Supporting Information

Noble-Metal-Free Co₃S₄-S/G Porous Hybrids As an Efficient Electrocatalyst for Oxygen Reduction Reaction

Wenling Gu, ac Liuyong Hu, bc Wei Hong, ac Xiaofang Jia, a Jing Li*a and Erkang Wang*

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, Jilin 130022, PR China;

^bState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China;

^cUniversity of the Chinese Academy of Sciences, Beijing, 100049, PR China

Corresponding author: Prof. Erkang Wang, Associate Prof. Jing Li, Tel: +86-431-85262003, Fax:

+86-431-85689711, Email: ekwang@ciac.ac.cn and lijingce@ciac.ac.cn

Table of content

Figure S1	The fabrication process of the cobalt dithiolene.			
Figure S2	The UV-Vis absorption spectra of the obtained cobalt dithiolene.			
Figure S3	XRD patterns and Raman spectra of the Co ₃ S ₄ -S/G catalysts at different			
	carbonization temperature.			
Figure S4	SEM images of the catalysts which achieved at different instant			
	carbonation temperature			
Figure S5	CVs, LSV curves, electron transfer number and H ₂ O ₂ yield of different			
	catalysts in an O ₂ -saturated 0.1 M KOH electrolyte.			
Figure S6	Tafel slopes of the different catalysts were obtained in alkaline			
	conditions.			
Figure S7	$N_{\rm 2}$ adsorption-desorption isotherm and BJH pore distributions of the			
	obtained Co ₃ S ₄ -S/G catalyst.			
Figure S8	EDX image of the obtained Co ₃ S ₄ -S/G-800 catalyst.			
Figure S9	Raman spectra of pristine graphene.			
Figure S10	XRD pattern and TEM image of the reference sample Co ₃ S ₄ /C-800.			
Figure S11	CVs, RRDE voltammograms, electron transfer number, H_2O_2 yield and			
	RDE voltammograms of Co_3S_4 -S/G-800 hybrids in 0.5 M H_2SO_4			
	electrolyte.			
Figure S12 & Figure	LSV & CVs of Co-S/C-800 and Pt/C in an O ₂ -saturated 0.1 M KOH			
S13	and 0.5 M H_2SO_4 solution without and with 0.3 M CH_3OH .			

Figure S14	The amperometric i-t curves of the Co_3S_4 -S/G-800 and Pt/C in an O_2
	saturated 0.5 M H_2SO_4 electrolyte.
Table S1	The Elemental compositions of different catalysts samples determined
	by XPS and EDX.
Table S2	Comparison of the Brunauer-Emmet-Teller (BET) surface area of the
	obtained catalysts.
Table S3	Comparison of the ORR ability of various catalysts.

Figure S1 The fabrication process of the cobalt dithiolene.

1,2-benzedithiol (0.5 mmol) was added to a solution of CH_3OLi (2 mmol) in 5ml degassed methanol and stirred for 45 min. A solution of $Co(_6H_2O)Cl_2$ (0.3 mmol) was added in one portion, forming a blue solution. This mixture was stirred for 15 min, air was bubbled through the solution for 20 min, and then Bu_4NBr (0.6 mmol) added. The precipitate was filtered and washed with H_2O , methanol, and Et_2O .

Figure S2 The UV-Vis absorption spectra of the obtained cobalt dithiolene.

Figure S3 XRD patterns (a) and Raman spectra (b) of the Co_3S_4 -S/G catalysts at different carbonization temperature from 600 °C to 900 °C.

Figure S4 SEM images of the catalysts achieved at different instant carbonation temperature, (a)

Co₃S₄-S/G-600, (b) Co₃S₄-S/G-700, (c) Co₃S₄-S/G-800, (d) Co₃S₄-S/G-900.

Figure S5 (a) CVs of the different catalysts were obtained in an O_2 -saturated 0.1 M KOH electrolyte. The potential scan rate: 50 mV s⁻¹; (b) LSV curves (c) electron transfer number and (d) H_2O_2 yield of different nanocatalysts in an O_2 -saturated 0.1 M KOH electrolyte with the scan rate of 5 mV/s. Rotation rate is 1600 rpm.

Figure S6 Tafel slopes of the different catalysts were obtained in alkaline conditions.

Figure S7 (a) N_2 adsorption-desorption isotherm and (b) BJH pore distributions of the obtained Co_3S_4 -S/G catalysts.

Figure S8 EDX image of the obtained Co₃S₄-S/G-800 catalyst.

Figure S9 Raman spectra of pristine graphene.

Figure S10 XRD pattern (a), TEM image (b) of the reference sample Co₃S₄/C-800.

Figure S11 CVs (a) of the Co₃S₄-S/G-800 nanocatalyst in N₂ or O₂ saturated 0.5 M H₂SO₄ electrolyte at the potential scan rate of 50 mV s⁻¹; RRDE voltammograms (b), electron transfer number (c), H₂O₂ yield (d) of the Co₃S₄-S/G-800, Pt/C and Co₃S₄/C-800 hybrids in O₂ saturated 0.5 M H₂SO₄ electrolyte with a scan rate of 5 mVs⁻¹. The rotation rate was 1600 rpm; RDE voltammograms (e) of the Co₃S₄-S/G-800 at various rotation rates and the inset is the koutecky–levich plots for ORR using the Co₃S₄-S/G-800 hybrids at different potentials in 0.5 M H₂SO₄ electrolyte; The corresponding tafel plots (f) of the Co₃S₄-S/G-800 and Pt/C catalysts.

Figure S12 LSV curves of Co_3S_4 -S/G-800 (a, c) and Pt/C (b, d) in an O₂-saturated 0.1 M KOH and 0.5 M H₂SO₄ solution without and with 0.3 M CH₃OH, the scan rate is 5 mVs⁻¹. Rotation rate is 1600 rpm.

Figure S13 CVs of Co₃S₄-S/G-800 (a, c) and Pt/C (b, d) in an O₂-saturated 0.1 M KOH or 0.5 M

 H_2SO_4 solution without and with 0.3 M CH₃OH, the scan rate is 50 mV s⁻¹.

Figure S14 The amperometric i-t curves of the Co_3S_4 -S/G-800 and Pt/C in an O_2 saturated 0.5 M

H₂SO₄ electrolyte.

Samples	elements compositions (%) determined by XPS/EDX			
	S atom %	Co atom %		
Co ₃ S ₄ -S/G-600	2.21/11.42	1.7/8.29		
Co ₃ S ₄ -S/G-700	2.08/11.32	1.64/8.1		
Co ₃ S ₄ -S/G-800	2.38/10.9	1.35/7.59		
Co ₃ S ₄ -S/G-900	1.56/9.30	1.3/7.52		

Table S1 The Elemental compositions of different catalysts samples determined byXPS and EDX.

Samples	onset potential (V) vs. RHE	half-wave potential (V) vs. RHE	current density (mA/cm²)
Co ₃ S ₄ -S/G-600	0.87	0.75	5.66
Co ₃ S ₄ -S/G-700	0.88	0.78	5.5
Co ₃ S ₄ -S/G-800	0.92	0.80	6.0
Co ₃ S ₄ -S/G-900	0.89	0.79	5.3

 Table S2 The catalyst activity of the catalysts at different carbonization temperature.

 Table S3 The Brunauer-Emmet-Teller (BET) surface area and pore volume of the obtained catalysts.

	Co ₃ S ₄ -S/G-600	Co ₃ S ₄ -S/G-700	Co ₃ S ₄ -S/G-800	Co ₃ S ₄ -S/G-900
BET surface				
area (m ² g ⁻¹)	26.24	52.02	52.44	38.36
Pore volume				
(cm ³ g ⁻¹)	0.084	0.106	0.121	0.118
Average pore				
size (nm)	11.2	8.5	13	10.4

Catalysts	Fabrication method	Electrolyte	Potential at J=3mA cm ⁻² (V) vs. RHE	Electron transfer number (n)	Reference
Co ₃ S ₄ -S/G-800	Pyrolysis a S ₄ -chelate complex and GO	0.1 M KOH	0.792	3.88~4	This work
		$0.5 \text{ M H}_2\text{SO}_4$	0.42	3.83~3.93	
Co _{1-x} S/RGO hybrid	Two steps: solution- phase reaction	0.1 M KOH	0.75	4	1
	process and a annealing process	$0.5 \mathrm{~M~H_2SO_4}$	0.42	3.4~3.8	
Co ₃ S ₄ /Graphene	Multi-step	0.1 M KOH	0.53	3.2~3.9	
Composites	hydrothermal reaction process	0.5 M H ₂ SO ₄	0.11	2.0~3.2	2
CoS ₂ -based thin films	magnetron sputtering	0.1 M HClO ₄	0.34		3
CoS ₂ /N,S-GO	Pyrolysis of cobalt thiourea and GO	0.1 M KOH	0.79	3.81	4
Co _{0.5} Fe _{0.5} S@N- MC	Pyrolysis of thiourea and pluronic F127 in presence of cobalt(II) acetate and iron(III) nitrate	0.1 M KOH	0.79	3.8~4	5
Fe-P-C	Pyrolysis of phytic	0.1 M KOH	0.75	3.83	
	acid in presence of ferric trichloride	0.1 M HClO ₄	0.45	3.61	6
g-C ₃ N ₄ /C	By a hard template method fabricating graphitic carbon nitirde	0.1 M KOH	0.6	3.17	7
—: no data presente	ed.				

Table S4 Comparison of the ORR ability of various catalysts.

References

- 1. Wang, H. L.; Liang, Y. Y.; Li, Y. G.; Dai, H. J. Angew. Chem. Int. Ed. 2011, 50, 10969.
- 2. Mahmood, N.; Zhang, C. Z.; Jiang, J.; Liu, F.; Hou, Y. L. Chem. Eur. J. 2013, 19, 5183.
- Zhu, L.; Susac, D.; Teo, M.; Wong, K. C.; Wong, P. C.; Parsons, R. R.; Bizzotto, D.; Mitchell, K. A. R.; Campbell, S. A. J. Catal. 2008, 258, 235.
- Sun, T.; Wu, Q.; Che, R. C.; Bu, Y. F.; Jiang, Y. F.; Li, Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. ACS Catal. 2015, 5, 1857.
- Shen, M. X.; Ruan, C. P.; Chen, Y.; Jiang, C. H.; Ai, K. L.; Lu, L. H. ACS Appl. Mater. Interfaces 2015, 7, 1207.
- 6. Singh, K. P.; Bae, E. J.; Yu, J. S. J. Am. Chem. Soc. 2015, 137, 3165.
- Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Jurcakova, D. H.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2012, 51, 3892.