110.2, 51.6, 31.6; MS (EI) for C₁₁H₁₁NO₂ [M]⁺: 189.

Methyl benzo[*b*]**thiophene-2-carboxylate:**^[16] Aldehyde substrate (0.5 mmol), [Cp*RhCl₂]₂ (0.005 mmol), tpy (0.012 mmol), NaOH (0.012 mmol) and NaOAc (0.5 mmol); 91 mg; 95% yield in 24 h; white solid; m.p. = 65-66 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.07 (s, 1H), 7.86-7.89 (m, 2H), 7.44-7.48 (m, 1H), 7.39-7.43 (m, 1H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 163.3, 142.2, 138.7, 133.3, 130.6, 127.0, 125.6, 124.9, 122.8, 52.5; MS (EI) for C₁₀H₈O₂S [M]⁺: 192.

Ethyl 3,4-dimethoxybenzoate:^[20] : Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 79 mg; 75% yield in 48 h; white solid; m.p. = 35-36 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.69 (dd, J = 8.4, 1.6 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.93 (s, 6H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 152.9, 148.6, 123.5, 123.1, 112.0, 110.2, 60.8, 56.0, 14.4; MS (EI) for C₁₁H₁₄O₄ [M]⁺: 210.

Prpoyl 3,4-dimethoxybenzoate:^[20] Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 87 mg; 78% yield in 48 h; white solid; m.p. = 56-57 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.24 (t, J = 6.8 Hz, 2H), 3.92 (s, 6H), 1.73-1.82 (m, 2H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.3, 152.8, 148.5, 123.4, 123.0, 111.9, 110.1, 66.3, 55.9, 22.1, 10.4; MS (EI) for C₁₂H₁₆O₄ [M]⁺: 224.

Butyl 3,4-dimethoxybenzoate:^[20] Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 83 mg; 70% yield in 48 h; white solid; m.p. = 153-154 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.30 (t, J = 6.8 Hz, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 1.71-1.78 (m, 2H), 1.43-1.52 (m, 2H), 0.98 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 152.9, 148.6, 123.5, 123.1, 112.0, 110.2, 64.7, 56.0, 30.9, 19.3, 13.8; MS (EI) for C₁₃H₁₈O₄ [M]⁺: 238.

Penyl 3,4-dimethoxybenzoate:^[20] Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 102 mg; 82% yield in 24 h; white solid; m.p. = 39-40 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H), 4.29 (t, J = 6.4 Hz, 2H), 3.93 (s, 6 H), 1.73-1.80 (m, 2H), 1.36-1.44 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 152.9, 148.6, 123.4, 123.1, 112.0, 110.2, 64.9, 55.9, 28.4, 28.2, 22.3, 13.9; MS (EI) for C₁₄H₂₀O₄ [M]⁺: 252.

Dodecyl 3,4-dimethoxybenzoate:^[21] Aldehyde (0.5 mmol), alcohol (1 mL), $[Cp*RhCl_2]_2$ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 150 mg; 86% yield in 24 h; white solid; m.p. = 45-46 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.29 (t, J = 6.4 Hz, 2H), 3.93 (s, 6H), 1.72-1.79 (m, 2H), 1.39-1.45 (m, 2H), 1.20-1.39 (m, 16H), 0.88 (t, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 152.9, 148.6, 123.5, 123.1, 112.0, 110.2, 65.0, 56.0, 31.9, 29.65, 29.63, 29.58, 29.54, 29.34, 29.30, 28.8, 26.1, 22.7, 14.1; HRMS (ESI) for C₂₁H₃₄O₄ [M+Na]⁺: calc.: 373.2355; found: 373.2334.

Isopentyl 3,4-dimethoxybenzoate:^[20] Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 98 mg; 78% yield in 24 h; white solid; m.p. = 105-106 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.67 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.33 (t, J = 6.8 Hz, 2H), 3.933 (s, 3H), 3.930 (s, 3H), 1.74-1.84 (m, 1H), 1.66 (q, J = 6.8 Hz, 3H), 0.97 (d, J = 6.4 Hz, 6H), 0.97 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 152.9, 148.6, 123.1, 112.0, 110.2, 63.5, 56.0, 37.5, 25.3, 22.5: MS (EI) for C₁₄H₂₀O₄ [M]⁺: 252.

Cyclopropylmethyl 3,4-dimethoxybenzoate: Aldehyde (0.5 mmol), alcohol (1 mL),

[Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 39 mg; 33% yield in 48 h; white solid; m.p. = 44-45 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.71 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.56 (d, *J* = 1.6 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 4.13 (d, *J* = 7.2 Hz, 2H), 3.94 (s, 6H), 1.23-1.28 (m, 1H), 0.58-0.63 (m, 2H), 0.34-0.38 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 152.9, 148.6, 123.5, 123.1, 112.0, 110.2, 69.5, 56.0, 10.0, 3.3; HRMS (ESI) for C₁₃H₁₆O₄ [M+Na]⁺: calc.: 259.0946; found: 259.0937.

2-((Tert-butoxycarbonyl)amino)ethyl 3,4-dimethbenzoate: Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 81 mg; 50% yield in 48 h; white solid; m.p. = 90-91 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.84 (brs, 1H), 4.36 (t, *J* = 5.2 Hz, 2H), 3.939 (s, 3H), 3.935 (s, 3H), 3.52-3.53 (m, 2H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.3, 155.8, 153.2, 148.7, 123.7, 122.4, 112.1, 110.2, 79.6, 64.1, 56.0, 39.9, 28.3; HRMS (ESI) for C₁₆H₂₂NO₆ [M+Na]⁺: calc.: 348.1423; found: 348.1415.

4-Hydroxybutyl 3,4-dimethoxybenzoate: Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 94 mg; 74% yield in 48 h; white solid; m.p. = 41-42 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.69 (dd, J = 8.4, 1.6 Hz, 1H), 7.54 (d, J = 1.6 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.47 (t, J = 4.4 Hz, 2H), 3.93 (s, 3H), 3.927 (s, 3H), 3.83 (t, J = 4.4 Hz, 2H), 3.74 (s, 2H), 3.65 (t, J = 4.4 Hz, 2H), 2.19 (brs, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 153.1, 148.6, 123.7, 122.5, 112.0, 110.2, 72.4, 69.3, 63.9, 61.8,

56.0; MS (EI) for C₁₃H₁₈O₅ [M]⁺: 254.

2-(2-Hydroxyethoxy)ethyl 3,4-dimethoxybenzoate: Aldehyde (0.5 mmol), alcohol (1 mL), $[Cp*RhCl_2]_2$ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 101 mg; 75% yield in 48 h; white solid; m.p. = 43-44 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.34 (t, J = 6.4 Hz, 2H), 3.935 (s, 3H), 3.931 (s, 3H), 3.73 (t, J = 6.4 Hz, 2H), 1.83-1.90 (m, 2H), 1.69-1.76 (m, 2H), 1.44 (brs, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 152.9, 148.6, 123.5, 122.8, 111.9, 110.2, 64.6, 62.4, 56.0, 29.2, 25.3; MS (EI) for C₁₃H₁₈O₆ [M]⁺: 270.

4-Hydroxybutyl 4-(5-hydroxypentanoyl)benzoate: Aldehyde (0.5 mmol), alcohol (1 mL), [Cp*RhCl₂]₂ (0.01 mmol), tpy (0.024 mmol), NaOAc (0.5 mmol), NaOH (0.025 mmol); 106 mg; 72% yield in 48 h; white solid; m.p. = 67-68 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.066 (s, 2H), 8.064 (s, 2H), 4.37 (t, J = 6.4 Hz, 4H), 3.71 (t, J = 6.4 Hz, 4H), 1.97 (brs, 2H), 1.83-1.90 (m, 4H), 1.67-1.75 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.9, 134.1, 129.5, 65.3, 62.3, 29.1, 25.2; HRMS (ESI) for C₁₆H₂₂O₅ [M+Na]⁺: calc.: 333.1314; found: 333.1316.

Methyl 4-aminobenzoate:^[12] RCH₂OH (0.5 mmol), MeOH (2 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol); 56 mg; 74% yield in 24 h; white solid; m.p. = 103-104 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.84 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 8.8 Hz, 2H),

4.06 (brs, 2H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 167.1, 150.7, 131.6, 119.7, 113.8, 51.6; MS (EI) for C₈H₉NO₂ [M]⁺: 151.

Ethyl 4-methoxybenzoate:^[23] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 65 mg; 72% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.98 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 163.2, 131.5, 122.9, 113.5, 60.6, 55.4, 14.4; MS (EI) for C₁₀H₁₂O₃ [M]⁺: 180.

Propyl 4-methoxybenzoate:^[24] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 80 mg; 83% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.01 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.25 (t, J = 6.8 Hz, 2H), 3.85 (s, 3H), 1.73-1.82 (m, 2H) , 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 163.3, 131.5, 123.0, 113.6, 66.2, 55.4, 22.2, 10.5; MS (EI) for C₁₁H₁₄O₃ [M]⁺: 194.

Butyl 4-methoxybenzoate:^[26] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 81 mg; 78% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.00 (d, J = 9.2 Hz, 2H), 6.92 (d, J = 9.2 Hz, 2H), 4.29 (t, J = 6.4 Hz, 2H), 3.86 (s, 3H), 1.70-1.77 (m, 2H), 1.43-1.52 (m, 2H), 0.97 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 163.2, 131.5, 123.0, 113.6, 64.5, 55.4, 30.9, 19.3, 13.8; MS (EI) for C₁₂H₁₆O₃ [M]⁺: 208.

Pentyl 4-methoxybenzoate:^[25] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 82 mg; 74% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.01 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 9.2 Hz, 2H), 4.28 (t, *J* = 6.4 Hz, 2H), 3.86 (s, 3H), 1.72-1.79 (m, 2H), 1.37-1.43 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 163.2, 131.5, 123.0, 113.6, 64.8, 55.4, 28.5, 28.2, 22.4, 14.0, MS (EI) for C₁₃H₁₈O₃ [M]⁺: 222.

Octyl 4-methoxybenzoate:^[28] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.01 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 88 mg; 67% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.99 (d, J = 9.2 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 3.86 (s, 3H), 1.71-1.78 (m, 2H), 1.28-1.43 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 163.2, 131.5, 123.0, 113.6, 64.9, 55.4, 31.8, 29.3, 29.2, 28.8, 26.1, 22.7, 14.1; HRMS (ESI) for C₁₆H₂₄O₃ [M+Na]⁺: calc.: 287.1623; found: 287.1615.

Isopropyl 4-methoxybenzoate:^[25] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 52 mg; 54% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.00 (d, J = 9.2 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.18-5.27 (m, 1H), 3.86 (s, 3H), 1.36 (d, J = 6.4 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.5, 163.8, 132.1, 124.0, 114.1, 68.5, 56.0, 22.6; MS (EI) for C₁₁H₁₄O₃ [M]⁺: 194.

Isobutyl 4-methoxybenzoate:^[27] RCH₂OH (0.5 mmol), R'OH (1 mL), **11** (0.005 mmol), NaHCO₃ (0.25 mmol), NaOH (0.05 mmol); 72 mg; 69% yield in 48 h; colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.00 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 9.2 Hz, 2H), 4.06 (d, J = 6.4 Hz, 2H), 3.84 (s, 3H), 2.01-2.11 (m, 1H), 1.00 (d, J = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 166.4, 163.3, 131.5, 123.0, 113.6, 70.7, 55.4, 27.9, 19.2, MS (EI) for C₁₂H₁₆O₃ [M]⁺: 208.

12. References

F. P. Pruchnik, P. Jakimowicz, Z. Ciunik, J. Zakrzewska-Czerwinska, A. Opolski, J.Wietrzyk,
 E. Wojdat, *Inorg. Chim. Acta.* 2002, *334*, 59-66.

[2] F. P. Pruchnik, F. Robert, Y. Jeannin, S. Jeannin, Inorg. Chem. 1996, 35, 4261-4263.

[3] J. Paul, S. Spey, H. Adams, J. A. Thomas, Inorg. Chim. Acta. 2004, 357, 2827-2832.

[4] R. Gopinath, B. Barkakaty, B. Talukdar, B. K. Patel, J. Org. Chem. 2003, 68, 2944-2947.

[5] X. F. Wu, Tetrahedron Lett. 2012, 53, 3397-3399.

[6] R. Lerebours, C. Wolf, J. Am. Chem. Soc. 2006, 128, 13052-13053.

[7] B. R. Travis, M. Sivakumar, G. O. Hollist, B. Borhan, Org. Lett. 2003, 5, 1031-1034.

[8] E. G. Delany, C. L. Fagan, S. Gundala, A. Mari, *Chem. Commun.* 2013, 49, 6510-6512.

[9] S. K. Aavula, A. Chikkulapalli, N. Hanumanthappa, I. Jyothi, C. H. V. Kumar, S. G. Manjunatha, *Tetrahedron Lett.* **2013**, *54*, 5690-5694.

[10] Y. Zhu, H. Yan, L. H. Lu, D. F. Liu, G. W. Rong, J. C. Mao, J. Org. Chem. 2013, 78, 9898-9905.

[11] M. K. Agrawal, S. Adimurthy, P. K. Ghosh, Synth. Commun. 2012, 42, 2931-2936.

[12] I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar, M. Beller, *Angew. Chem. Int. Ed.* **2012**, *51*, 7794-7798.

[13] K. K. Rajbongshi, M. J. Sarma, P. Phukan, Tetrahedron Lett. 2014, 55, 5358-5360.

[14] S. T. Heller, R. Sarpong, Org. Lett. 2010, 12, 4572-4575.

[15] K. Ukai, M. Aoki, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2006, 128, 8706-8707.

[16] D. P. Hari, T. Hering, B. Konig, Org. Lett. 2012, 14, 5334-5337.

[17] C. Schmuck, U. Machon, Eur. J. Org. Chem. 2006, 19, 4385-4392.

[18] V. R. Chintareddy, A. Ellern, J. G. Verkade, J. Org. Chem. 2010, 75, 7166-7174.

[19] A. Derible, Y. C. Yang, P. H. Toy, J. M. Becht, C. L. Drian, *Tetrahedron Lett.* 2014, 55, 4331-4333.

[20] B. Narasimhan, S. Ohlan, R. Ohlan, V. Judge, R. Narang, *Eur. J. Med. Chem.* **2009**, *44*, 689-700.

[21] H. Nozary, C. P. P. Tissot, G. Bernardinell, J. Am. Chem. Soc. 1998, 120, 12274-12288.

- [22] K. H. Park, K. Jang, H. J. Kim, S. U. Son, Angew. Chem. Int. Ed, 2007, 46, 1152-1155.
- [23] J. Salvadori, E. Balducci, S. Zaza, E. Petricci, M. Taddei, J. Org. Chem, 2010, 75, 1841-1847.
- [24] A. N. Rao, K. Ganesan, C. K. Shinde, Synth. Commun. 2012, 42, 2299-2308.
- [25] X. S. Jia, H. L. Wang, Q. Huang, L. L. Kong, W. H. Zhang, J. Chem. Res. 2006, 135-138.
- [26] Q. Liu, G. Li, J. He, J. Liu, P. Li, A. W. Lei, Angew. Chem. Int. Ed. 2010, 49, 3371 -3374.
- [27] J. I. Lee, Bull. Kor. Chem. Soc. 2011, 32, 1765-1768.
- [28] M. Tamura, T. Tonomura, K. Shimizu, A. Satsumaa, Green Chem. 2012, 14, 984-991.

13. Traces of ¹H NMR, ¹³C NMR, HRMS, IR and GC spectra

HRMS of 13

S40

UV of **16**

S75

400000000000000000000000000000000000000	21 336 336 336	00000000000000000000000000000000000000
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LLLLUUU44000
	4 4 4 M M	



0 8 7 8 4 9 9 0 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7 0 9 7	30 30 30	00040000400000000000000000000000000000
ຜິຜິ ທີ່ດີດເບີຍ ຍິຍ	6 7 7 9	LLLLL444444000000
	444 M	000666666666666666666666666666666666666











4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3123	の877955555555555555555555555555555555555
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		$\cdots \cdots $
	4 4 M	
	$\vee$ /	





































1: cyclohexanecarbaldehyde, 2: cyclohexylmethanol, 3: methyl cyclohexanecarboxylate.

## 14. Crystallographic data for complex 11*



*The structure of **11** has been determined, see: F. P. Pruchnik, P. Jakimowicz, Z. Ciunik, J. Zakrzewska-Czerwinska, A. Opolski, J.Wietrzyk, E. Wojdat, *Inorg. Chim. Acta.* **2002**, *334*, 59.

•	
Identification code	11
	a

Table 1. Crystal data and structure refinement for **11**.

Empirical formula	$C_{15}H_{11}Cl_3N_3Rh$	
Formula weight	442.53	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 8.5110(10) Å	= 90°.

	b = 13.8850(10) Å	$= 105.412(9)^{\circ}.$
	c = 13.7120(10) Å	= 90°.
Volume	1562.1(2) Å ³	
Z	4	
Density (calculated)	1.882 Mg/m ³	
Absorption coefficient	1.603 mm ⁻¹	
F(000)	872	
Crystal size	0.30 x 0.30 x 0.20 mm ³	
Theta range for data collection	3.31 to 25.60 °.	
Index ranges	-10<=h<=10, -16<=k<=16	, -16<=l<=16
Reflections collected	16682	
Independent reflections	2935 [R(int) = 0.0829]	
Completeness to theta = 25.60 $^{\circ}$	99.7 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.7398 and 0.6448	
Refinement method	Full-matrix least-squares o	n F ²
Data / restraints / parameters	2935 / 0 / 199	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0645, wR2 = 0.159	1
R indices (all data)	R1 = 0.1123, wR2 = 0.185	2
Largest diff. peak and hole	1.259 and -1.112 e.Å ⁻³	

Table 2.	. Atomic coordinates ( $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å ² x \ 10 ³ )
for w.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	X	у	Z	U(eq)
Rh(1)	4743(1)	1336(1)	7694(1)	43(1)
Cl(1)	2270(3)	1113(2)	6460(2)	60(1)
Cl(3)	3292(4)	1618(2)	8907(2)	75(1)
Cl(2)	7198(4)	1539(2)	8917(2)	75(1)
C(1)	4454(11)	3515(7)	7541(8)	56(2)
C(15)	4479(12)	-672(7)	8515(7)	57(2)
C(8)	7431(14)	706(10)	5255(9)	77(3)
N(2)	5866(8)	1097(5)	6686(5)	41(2)
C(13)	5150(14)	-2080(8)	7728(9)	73(3)
C(6)	6178(11)	1802(7)	6133(7)	53(2)
C(11)	5619(11)	-519(7)	7152(7)	51(2)

C(2)	4644(13)	4407(7)	7120(10)	70(3)
C(12)	5701(12)	-1517(7)	7068(9)	64(3)
C(10)	6202(11)	148(6)	6508(7)	48(2)
N(1)	4926(9)	2708(5)	7188(5)	48(2)
C(9)	7010(14)	-55(8)	5789(8)	69(3)
C(4)	5862(13)	3617(8)	5968(9)	67(3)
N(3)	4972(8)	-124(5)	7853(5)	48(2)
C(7)	7011(12)	1624(9)	5417(7)	64(3)
C(5)	5643(12)	2750(7)	6407(7)	55(2)
C(14)	4576(14)	-1669(8)	8449(10)	74(3)
C(3)	5361(14)	4445(8)	6336(10)	76(3)

Table 3.Bond lengths [Å] and angles [ ] for 11.

Rh(1)-N(2)	1.907(7)
Rh(1)-N(3)	2.043(7)
Rh(1)-N(1)	2.048(8)
Rh(1)-Cl(2)	2.323(3)
Rh(1)-Cl(1)	2.345(3)
Rh(1)-Cl(3)	2.353(3)
C(1)-N(1)	1.326(12)
C(1)-C(2)	1.393(14)
C(1)-H(1)	0.9300
C(15)-N(3)	1.335(11)
C(15)-C(14)	1.392(15)
C(15)-H(15)	0.9300
C(8)-C(7)	1.358(16)
C(8)-C(9)	1.385(16)
C(8)-H(8)	0.9300
N(2)-C(6)	1.308(12)
N(2)-C(10)	1.384(10)
C(13)-C(14)	1.341(16)
C(13)-C(12)	1.370(16)
C(13)-H(13)	0.9300
C(6)-C(7)	1.378(13)
C(6)-C(5)	1.474(14)
C(11)-N(3)	1.345(11)
C(11)-C(12)	1.394(13)

C(11)-C(10)	1.455(13)
C(2)-C(3)	1.371(16)
C(2)-H(2)	0.9300
C(12)-H(12)	0.9300
C(10)-C(9)	1.373(13)
N(1)-C(5)	1.367(11)
C(9)-H(9)	0.9300
C(4)-C(3)	1.369(16)
C(4)-C(5)	1.381(13)
C(4)-H(4)	0.9300
C(7)-H(7)	0.9300
C(14)-H(14)	0.9300
C(3)-H(3)	0.9300
N(2)-Rh(1)-N(3)	81.5(3)
N(2)-Rh(1)-N(1)	79.5(3)
N(3)-Rh(1)-N(1)	161.0(3)
N(2)-Rh(1)-Cl(2)	91.0(2)
N(3)-Rh(1)-Cl(2)	90.1(2)
N(1)-Rh(1)-Cl(2)	89.8(2)
N(2)-Rh(1)-Cl(1)	88.9(2)
N(3)-Rh(1)-Cl(1)	89.3(2)
N(1)-Rh(1)-Cl(1)	90.7(2)
Cl(2)-Rh(1)-Cl(1)	179.39(10)
N(2)-Rh(1)-Cl(3)	178.5(2)
N(3)-Rh(1)-Cl(3)	98.2(2)
N(1)-Rh(1)-Cl(3)	100.7(2)
Cl(2)-Rh(1)-Cl(3)	90.56(11)
Cl(1)-Rh(1)-Cl(3)	89.60(10)
N(1)-C(1)-C(2)	121.4(10)
N(1)-C(1)-H(1)	119.3
C(2)-C(1)-H(1)	119.3
N(3)-C(15)-C(14)	119.2(10)
N(3)-C(15)-H(15)	120.4
C(14)-C(15)-H(15)	120.4
C(7)-C(8)-C(9)	120.9(10)
C(7)-C(8)-H(8)	119.5
C(9)-C(8)-H(8)	119.5

C(6)-N(2)-C(10)	121.8(8)
C(6)-N(2)-Rh(1)	120.6(6)
C(10)-N(2)-Rh(1)	117.4(6)
C(14)-C(13)-C(12)	120.0(11)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
N(2)-C(6)-C(7)	120.1(9)
N(2)-C(6)-C(5)	113.3(8)
C(7)-C(6)-C(5)	126.4(10)
N(3)-C(11)-C(12)	120.3(10)
N(3)-C(11)-C(10)	116.4(8)
C(12)-C(11)-C(10)	123.3(9)
C(3)-C(2)-C(1)	118.9(10)
C(3)-C(2)-H(2)	120.5
C(1)-C(2)-H(2)	120.5
C(13)-C(12)-C(11)	118.6(11)
C(13)-C(12)-H(12)	120.7
C(11)-C(12)-H(12)	120.7
C(9)-C(10)-N(2)	119.3(9)
C(9)-C(10)-C(11)	128.5(9)
N(2)-C(10)-C(11)	112.3(8)
C(1)-N(1)-C(5)	119.4(8)
C(1)-N(1)-Rh(1)	127.3(7)
C(5)-N(1)-Rh(1)	113.3(6)
C(10)-C(9)-C(8)	118.1(10)
C(10)-C(9)-H(9)	120.9
C(8)-C(9)-H(9)	120.9
C(3)-C(4)-C(5)	118.7(11)
C(3)-C(4)-H(4)	120.7
C(5)-C(4)-H(4)	120.7
C(15)-N(3)-C(11)	121.1(8)
C(15)-N(3)-Rh(1)	126.9(7)
C(11)-N(3)-Rh(1)	112.0(6)
C(8)-C(7)-C(6)	119.5(10)
C(8)-C(7)-H(7)	120.3
C(6)-C(7)-H(7)	120.3
N(1)-C(5)-C(4)	121.3(10)
N(1)-C(5)-C(6)	113.2(8)

C(4)-C(5)-C(6)	125.5(10)
C(13)-C(14)-C(15)	120.7(11)
C(13)-C(14)-H(14)	119.6
C(15)-C(14)-H(14)	119.6
C(4)-C(3)-C(2)	120.3(10)
C(4)-C(3)-H(3)	119.9
C(2)-C(3)-H(3)	119.9