Supporting Information for

The Involvement of the Trisulfur Radical Anion in Electron-Catalyzed Sulfur Insertion Reactions: Facile Synthesis of Benzothiazine Derivatives under Transition Metal-free Conditions

Zheng-Yang Gu, Jia-Jia Cao, Shun-Yi Wang,* and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China E-mail: shunyi@suda.edu.cn; shunjun@suda.edu.cn

Table of Contents

Experimental Section and crystal structuresS2-S6
Characterization Data of Compounds 3a-5e S7-S13
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3a-5e S14-S33
X-ray crystallographic data of 3a S34-S42

Experimental Section

General

Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a Bruker Tensor 27 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz (¹H NMR) and 400 MHz (¹³C NMR) spectrumeter using CDCl₃ or DMSO- d_6 as solvent and TMS as internal standard. EPR spectra were recorded on a Bruker EXM-10/2 spectrophotometer. UV spectra were recorded on a UV1102 spectrophotometer. Raman spectra were recorded on a Horiba Jobin Yvon LabRam HR800 spectrophotometer. High resolution mass spectra were obtained using GCT-TOF instrument with ESI source or EI source.

Typical procedure for benzothiazine of K₂S with enaminones

A mixture of enaminones **1** (0.5 mmol) and K₂S **2** (0.6 mmol) and DMF (3 mL) were added into a flask and stirred at 110 °C under Ar atmosphere. Then the mixture was vigorously stirred under reflux conditions monitored by TLC analysis (about 12 h). After removing the solvents in vacuo, the residue was directly purified by flash column chromatography by using ethyl acetate and petroleum ether as eluents to afford pure product **3**.

Typical procedure for 2- aryl -4*H*-thiochromen-4-one Derivatives of K₂S with 2'bromochalcones

A mixture of 2'-bromochalcones 4 (0.5 mmol) and K₂S 2 (0.6 mmol) and DMF (3 mL) were added into a flask and stirred at 110 °C under Ar atmosphere. Then the mixture was vigorously stirred under reflux conditions monitored by TLC analysis (about 12 h). After removing the solvents in vacuo, the residue was directly purified by flash column chromatography by using ethyl acetate and petroleum ether as eluents to afford pure product **5**.

EPR Studies of Interaction between K₂S and DMF

A dried tube equipped with a stir bar was loaded with K_2S (0.50 mmol) in 3.0 mL DMF was stirred at 25 °C. After 30 mins, the solution sample was taken out into a small tube

and analyzed by EPR. EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.852 GHz. Typical spectrometer parameters are shown as follows, scan range: 1000 G; center field set: 3400 G; scan time: 35 s.

EPR Studies of Interaction between K₂S and H₂O

A dried tube equipped with a stir bar was loaded with K_2S (0.50 mmol) in 3.0 mL H₂O was stirred at 25 °C. After 30 mins, the solution sample was taken out into a small tube and analyzed by EPR. EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.852 GHz. Typical spectrometer parameters are shown as follows, scan range: 1000 G; center field set: 3400 G; scan time: 35 s.

UV spectra Studies of Interaction between K₂S and DMF

A dried tube equipped with a stir bar was loaded with K_2S (0.50 mmol) in 3.0 mL DMF was stirred at 25 °C. Then, the solution sample was taken out into a small tube and analyzed by UV spectrometer operated. Typical spectrometer parameters are shown as follows, scan range: 400 nm; wavelength from 400 nm-800 nm; Scan speed: 800 nm/min

UV spectra Studies of Interaction between Na₂S, S and DMF

A dried tube equipped with a stir bar was loaded with Na_2S (0.50 mmol), S (0.50 mmol) in 3.0 mL DMF was stirred at 25 °C. Then, the solution sample was taken out into a small tube and analyzed by UV spectrometer operated. Typical spectrometer parameters are shown as follows, scan range: 400 nm; wavelength from 400 nm-800 nm; Scan speed: 800 nm/min

Raman spectra Studies of Interaction between K₂S and DMF

A dried tube equipped with a stir bar was loaded with K_2S (0.50 mmol) in 3.0 mL DMF was stirred at 25 °C. Then, the solution sample was taken out into a small tube and analyzed by Raman spectrometer operated. Typical spectrometer parameters are shown as follows, scan time: 50 s; wavelength 632.8 nm.

Raman spectra Studies of Interaction between Na₂S, S and DMF

A dried tube equipped with a stir bar was loaded with Na₂S (0.50 mmol), S (0.50 mmol) in 3.0 mL DMF was stirred at 25 $^{\circ}$ C. Then, the solution sample was taken out into a small tube and analyzed by Raman spectrometer operated. Typical spectrometer parameters are shown as follows, scan time: 50 s; wavelength 632.8 nm.

Figure 1 Crystal Structure of 3a

Entry	Cat. (10 mol%)	Solvent	Add. (x mol%)	T (°C)	Yield(%) ^b
1	CuI	DMF	I ₂ (20)	110	65
2	Cu(OAc) ₂	DMF	I ₂ (20)	110	78
3	CuCl ₂	DMF	I ₂ (20)	110	58
4	Cu ₂ O	DMF	I ₂ (20)	110	60
5	CuBr ₂	DMF	I ₂ (20)	110	38
6	CuBr	DMF	I ₂ (20)	110	60
7	CuSO ₄	DMF	I ₂ (20)	110	50
8	Cu(OAc) ₂	CH ₃ CN	I ₂ (20)	110	39
9	Cu(OAc) ₂	1,4-dioxene	I ₂ (20)	110	39
10	Cu(OAc) ₂	DCE	I ₂ (20)	110	40
11	Cu(OAc) ₂	THF	I ₂ (20)	110	53
12	Cu(OAc) ₂	Toluene	I ₂ (20)	110	8
13	Cu(OAc) ₂	DMSO	I ₂ (20)	110	trace
14	Cu(OAc) ₂	Xylene	I ₂ (20)	110	trace
15	Cu(OAc) ₂ (10)	DMF		110	67
16	$Cu(OAc)_2(10)$	DMF	I ₂ (10)	110	56
17	Cu(OAc) ₂ (10)	DMF	I ₂ (30)	110	60
18	$Cu(OAc)_2(10)$	DMF		120	82
19	Cu(OAc) ₂ (10)	DMF		130	88
20	$Cu(OAc)_2(5)$	DMF		130	91
21	$Cu(OAc)_2(1)$	DMF		130	89
22		DMF		130	$87(80)^{c}$

Screening of Reaction Conditions: Effects of Catalyst, Additive and Solvent^a

^{*a*}Reaction Conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), solvent (3 mL) under air atmosphere. ^{*b*}The yields were determined by LC analysis using biphenyl as the internal standard. ^{*c*}Isolated yields.

Crude ¹H NMR of the reaction of 1a with 2a in d^7 -DMF

UV spectra studies of interaction between K₂S and DMF

Plausible chemical balance and mechanism

2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3a)

Yield=80%. Yellow solid. M.p. 254.4-255.7 °C. IR 3247, 2955, 2927, 1611, 1522, 1468, 1306, 746 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.85 (s, 1H, N-H), 6.86 (t, *J* = 5.8 Hz, 1H, Ar-H), 6.78 – 6.67 (m, 2H, Ar-H), 6.54 (d, *J* = 7.6 Hz, 1H, Ar-H), 2.20 (s, 2H, -CH₂), 2.15 (s, 2H, -CH₂), 1.00 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 189.00, 154.43, 137.16, 127.36, 126.93, 125.02, 120.34, 116.19, 97.03, 50.20, 41.73, 31.97, 28.08 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₅NOS, 245.0874; found 245.0871.

2,2,7-trimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3b)

Yield=95%. Yellow solid. M.p. 283.3-285.6°C. IR 3245, 2956, 2921, 1592, 1560, 1478, 1310, 814, 746 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.80 (s, 1H, N-H), 6.66 (d, *J* = 7.8 Hz, 1H, Ar-H), 6.56 (s, 1H, Ar-H), 6.44 (d, *J* = 7.9 Hz, 1H, Ar-H), 2.19 (s, 2H, -CH₂), 2.13 (s, 2H, -CH₂), 2.07 (s, 3H, -CH₃), 0.99 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 188.26, 153.74, 133.93, 133.74, 127.08, 126.80, 119.73, 115.61, 96.06, 49.69, 41.25, 31.46, 27.60, 19.98 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₇NOS, 259.1031; found 259.1027.

7-methoxy-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3c)

Yield=88%. Yellow solid. M.p. 270.1-273.3°C. IR 3242, 3031, 2965, 1604, 1561, 1478, 1355, 1070, 793 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.83 (s, 1H, N-H), 6.50 (d, *J* = 8.5 Hz, 1H, Ar-H), 6.44 (dd, *J* = 8.7, 2.7 Hz, 1H, Ar-H), 6.37 (d, *J* = 2.7 Hz, 1H, Ar-H), 3.63 (s, 3H, -OMe), 2.19 (s, 2H, -CH₂), 2.13 (s, 2H, -CH₂), 0.99 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 187.97, 156.16, 153.60, 129.46, 121.48, 116.64, 112.09, 111.42, 94.88, 55.24, 49.69, 41.25, 31.45, 27.61 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₇NO₂S, [M+H]⁺ 276.1058; found 276.1052.

8-chloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3d)

Yield=65%. Yellow solid. M.p. 268.6-271.3 °C. IR 3273, 2964, 2934, 1579, 1560, 1466, 1277, 860, 805 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.92 (s, 1H, N-H), 6.78 (dt, *J* = 14.4, 5.1 Hz, 2H, Ar-H), 6.56 (d, *J* = 1.9 Hz, 1H, Ar-H), 2.20 (s, 2H, -CH₂), 2.16 (s, 2H, -CH₂), 1.00 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 189.40, 154.00, 138.85, 131.22, 128.19, 124.36, 119.53, 115.54, 97.67, 50.13, 41.65, 32.03, 28.03 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄CINOS, 279.0485; found 279.0482.

7-chloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3e)

Yield=81%. Brown solid. M.p. 268.6-271.3 °C. IR 3272, 2958, 2908, 1579, 1467, 1380, 811, 664 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.96 (s, 1H, N-H), 6.97 – 6.77 (m, 2H, Ar-H), 6.52 (d, *J* = 8.4 Hz, 1H, Ar-H), 2.19 (s, 2H, -CH₂), 2.15 (s, 2H, -CH₂), 0.99 (s, 6H, -CH3). ¹³C NMR (101 MHz, DMSO) δ 189.07, 154.23, 136.25, 128.25, 126.99, 126.10, 123.12, 117.28, 96.74, 50.11, 41.63, 31.98, 28.05 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄ClNOS, 279.0485; found 279.0497.

7,9-dichloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3f)

Yield=55%. Yellow solid. M.p. 193.2-195.1°C. IR 3270, 2954, 1588, 1486, 1266, 807, 638 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 7.98 (s, 1H, N-H), 7.18 (d, *J* = 2.3 Hz, 1H, Ar-H), 6.92 (d, *J* = 2.2 Hz, 1H, Ar-H), 2.42 (s, 2H, -CH₂), 2.19 (s, 2H, -CH₂), 0.99 (s, 6H, -CH3). ¹³C NMR (101 MHz, DMSO) δ 190.14, 154.62, 133.38, 128.32, 127.27, 125.28, 125.23, 120.60, 99.15, 50.09, 41.46, 31.99, 28.00 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₃Cl₂NOS, [M+H]⁺ 314.0173; found 314.0179.

7-fluoro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3g)

Yield=85%. Yellow solid. M.p. 268.6-271.3 °C. IR 3274, 2956, 1593, 1476, 1344, 850, 807, 689 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.92 (s, 1H, N-H), 6.74 – 6.65 (m, 2H, Ar-H), 6.54 (dd, *J* = 9.4, 5.2 Hz, 1H, Ar-H), 2.19 (s, 2H, -CH₂), 2.15 (s, 2H, -CH₂), 1.00 (s, 6H, -CH3). ¹³C NMR (101 MHz, DMSO) δ 188.91, 160.41, 158.01, 154.42, 133.55,

133.52, 123.08, 123.00, 117.22, 117.13, 113.99, 113.74, 113.46, 113.24, 95.73, 50.13, 41.66, 31.96, 28.06 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄FNOS, [M+H]⁺ 264.0858; found 264.0864.

2,2-dimethyl-7-nitro-2,3-dihydro-1H-phenothiazin-4(10H)-one (3h)

Yield=92%. Purple solid. M.p. >300°C. IR 3270, 2966, 1590, 1473, 1332, 878, 714, 654 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 9.34 (s, 1H, N-H), 7.72 (dd, *J* = 8.7, 2.4 Hz, 1H, Ar-H), 7.52 (d, *J* = 2.2 Hz, 1H, Ar-H), 6.59 (d, *J* = 8.8 Hz, 1H, Ar-H), 2.19 (d, *J* = 3.9 Hz, 4H, -CH₂), 1.00 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 189.98, 152.99, 144.05, 143.67, 124.41, 122.38, 121.68, 115.55, 98.95, 50.04, 41.40, 32.06, 28.00 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄N₂O₃S, [M+H]⁺ 291.0803; found 291.0799.

2,2-dimethyl-7-(trifluoromethyl)-2,3-dihydro-1H-phenothiazin-4(10H)-one (3i) Yield=94%. Yellow solid. M.p. >300°C. IR 3260, 2958, 1596, 1569, 1479, 1305, 830, 704 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 9.11 (s, 1H, N-H), 7.20 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.06 (s, 1H, Ar-H), 6.64 (d, *J* = 8.2 Hz, 1H, Ar-H), 2.21 (s, 2H, -CH₂), 2.18 (s, 2H, -CH₂), 1.01 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 189.55, 154.03, 141.17, 125.55, 125.28, 124.96, 124.91, 124.87, 123.53, 123.50, 122.85, 122.14, 115.93, 97.93, 50.10, 41.55, 32.02, 28.01 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₄F₃NOS, [M+H]⁺ 314.0826; found 314.0833.

3,3-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3j)

Yield=96%. Yellow solid. M.p. 278.4-280.3 °C. IR 3253, 2972, 1610, 1581, 1471, 1238, 747 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.87 (s, 1H, N-H), 6.86 (ddd, *J* = 8.0, 6.2, 3.6 Hz, 1H, Ar-H), 6.74 (dd, *J* = 7.4, 5.5 Hz, 2H, Ar-H), 6.55 (d, *J* = 7.8 Hz, 1H, Ar-H), 2.36 (t, *J* = 6.2 Hz, 2H, -CH₂), 1.69 (t, *J* = 6.2 Hz, 2H, -CH₂), 1.02 (s, 6H, -CH3). ¹³C NMR (101 MHz, DMSO) δ 194.31, 154.87, 137.04, 127.28, 126.87, 124.85, 120.36, 115.99, 97.12, 34.06, 25.49, 25.29 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₅NOS, [M+H]⁺ 246.0953; found 246.0957.

2-(4-methoxyphenyl)-2,3-dihydro-1H-phenothiazin-4(10H)-one (3k)

Yield=72%. Yellow solid. M.p. 285.8-287.3 °C. IR 3245, 2941, 1580, 1565, 1468, 1248, 823, 752 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.97 (s, 1H, N-H), 7.24 (d, *J* = 7.9 Hz, 2H, Ar-H), 6.89 (d, *J* = 7.9 Hz, 3H, Ar-H), 6.75 (d, *J* = 2.8 Hz, 2H, Ar-H), 6.55 (d, *J* = 7.5 Hz, 1H, Ar-H), 3.73 (s, 3H, -CH3), 2.76 – 2.28 (m, 5H, -CH₂, -CH). ¹³C NMR (101 MHz, DMSO) δ 188.86, 158.46, 155.51, 137.09, 135.58, 128.34, 127.41, 126.96, 125.10, 120.32, 116.21, 114.34, 98.19, 55.49, 43.88, 37.35, 35.85 ppm. HRMS (ESI) m/z calculated for C₁₉H₁₇NO₂S, [M+H]⁺ 324.1058; found 324.1042.

2-phenyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3l)

Yield=60%. Red solid. M.p. 241.2-243.1°C. IR 3253, 2954, 1582, 1565, 1470, 1246, 750, 699 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.99 (s, 1H, N-H), 7.34 (d, *J* = 4.1 Hz, 4H, Ar-H), 7.25 (dd, *J* = 8.3, 4.1 Hz, 1H, Ar-H), 6.94 – 6.83 (m, 1H, Ar-H), 6.76 (d, *J* = 4.0 Hz, 2H, Ar-H), 6.57 (s, 1H, Ar-H), 3.31 (dd, *J* = 20.3, 8.7 Hz, 1H, -CH), 2.74 – 2.57 (m, 2H, -CH₂), 2.53 – 2.43 (m, 2H, -CH₂). ¹³C NMR (101 MHz, DMSO) δ 188.71, 155.46, 143.62, 137.07, 128.99, 127.42, 127.36, 127.18, 126.96, 125.12, 120.32, 116.24, 98.21, 43.59, 38.10, 35.55 ppm. HRMS (ESI) m/z calculated for C₁₈H₁₅NOS, [M+H]⁺ 294.0953; found 294.0961.

2,3-dihydro-1H-phenothiazin-4(10H)-one (3m)

Yield=47%. Yellow solid. M.p. 199.5-201.7°C. IR 3263, 2933, 1585, 1508, 1466, 1296, 737, 686 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.92 (s, 1H, N-H), 6.91 – 6.81 (m, 1H, Ar-H), 6.81 – 6.66 (m, 2H, Ar-H), 6.55 (d, *J* = 7.8 Hz, 1H, Ar-H), 2.33 (t, *J* = 6.1 Hz, 2H, -CH₂), 2.25 (t, *J* = 6.4 Hz, 2H, -CH₂), 1.89 – 1.75 (m, 2H, -CH₂). ¹³C NMR (101 MHz, DMSO) δ 189.48, 156.47, 137.10, 127.32, 126.88, 124.95, 120.40, 116.11, 98.33, 36.61, 28.45, 20.60 ppm. HRMS (ESI) m/z calculated for C₁₂H₁₁NOS, [M+H]⁺ 218.0640; found 218.0641.

8-bromo-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (30)

Yield=80%. Yellow solid. M.p. 231.7-232-4°C. IR 3263, 2954, 1647, 1558, 1464, 1268, 877, 805 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 8.90 (s, 1H, N-H), 6.90 (dd, *J* = 8.2, 1.6 Hz, 1H, Ar-H), 6.72 – 6.63 (m, 2H, Ar-H), 2.18 (s, 2H, -CH₂), 2.15 (s, 2H, -CH₂), 0.99 (s, 6H, -CH3). ¹³C NMR (101 MHz, DMSO) δ 188.88, 153.57, 138.54, 127.99, 126.78, 119.61, 118.70, 117.79, 97.14, 49.64, 41.16, 31.54, 27.54 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄BrNOS, [M+H]⁺ 324.0058; found 324.0059.

9-bromo-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3p)

Yield=68%. Yellow solid. M.p. >300°C. IR 3277, 2957, 1574, 1503, 1441, 1294, 763, 716 cm⁻¹. ¹H NMR (400 MHz, DMSO) δ 7.57 (s, 1H, N-H), 7.18 (dd, *J* = 8.0, 1.3 Hz, 1H, Ar-H), 6.83 – 6.77 (m, 1H, Ar-H), 6.70 (t, *J* = 7.8 Hz, 1H, Ar-H), 2.44 (s, 2H, -CH₂), 2.19 (s, 2H, -CH₂), 0.99 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 190.16, 155.01, 135.19, 131.41, 126.61, 126.12, 123.01, 110.32, 99.77, 50.24, 41.64, 32.01, 28.00 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₄BrNOS, [M+H]⁺ 324.0058; found 324.0059.

2-phenyl-4H-thiochromen-4-one (5a)

Yield=51%. Red solid. M.p. 105.5-106.9°C. IR 2923, 1618, 1587, 1435, 1332, 1099, 863, 758, 730, 695 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (d, *J* = 7.8 Hz, 1H, Ar-H), 7.70 – 7.44 (m, 8H, Ar-H), 7.24 (s, 1H, -CH). ¹³C NMR (101 MHz, CDCl₃) δ 180.33, 152.84, 137.27, 136.05, 131.17, 130.38, 130.34, 128.82, 128.13, 127.34, 126.51, 126.02, 122.88, 122.85 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₀OS, [M+H]⁺239.0531; found 239.0529.

2-p-tolyl-4H-thiochromen-4-one (5b)

Yield=53%. Red solid. M.p. 106.7-108.3°C. IR 3028, 1604, 1587, 1507, 1431, 1336, 1131, 1103, 878, 775, 687 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (dd, *J* = 8.0, 1.4 Hz, 1H, Ar-H), 7.69 – 7.52 (m, 5H, Ar-H), 7.30 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.27 (s, 1H, -CH), 2.43 (s, 3H, -CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 180.38, 152.95, 152.92, 140.93, 137.31, 133.18, 131.10, 130.35, 129.52, 128.10, 127.26, 126.34, 125.99, 122.25, 20.91 ppm. HRMS (ESI) m/z calculated for C₁₆H₁₂OS, [M+H]⁺ 253.0687; found 253.0685.

2-(4-fluorophenyl)-4H-thiochromen-4-one (5c)

Yield=50%. Red solid. M.p. 152.8-153.9°C. IR 1617, 1586, 1502, 1441, 1335, 1228, 1106, 1100, 847, 779, 743, 686 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (dd, *J* = 7.8, 1.3 Hz, 1H, Ar-H), 7.74 – 7.54 (m, 5H, Ar-H), 7.26 – 7.16 (m, 3H, Ar-H). ¹³C NMR (101 MHz, CDCl₃) δ 180.23, 165.13, 162.62, 151.70, 137.04, 132.20, 132.17, 131.30, 130.19, 128.57, 128.49, 128.17, 127.48, 125.98, 122.81, 116.12, 115.90 ppm. HRMS (ESI) m/z calculated for C₁₅H₉FOS, [M+H]⁺257.0436; found 257.0442.

2-(4-chlorophenyl)-4H-thiochromen-4-one (5d)

Yield=51%. Red solid. M.p. 160.8-162.6°C. IR 2161, 2028, 1629, 1589, 1485, 1327, 1088, 1010, 900, 828, 776, 707, 684 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.71 – 7.52 (m, 5H, Ar-H), 7.48 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.24 (s, 1H, -CH). ¹³C NMR (101 MHz, CDCl₃) δ 180.21, 151.38, 136.94, 136.71, 134.46, 131.33, 130.26, 129.11, 128.19, 127.77, 127.52, 126.03, 123.00 ppm. HRMS (ESI) m/z calculated for C₁₅H₉ClOS, [M+H]⁺ 273.0141; found 273.0147.

2-(thiophen-2-yl)-4H-thiochromen-4-one (5e)

Yield=60%. Red solid. M.p. 97.8-99.1 °C. IR 2161, 1610, 1585, 1544, 1417, 1321, 1228, 1098, 848, 825, 771, 718 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (dt, *J* = 8.0, 1.1 Hz, 1H, Ar-H), 7.63 – 7.59 (m, 2H, Ar-H), 7.56 – 7.50 (m, 3H, Ar-H), 7.27 (s, 1H, -CH), 7.15 (dd, *J* = 5.1, 3.7 Hz, 1H, Ar-H). ¹³C NMR (101 MHz, CDCl₃) δ 180.10, 145.26, 138.61, 136.36, 136.29, 131.29, 130.41, 128.81, 128.08, 128.06, 127.34, 126.88, 125.75, 120.82 ppm. HRMS (ESI) m/z calculated for C₁₃H₈OS₂, [M+H]⁺ 245.0095; found 245.0105.

2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3a)

2,2,7-trimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3b)

7-methoxy-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3c)

8-chloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3d)

7-chloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3e)

7,9-dichloro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3f)

7-fluoro-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3g)

2,2-dimethyl-7-nitro-2,3-dihydro-1H-phenothiazin-4(10H)-one (3h)

2,2-dimethyl-7-(trifluoromethyl)-2,3-dihydro-1H-phenothiazin-4(10H)-one (3i)

3,3-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3j)

2-(4-methoxyphenyl)-2,3-dihydro-1H-phenothiazin-4(10H)-one (3k)

2-phenyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3l)

2,3-dihydro-1H-phenothiazin-4(10H)-one (3m)

8-bromo-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (30)

9-bromo-2,2-dimethyl-2,3-dihydro-1H-phenothiazin-4(10H)-one (3p)

2-(4-fluorophenyl)-4H-thiochromen-4-one (5c)

X-ray crystallographic data of 3a

data_b150114a_0ma_a_a_a 2015-01-15 _audit_creation_date _audit_creation_method : Olex2 1.2-ac2 (compiled 2012.03.06 svn.r2239, GUI svn.r4109) ; ? _publ_contact_author_address ? _publ_contact_author_email _publ_contact_author_name " _publ_contact_author_phone ? ? chemical name common _chemical_name_systematic : ? ; _chemical_formula_moiety 'C14 H15 N O S' _chemical_formula_sum 'C14 H15 N O S' _chemical_formula_weight 245.33 _chemical_melting_point ? loop _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system 'monoclinic' _space_group_IT_number 14 'P 1 21/c 1' _space_group_name_H-M_alt _space_group_name_Hall '-P 2ybc' loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 'x, y, z' 2 '-x, y+1/2, -z+1/2' 3 '-x, -y, -z'

_cell_length_a	17.5010(19)	
_cell_length_b	5.6716(6)	
_cell_length_c	12.6807(14)	
_cell_angle_alpha	90.00	
_cell_angle_beta	104.641(3)	
_cell_angle_gamma	90.00	
_cell_volume	1217.8(2)	
_cell_formula_units_Z	4	
_cell_measurement_reflns_used	8403	
_cell_measurement_temperature	273(2)	
_cell_measurement_theta_max	28.07	
_cell_measurement_theta_min	3.23	
_exptl_absorpt_coefficient_mu	0.248	
_exptl_absorpt_correction_T_max	0.9877	
_exptl_absorpt_correction_T_min	0.8861	
_exptl_absorpt_correction_type	'none'	
_exptl_absorpt_process_details	sadabs	
_exptl_crystal_colour	'orange'	
_exptl_crystal_density_diffrn	1.338	
_exptl_crystal_density_meas	?	
_exptl_crystal_density_method	'not measured'	
_exptl_crystal_description	'plate'	
_exptl_crystal_F_000	520	
_exptl_crystal_size_max	0.5	
_exptl_crystal_size_mid	0.4	
_exptl_crystal_size_min	0.05	
_exptl_special_details	sadabs	
_diffrn_reflns_av_R_equivalents	0.0946	
_diffrn_reflns_av_unetI/netI	0.0518	
_diffrn_reflns_limit_h_max	21	
_diffrn_reflns_limit_h_min	-21	
_diffrn_reflns_limit_k_max	7	
_diffrn_reflns_limit_k_min	-7	
_diffrn_reflns_limit_l_max	15	
_diffrn_reflns_limit_l_min	-15	
_diffrn_reflns_number	19390	
_diffrn_reflns_theta_full	26.37	
_diffrn_reflns_theta_max	26.37	
_diffrn_reflns_theta_min	3.23	
_diffrn_ambient_temperature	273.15	
_diffrn_detector_area_resol_mean	?	
_diffrn_measured_fraction_theta_full 0.999		

_diffrn	_measured_	_fraction_	_theta_	_max	0.999
---------	------------	------------	---------	------	-------

_diffrn_measurement_device_type	'Bruker APEX-II CCD'
_diffrn_measurement_method	'\f and \w scans'
_diffrn_radiation_monochromator	graphite
_diffrn_radiation_type	Мо
_diffrn_radiation_wavelength	0.71073
_diffrn_source	'fine-focus sealed tube'
_diffrn_source_current	1.0
_diffrn_source_power	0.05
_diffrn_source_voltage	50.0
_diffrn_standards_decay_%	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_number	0
_reflns_number_gt	2001
_reflns_number_total	2486
_reflns_threshold_expression	>2sigma(I)
_computing_cell_refinement	?
_computing_data_collection	?
_computing_data_reduction	?
_computing_molecular_graphics	

;

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann,

OLEX2: a complete structure solution, refinement and analysis program.

```
J. Appl. Cryst. (2009). 42, 339-341.
```

;

_computing_publication_material

;

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program.

J. Appl. Cryst. (2009). 42, 339-341.

; _computing_structure_refinement ; XL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122 ; _computing_structure_solution ; XS, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122 ; _refine_diff_density_max 0.375 _refine_diff_density_min -0.300

_refine_diff_density_rms	0.060
_refine_ls_extinction_coef	?
_refine_ls_extinction_method	none
_refine_ls_goodness_of_fit_ref	1.065
_refine_ls_hydrogen_treatment	mixed
_refine_ls_matrix_type	full
_refine_ls_number_parameters	156
_refine_ls_number_reflns	2486
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0618
_refine_ls_R_factor_gt	0.0467
_refine_ls_restrained_S_all	1.065
_refine_ls_shift/su_max	0.000
_refine_ls_shift/su_mean	0.000
_refine_ls_structure_factor_coef	Fsqd
_refine_ls_weighting_details	
'calc w=1/[\s^2^(Fo^2^)+(0.1000]	$P^{2^+}=0.0000P$ where $P=(Fo^{2^+}+2Fc^{2^+})/3'$
_refine_ls_weighting_scheme	calc
_refine_ls_wR_factor_gt	0.1396
_refine_ls_wR_factor_ref	0.1504
_refine_special_details	

;

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

```
_atom_sites_solution_hydrogens geom
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
loop_
_atom_site_label
```

_atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_dp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag

_atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group S1 S 0.66585(3) 0.67870(10) 0.56221(4) 0.0294(2) Uani 1 1 d . . . O1 O 0.76587(9) 1.0537(2) 0.52787(11) 0.0311(4) Uani 1 1 d . . . N1 N 0.70945(9) 0.6175(3) 0.81490(13) 0.0234(4) Uani 1 1 d . . . H1 H 0.7219 0.6001 0.8845 0.028 Uiso 1 1 calc R ... C1 C 0.62796(11) 0.4737(3) 0.64064(16) 0.0209(4) Uani 1 1 d . . . C2 C 0.57177(12) 0.3136(4) 0.58626(18) 0.0268(5) Uani 1 1 d . . . H2 H 0.5540 0.3215 0.5108 0.032 Uiso 1 1 calc R . . C3 C 0.54170(12) 0.1427(4) 0.64221(19) 0.0306(5) Uani 1 1 d . . . H3 H 0.5043 0.0362 0.6043 0.037 Uiso 1 1 calc R . . C4 C 0.56704(12) 0.1301(4) 0.75404(19) 0.0292(5) Uani 1 1 d . . . H4 H 0.5471 0.0148 0.7919 0.035 Uiso 1 1 calc R . . C5 C 0.62240(11) 0.2901(4) 0.80981(17) 0.0247(5) Uani 1 1 d . . . H5 H 0.6394 0.2822 0.8854 0.030 Uiso 1 1 calc R ... C6 C 0.65282(11) 0.4620(3) 0.75421(16) 0.0197(4) Uani 1 1 d . . . C7 C 0.74608(11) 0.7909(3) 0.77481(16) 0.0194(4) Uani 1 1 d . . . C8 C 0.73298(11) 0.8379(3) 0.66616(16) 0.0203(4) Uani 1 1 d . . . C9 C 0.77528(11) 1.0186(3) 0.62684(16) 0.0208(4) Uani 1 1 d . . . C10 C 0.83154(12) 1.1714(3) 0.70850(17) 0.0242(5) Uani 1 1 d ... H10A H 0.8031 1.3081 0.7245 0.029 Uiso 1 1 calc R ... H10B H 0.8728 1.2272 0.6760 0.029 Uiso 1 1 calc R ... C11 C 0.86983(11) 1.0451(3) 0.81535(16) 0.0210(4) Uani 1 1 d . . . C12 C 0.80381(11) 0.9326(3) 0.85829(16) 0.0224(5) Uani 1 1 d ... H12A H 0.8275 0.8310 0.9194 0.027 Uiso 1 1 calc R . . H12B H 0.7754 1.0563 0.8851 0.027 Uiso 1 1 calc R ... C13 C 0.92689(12) 0.8575(4) 0.79545(19) 0.0311(5) Uani 1 1 d . . . H13A H 0.8993 0.7501 0.7403 0.047 Uiso 1 1 calc R . . H13B H 0.9484 0.7726 0.8618 0.047 Uiso 1 1 calc R ... H13C H 0.9690 0.9315 0.7717 0.047 Uiso 1 1 calc R ... C14 C 0.91432(13) 1.2202(4) 0.90020(18) 0.0301(5) Uani 1 1 d ... H14A H 0.9549 1.2954 0.8737 0.045 Uiso 1 1 calc R ... H14B H 0.9378 1.1381 0.9667 0.045 Uiso 1 1 calc R ... H14C H 0.8782 1.3371 0.9136 0.045 Uiso 1 1 calc R ...

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 S1 0.0385(4) 0.0347(4) 0.0145(3) -0.0012(2) 0.0055(2) -0.0126(2) O1 0.0437(9) 0.0336(8) 0.0175(8) 0.0018(6) 0.0105(7) -0.0069(7) N1 0.0270(9) 0.0304(9) 0.0128(9) -0.0001(7) 0.0048(7) -0.0059(7) C1 0.0190(10) 0.0242(10) 0.0210(11) -0.0008(8) 0.0080(8) 0.0025(8) C2 0.0249(11) 0.0344(12) 0.0221(11) -0.0053(9) 0.0080(9) -0.0014(9) C3 0.0280(11) 0.0324(12) 0.0338(13) -0.0110(10) 0.0123(10) -0.0073(9) C4 0.0293(11) 0.0278(11) 0.0356(13) 0.0018(10) 0.0173(10) -0.0044(9) C5 0.0239(10) 0.0309(11) 0.0219(11) 0.0004(9) 0.0102(9) 0.0003(8) C6 0.0192(10) 0.0223(10) 0.0195(10) -0.0026(8) 0.0086(8) 0.0004(8) C7 0.0208(10) 0.0212(10) 0.0182(10) -0.0001(8) 0.0085(8) 0.0030(8) C8 0.0200(10) 0.0229(10) 0.0178(11) -0.0018(8) 0.0043(8) 0.0001(8) C9 0.0230(10) 0.0219(10) 0.0183(11) 0.0004(8) 0.0070(8) 0.0030(8) C10 0.0270(11) 0.0215(10) 0.0247(12) -0.0003(8) 0.0078(9) -0.0021(8) C11 0.0221(10) 0.0217(10) 0.0191(10) -0.0012(8) 0.0051(8) -0.0002(8) C12 0.0235(10) 0.0256(10) 0.0186(10) 0.0000(8) 0.0062(8) 0.0002(8) C13 0.0246(11) 0.0315(12) 0.0375(14) -0.0016(10) 0.0084(10) 0.0032(9) C14 0.0289(11) 0.0297(11) 0.0301(13) -0.0031(9) 0.0048(9) -0.0062(9)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

_geom_bond_atom_site_label_1 geom bond atom site label 2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1 C1 1.7648(19).? S1 C8 1.775(2) . ? O1 C9 1.240(2) . ? N1 H1 0.8600 . ? N1 C6 1.402(2) . ? N1 C7 1.342(2).? C1 C2 1.387(3).? C1 C6 1.397(3).? C2 H2 0.9300 . ? C2 C3 1.381(3) . ? C3 H3 0.9300.?

C3 C4 1.377(3).? C4 H4 0.9300 . ? C4 C5 1.384(3).? C5 H5 0.9300.? C5 C6 1.386(3) . ? C7 C8 1.365(3).? C7 C12 1.499(3) . ? C8 C9 1.426(3) . ? C9 C10 1.509(3).? C10 H10A 0.9700 . ? C10 H10B 0.9700.? C10 C11 1.529(3) . ? C11 C12 1.535(3) . ? C11 C13 1.523(3) . ? C11 C14 1.525(3).? C12 H12A 0.9700 . ? C12 H12B 0.9700 . ? C13 H13A 0.9600 . ? C13 H13B 0.9600 . ? C13 H13C 0.9600 . ? C14 H14A 0.9600 . ? C14 H14B 0.9600 . ? C14 H14C 0.9600.?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 S1 C8 100.91(9) . . ? C6 N1 H1 116.9 . . ? C7 N1 H1 116.9 . . ? C7 N1 C6 126.29(17) . . ? C2 C1 S1 118.11(15) . . ? C2 C1 C6 118.59(18) . . ? C6 C1 S1 123.29(15) . . ? C1 C2 H2 119.4 . . ? C3 C2 C1 121.2(2) . . ? C3 C2 H2 119.4 . . ? C2 C3 H3 120.0 . . ? C4 C3 C2 120.0(2) . . ?

C4 C3 H3 120.0 . . ? C3 C4 H4 120.2 . . ? C3 C4 C5 119.60(19) . . ? C5 C4 H4 120.2 . . ? C4 C5 H5 119.7 . . ? C4 C5 C6 120.7(2) . . ? C6 C5 H5 119.7 . . ? C1 C6 N1 121.92(17) . . ? C5 C6 N1 118.17(18) . . ? C5 C6 C1 119.90(18) . . ? N1 C7 C8 123.44(18) . . ? N1 C7 C12 115.25(17) . . ? C8 C7 C12 121.31(17) . . ? C7 C8 S1 124.13(15) . . ? C7 C8 C9 121.59(17) . . ? C9 C8 S1 114.25(15) . . ? O1 C9 C8 121.44(18) . . ? O1 C9 C10 119.93(17) . . ? C8 C9 C10 118.62(17) . . ? C9 C10 H10A 108.8 . . ? C9 C10 H10B 108.8 . . ? C9 C10 C11 113.75(16) . . ? H10A C10 H10B 107.7 . . ? C11 C10 H10A 108.8 . . ? C11 C10 H10B 108.8..? C10 C11 C12 107.97(16) . . ? C13 C11 C10 109.82(17) . . ? C13 C11 C12 110.60(16) . . ? C13 C11 C14 109.41(16) . . ? C14 C11 C10 110.58(15) . . ? C14 C11 C12 108.44(16) . . ? C7 C12 C11 113.94(16) . . ? C7 C12 H12A 108.8 . . ? C7 C12 H12B 108.8 . . ? C11 C12 H12A 108.8 . . ? C11 C12 H12B 108.8 . . ? H12A C12 H12B 107.7 . . ? C11 C13 H13A 109.5 . . ? C11 C13 H13B 109.5 . . ? C11 C13 H13C 109.5 . . ? H13A C13 H13B 109.5 . . ? H13A C13 H13C 109.5 . . ? H13B C13 H13C 109.5 . . ? C11 C14 H14A 109.5 . . ?

C11 C14 H14B 109.5 . . ? C11 C14 H14C 109.5 . . ? H14A C14 H14B 109.5 . . ? H14A C14 H14C 109.5 . . ? H14B C14 H14C 109.5 . . ?

loop_

_geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A N1 H1 O1 0.86 1.99 2.804(2) 158.2 4_576