Electronic Supplementary Information

Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human *O*-GlcNAcase.

N. Cekic,^{a,†} J. E. Heinonen,^{a,†} K. A. Stubbs,^{a,b} C. Roth,^c Y. He,^c A. J. Bennet,^a E. J. McEachern,^{a,‡} G. J. Davies,^c D. J. Vocadlo^{a,d,}*

^a Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

^b School of Chemistry and Biochemistry, The University of Western Australia (M313), 35 Stirling Highway, Crawley WA 6009, Australia

^c York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD, U.K.,

^d Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

*Correspondence: dvocadlo@sfu.ca

Experimental Section:

General Information. All dry solvents and buffer salts were used as purchased from Sigma-Aldrich and all reagents were utilized without further purification. The progress of all reactions was monitored on Merck pre-coated silica gel plates using combinations of ethyl acetate/n-hexane (EtOAc/Hexanes), ethyl acetate/dichloromethane (EtOAc/DCM), or methanol/dichloromethane (MeOH/DCM) solvent elution systems. Flash chromatography was performed under a positive pressure with Fisher Scientific silica gel (230-400 mesh) where spots were visualized by irradiation with ultraviolet light (254 nm), staining with KMnO₄ and charring with 10% ammonium molybdate in 2M H₂SO₄ upon heating. Proton (¹H) and carbon (¹³C) NMR spectra were established on either a Bruker Avance 500 (500 MHz for ¹H, 125 MHz for ¹³C, Bruker Avance 400 (400 MHz for ¹H, 101 MHz for ¹³C), or Bruker Avance II 600 (600 MHz for ¹H, 151 MHz for ¹³C) using CDCl₃, DMSO-d₆, CD₃OD, or D₂O as the sample solvent. Chemical shifts are given in parts per million (ppm) (δ relative to a residual solvent peak for ¹H and ¹³C). High resolution mass spectrometry (HRMS) analysis was performed using a Bruker maXis TOF LC/MS/MS instrument.

Synthetic procedures. The per-acetylated glucosamine salt 8 was made using a known literature procedure by Gonzales *et al*[1] which described its conversion to the carbohydrate isothiocyanate intermediate 12 and its subsequent transformation to a series of carbohydrate amino thiazoline analogues.

1,3,4,6-*tetra-O*-acetyl-2-amino-2-deoxy- β -D-glucopyranose hydrochloride (8). ¹H-NMR (400 MHz, CD₃OD) δ (ppm) 5.87 (d, J = 8.8Hz, 1H), 5.37 (dd, J = 10.5, 9.2 Hz, 1H), 5.11 (dd, J = 10.0, 9.2 Hz, 1H), 4.33 (dd, J = 12.6, 4.6 Hz, 1H), 4.14 (dd, J = 12.6, 2.3 Hz, 1H), 4.04 (ddd, J = 10.1, 4.6, 2.3 Hz, 1H), 3.62 (dd, J = 10.5, 8.8 Hz, 1H), 2.22 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H); ¹³C-NMR (125 MHz, H₂O+D₂O) δ (ppm) 173.53, 172.97, 172.64, 171.17, 90.41, 72.12, 70.87, 67.99, 61.42, 52.44, 20.21, 20.19, 20.08, 20.03; HRMS (m/z): [M+H]+ calculated for C₁₄H₂₂NO₉: 348.1295; found 348.1250; [M+Na]+ calculated for C₁₄H₂₁NNaO₉: 370.1114; found 370.1114; [M+K]+ calculated for C₁₄H₂₁NKO₉: 386.0853; found 386.0849.

Preparation of isothiocyanate intermediate 12. Synthesis was performed with minor modifications to the procedure described by Gonzalez *et al.*[1] After combining amine **8** (10.0g, 26.1 mmol), and CaCO₃ (7.9 g, 78.3 mmol) in a round bottom flask at room temperature, DCM and H₂O (17 mL each) were added. Thiophosgene (3.0 mL, 39.2 mmol) was then added drop-wise, followed by further addition of DCM and H₂O (13 mL each). The reaction was monitored by TLC and stirred at room temperature (~ 3 hours). The aqueous layer of the mixture was extracted twice with DCM. The organic layers were collected, dried over MgSO₄, filtered and concentrated to afford the crude compound **12** as a sticky dark yellow solid (8.73g, 86%). The product was used with no further purification necessary.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-isothiocyanato-β-D-glucopyranose (12). ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 5.69 (d, J = 8.6 Hz, 1H), 5.29 – 5.18 (t, 1H), 5.04 – 4.94 (t, 1H), 4.27 (dd, J = 12.4, 4.3 Hz, 1H), 4.13 – 4.03 (m, 1H), 3.96 (dd, J = 10.3, 8.6 Hz, 1H), 3.88 – 3.81 (m, 1H), 2.17 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 170.45, 169.58, 169.48, 168.49, 142.07, 91.72, 72.93, 72.54, 67.46, 61.29, 59.40, 20.83, 20.65, 20.62, 20.50; HRMS (m/z): [M+Na]+ calculated for C₁₅H₁₉NNaO₉S: 412.0678; found 412.0677; [M+K]+ calculated for C₁₅H₁₉KNO₉S: 428.0418; found 428.0414.

Synthesis of thiourea 9a from amine 8. To a stirred solution of 8 (250 mg, 0.65 mmol) in DCM was added triethylamine (0.9 mL, 0.65 mmol). The solution was diluted with 20 mL of saturated NaHCO₃, and the resulting mixture extracted with DCM (3 x 10 mL). The combined organic layers were dried with Na₂SO₄ and concentrated to give 220 mg of 1,3,4,6-*tetra-O*-acetyl-2-amino-2-deoxy- β -D-glucopyranose which was used without purification. 1,3,4,6-*tetra-O*-acetyl-2-amino-2-deoxy- β -D-glucopyranose (220 mg) was then dissolved in 5 mL of pyridine and 9-fluorenylmethoxycarbonyl isothiocyanate (Fmoc) (180 mg, 0.65 mmol) and triethyl amine (0.02 mL) were added. The resulting mixture was stirred at room temperature for 16 hours. The solution was concentrated and the residue diluted with DCM (20 mL) and NaHCO₃ (20 mL), and subsequently extracted with DCM (3 x 10 mL). The combined organic extracts were dried with Na₂SO₄ and concentrated. Flash chromatography was performed with 75% EtOAc:hexanes to yield **9a** as a white foam (360 mg, 89% yield over two steps).

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2-fluoren-9-yl methoxycarbonyl)amino]thioxomethyl]amino]-β-D-glucopyranose (9a). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.7 Hz, 2H), 7.56 (dq, J = 7.6, 0.8 Hz, 2H), 7.44 (td, J = 7.5, 1.0 Hz, 2H), 7.34 (dd, J = 7.5, 1.1 Hz, 2H), 5.84 (d, J = 8.2 Hz, 1H), 5.24 (dt, J = 38.6, 9.1 Hz, 2H), 5.07 (q, J = 9.3 Hz, 1H), 4.54 (d, J = 6.6 Hz, 2H), 4.31 (ddd, J = 12.2, 7.5, 4.6 Hz, 1H), 4.24 (t, J = 6.6 Hz, 1H), 4.16 (dd, J = 12.4, 2.6 Hz, 1H), 3.86 (ddd, J = 9.4, 4.7, 2.7 Hz, 1H), 2.13 (d, J = 0.5 Hz, 3H), 2.11 (d, J = 0.5 Hz, 3H), 2.06 (d, J = 0.5 Hz, 3H), 2.05 (d, J = 0.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 180.22, 170.72, 170.46, 169.34, 169.24, 152.16, 142.80, 141.37, 129.06, 128.25, 128.15, 127.83, 127.30, 125.32, 124.96, 124.84, 120.29, 120.09, 92.21, 72.87, 72.21, 68.40, 67.47, 61.65, 57.59, 46.49, 21.05, 20.77, 20.72, 20.62.

Synthesis of thiourea 9b from amine 8. 1 g (2.6 mmol) of 8 was dissolved in CH₃CN. Triethylamine (0.7 mL, 5.2 mmol) was added, followed by allyl isothiocyanate (0.5 mL, 5.2 mmol). The reaction mixture was stirred at room temperature for ~2 hours, followed by work-up with a minimal amount of saturated NaHCO₃ after completion. The aqueous layer formed was extracted twice with DCM and the organic layers were then combined, dried over MgSO₄, filtered and concentrated. The crude product was purified by silica flash chromatography (1:1 EtOAc/Hexanes), affording a solid, white product (70%, 785 mg).

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2-prop-1-ene)amino]thioxomethyl]amino]-β-D-glucopyranose (9b). ¹H NMR (500 MHz, CDCl₃) δ 6.34 (s, 1H), 6.21 (s, 1H), 5.91 – 5.82 (m, 1H), 5.75 (dd, J = 8.5, 1.3 Hz, 1H), 5.32 – 5.14 (m, 5H), 4.29 (ddd, J = 12.5, 4.7, 1.9 Hz, 1H), 4.19 – 4.07 (m, 2H), 3.87 (ddd, J = 9.7, 4.7, 2.3 Hz, 1H), 2.14 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 1.98 – 1.87 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 183.51, 171.5, 171.2, 170.68, 169.27, 136.36, 117.43, 92.95, 72.93, 72.90, 67.64, 61.62, 57.77, 53.74, 21.04, 20.82, 20.74, 20.59; HRMS (m/z): [M + H]+ calculated for C₁₈H₂₇N₂O₉S: 447.1437 (M+H); found 447.1430; [M + Na]+ calculated for C₁₈H₂₆N₂NaO₉S: 469.1251; found 469.1251; [M+K]+ calculated for C₁₈H₂₆KN₂O₉S: 485.0996; found 485.1005.

General synthesis of thioureas 13a-c, 13f-h. Isothiocyanate 12 (1 eq) was dissolved in CH_3CN followed by addition of the desired amine hydrochloride salt (1.2-2.0 eq), then drop-wise addition of triethylamine (2.0 eq). The reaction mixture was stirred for ~4 hours by monitoring by TLC. Upon completion, it was washed with a minimal amount of saturated NaHCO₃. The aqueous layer was extracted twice with DCM and the organic layers were combined, dried over MgSO₄, filtered and concentrated. The crude product was purified by silica flash chromatography (1:1 EtOAc/hexanes or 75% EtOAc in hexanes) to afford the pure product.

General synthesis of thioureas 13d-e. Isothiocyanate 12 (1 eq) was dissolved in DCM, followed by drop-wise addition of the desired amine (1.05 eq). The reaction mixture was stirred for ~4 hours by monitoring by TLC. Upon completion, it was washed with a minimal amount of saturated NaHCO₃. The aqueous layer was extracted twice with DCM and the organic layers were combined, dried over MgSO₄, filtered and concentrated. The crude product was purified by silica flash chromatography (1:1 EtOAc/hexanes or 75% EtOAc in hexanes) to afford the pure product. Products were isolated in yields ranging from 60 to 87%.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[(aminomethyl)thioxomethyl]amino]-β-D-glucopyranose (13a): ¹H NMR (400 MHz, CDCl₃) δ 6.56 (s, 1H), 6.41 (s, 1H), 5.78 (d, J = 8.4 Hz, 1H), 5.27 (t, J = 9.6 Hz, 1H), 5.13 (t, J = 9.6 Hz, 1H), 4.24 (dd, J = 12.5, 4.6 Hz, 1H), 4.10 (dt, J = 14.3, 4.6 Hz, 2H), 3.85 (ddd, J = 9.9, 4.5, 2.3 Hz, 1H), 2.93 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.52, 170.75, 169.55, 169.36, 92.85, 73.14, 72.73, 67.90, 61.76, 57.63, 20.98, 20.78, 20.69, 20.55. HRMS (m/z): [M+H] + calculated for C₁₆H₂₅N₂O₉S: 421.1281 found 421.1227; [M+Na]+ calculated for C₁₆H₂₄N₂NaO₉S: 443.1134; found 443.1098; [M+K]+ calculated for C₁₆H₂₄KN₂O₉S: 459.0840; found 459.0840.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2[(dimethylamino)thioxomethyl]amino]-β-D-glucopyranose (13b): ¹H NMR (500 MHz, CDCl₃) δ 5.74 (t, J = 9.7 Hz, 1H), 5.70 (d, J = 9.2 Hz, 1H), 5.36 – 5.23 (m, 1H), 5.23 – 5.13 (m, 2H), 4.21 (dt, J = 15.7, 7.9 Hz, 1H), 4.12 – 4.09 (m, 1H), 3.80 (ddd, J = 9.1, 4.5, 2.2 Hz, 1H), 3.17 (s, 6H), 2.07 (s, 3H), 2.06 (s, 3H), 2.01 (d, J = 3.4 Hz, 3H), 2.00 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 182.29, 171.83, 170.68, 169.94, 169.06, 93.28, 73.24, 72.99, 67.52, 61.71, 58.46, 40.63, 21.06, 20.78, 20.69, 20.53; HRMS (m/z): [M + H]+ calculated for $C_{17}H_{26}N_2O_9S$: 489.1149; found 489.1152; [M + Na]+ calculated for $C_{17}H_{26}N_2O_9S$: 511.0969; found 511.0970.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2-propyl)amino]thioxomethyl]amino]-β-D-glucopyranose (13d): ¹H NMR (400 MHz, CDCl₃) δ 6.22 (s, 1H), 5.98 (d, J = 26.1 Hz, 1H), 5.76 (d, J = 8.5 Hz, 1H), 5.23 – 5.20 (m, 2H), 4.30 (dd, J = 12.5, 4.6 Hz, 1H), 4.27 – 4.21 (m, 1H), 4.20 – 4.10 (m, 1H), 3.87 (ddt, J = 6.8, 4.5, 2.3 Hz, 1H), 3.46 – 3.28 (m, 2H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 1.62 (qd, J = 7.3, 2.0 Hz, 2H), 0.98 (t, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.09, 170.95, 170.73, 169.27, 99.98, 93.09, 72.99, 67.60, 62.10, 61.68, 21.04, 20.93, 20.81, 20.75, 20.65, 20.59, 11.30. HRMS (m/z): [M + H]+ calculated for $C_{18}H_{29}N_2O_9S$: 449.1594; found 449.1593.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2-butyl)amino]thioxomethyl]amino]-β-D-glucopyranose (13e): ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 1H), 5.76 (d, J = 8.5 Hz, 1H), 5.36 – 5.07 (m, 2H), 4.30 – 4.16 (m, 2H), 4.15 – 4.09 (m, 1H), 3.85 (ddd, J = 9.7, 4.6, 2.3 Hz, 1H), 3.58 – 3.13 (bs, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.56 – 1.48 (m, 2H), 1.38 – 1.30 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 171.60, 171.00, 169.39, 169.27, 93.07, 72.97, 68.10, 67.62, 62.10, 61.69, 30.90, 21.15, 20.94, 20.86, 20.71, 20.12, 20.09, 13.80; HRMS (m/z): [M + H] + calculated for C₁₉H₃₁N₂O₉S: 463.1750; found 463.1737.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2-fluoroethyl)amino]thioxomethyl]amino-β-D-glucopyranose (13f): ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 6.43 (s, 1H), 5.99 (d, J = 7.6 Hz, 1H), 5.64 (d, J = 8.6 Hz, 1H), 5.20 – 5.11 (m, 2H), 4.70 – 4.50 (m, 2H), 4.31 (dd, J = 12.5, 4.5 Hz, 1H), 4.14 – 4.13 (m, 1H), 3.82 (ddd, J = 9.4, 4.5, 2.3 Hz, 2H), 2.14 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 184.30, 171.94, 171.62, 171.05, 169.76, 93.10,

82.77 (d, J = 166.3 Hz), 73.30, 72.91, 68.18, 61.93, 57.79, 45.57, 21.17, 21.02, 20.99, 20.84; HRMS (m/z): [M+H]+ calculated for $C_{17}H_{26}FN_2O_9S$: 453.1343; found 453.1342.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2,2-difluoroethyl)amino]thioxomethyl]amino-β-D-glucopyranose (13g): ¹H-NMR (400 MHz, CDCl₃) δ 6.55 (s, 2H), 5.99 (t, J = 56.1 Hz, 1H), 5.74 (d, J = 8.6 Hz, 1H), 5.32 – 5.21 (m, 1H), 5.11 (t, J = 9.6 Hz, 1H), 4.27 (dd, J = 12.5, 4.4 Hz, 1H), 4.14 (d, J = 6.5 Hz, 1H), 4.09 (td, J = 7.2, 1.2 Hz, 2H), 3.88 (ddd, J = 9.8, 4.2, 2.0 Hz, 3H), 2.11 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ (ppm) 184.72, 171.57, 171.54, 170.91, 169.61, 113.54 (t, J = 241.5 Hz, 1C), 92.65, 72.95, 72.57, 68.05, 61.78, 57.51, 46.42 (t, J=27.2 Hz) 20.77, 20.62, 20.60, 20.48; HRMS (m/z): [M+H]+ calculated for $C_{17}H_{25}F_2N_2O_9S$: 471.1249; found 471.1242; [M+Na]+ calculated for $C_{17}H_{25}F_2NaN_2O_9S$: 493.1068; found 493.1065.

1,3,4,6-*tetra-O*-acetyl-2-deoxy-2-[[[(2,2,2 trifluoroethyl)amino]thioxomethyl]amino-β-D-glucopyranose (13h): ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 6.62 – 6.49 (m, 2H), 5.79 (d, J = 8.5 Hz, 1H), 5.30 (t, J = 9.8 Hz, 1H), 5.16 (t, J = 9.6 Hz, 1H), 4.55 – 4.40 (m, 1H), 4.31 (dd, J = 12.4, 4.7 Hz, 2H), 4.22 – 4.11 (m, 2H), 3.94 (ddd, J = 9.8, 4.5, 2.2 Hz, 1H), 2.14 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 184.83, 171.76, 171.63, 170.88, 169.62, 124.01 (q, J = 279.2 Hz), 92.44, 72.77, 72.42, 68.04, 61.66, 57.52, 45.23, 20.59, 20.52, 20.46, 20.36; HRMS (m/z): [M+H]+ calculated for C₁₇H₂₃F₃N₂O₉S: 489.1155; found 489.1153; [M+Na]+ calculated for C₁₇H₂₃F₃NaN₂O₉S: 511.0974; found 511.0970.

Synthesis of per-acetylated thiazoline 10a. Thiourea 9a (200 mg, 0.32 mmol) was dissolved in 4 mL of DCM and $SnCl_4$ (0.5 mL, 4.0 mmol) was then added. The resulting mixture was stirred at room temperature for 16 hours. The solution was diluted with 20 mL of saturated NaHCO₃ and the mixture was then extracted with DCM (3 x 10 mL). The combined organic extracts were dried with Na₂SO₄ and concentrated. Silica flash chromatography was used to purify the crude mixture with 75% EtOAc/hexanes to yield 10a as a white foam (125 mg, 65% yield).

3,4,6-*tri-O*-acetyl-1,2-dideoxy-2'[(-[[[(2-fluoren-9-ylmethoxycarbonyl)amino]thioxomethyl]amino]-*a*-D-glucopyranoso[2,1-d]- Δ 2'-thiazoline (10a): ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 7.6, 2.7 Hz, 2H), 7.59 (dd, J = 7.6, 4.3 Hz, 2H), 7.45 – 7.40 (m, 2H), 7.34 (dtd, J = 15.0, 7.5, 1.1 Hz, 2H), 6.01 (d, J = 6.9 Hz, 1H), 5.24 (t, J = 4.7 Hz, 1H), 4.95 (dd, J = 9.6, 4.2 Hz, 1H), 4.74 (s, 1H), 4.55 (dd, J = 10.8, 6.0 Hz, 1H), 4.29 – 4.21 (m, 2H), 4.14 – 4.12 (m, 1H), 3.81 (s, 1H), 3.70 (s, 1H), 2.12 (s, 3H), 2.04 (s, 3H), 1.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 20.62, 20.71, 21.35, 46.78, 57.91, 63.70, 67.92, 69.46, 71.88, 72.52, 90.23, 120.71, 120.89, 123.83, 124.04, 125.15, 127.76, 127.97, 129.61, 129.72, 130.08, 141.31, 142.86, 152.11, 161.43, 169.11, 169.63, 170.23.

General synthesis of per-acetylated thiazolines 10b and 14a-h. Thiourea derivatives **9b, 13a-13h** (1 eq) were each dissolved in DCM under argon, after which trifluoroacetic acid (7.5 eq) was added drop-wise. The reaction was stirred under an atmosphere of argon overnight (~10 hours) until judged complete by TLC analysis. The mixture was washed twice with saturated NaHCO₃, followed by extraction of the aqueous layers 3 times with DCM. The organic layers were combined, dried over MgSO₄, filtered and concentrated to obtain the crude product which was then purified using silica flash chromatography (generally 1:1 EtOAc/hexanes or 75% EtOAc/hexanes). Products were isolated in yields ranging from 55 to 84%.

3,4,6-*tri-O*-acetyl-1,2-dideoxy-2'[(2-prop-1-ene)amino]-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (10b): ¹H NMR (400 MHz, CDCl₃) δ 6.21 (d, J = 6.5 Hz, 1H), 5.90 (ddt, J = 16.9, 10.6, 5.5 Hz, 1H), 5.38 (dd, J = 3.9, 2.8 Hz, 1H), 5.17 (ddd, J = 13.7, 11.5, 1.3 Hz, 2H), 4.94 – 4.89 (m, 1H), 4.36 – 4.31 (m, 1H), 4.13 – 4.07 (m, 3H), 3.97 – 3.89 (m, 1H), 3.83 (ddd, J = 11.4, 9.2, 5.0 Hz, 2H), 2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) 170.36, 169.38, 169.18, 159.98, 133.93, 116.06, 89.30, 72.25, 71.40, 68.88, 68.12, 62.97, 46.51, 20.71, 20.58, 20.49. HRMS (m/z): [M + H]+ calculated for C₁₆H₂₃N₂O₇S: 387.1226 found 387.1221; [M+Na]+ calculated for C₁₆H₂₂NaN₂O₇S: 409.1045; found 409.1038.

3,4,6,-*tri-O*-acetyl-1,2-dideoxy-2'-aminomethyl-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (14a): ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 6.25 (d, J = 6.5 Hz, 1H), 5.43 (dd, J = 4.1, 3.0 Hz, 1H), 4.95 (ddd, J = 9.6, 2.8, 0.9 Hz, 1H), 4.37 (dd, J = 6.0, 4.5 Hz, 1H), 4.17-4.14 (m, 2H), 3.90-3.84 (m, 1H), 2.94 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ (ppm) 170.65, 169.67, 169.49, 161.36, 89.77, 72.40, 71.95, 69.09, 68.61, 63.15, 31.11, 20.99, 20.88, 20.77; HRMS (m/z): [M + H]+ calculated for $C_{14}H_{21}N_2O_7S$: 361.1069; found 361.1064; [M+Na]+ calculated for $C_{14}H_{20}NaN_2O_7S$: 383.0889; found 383.0882; [M+K]+ calculated for $C_{14}H_{20}KN_2O_7S$: 399.0628; found 399.0620.

3,4,6,*tri-O*-acetyl-1,2-dideoxy-2'-dimethylamino-α-D-glucopyranoso[2,1-d]-Δ2'- thiazoline (14b): ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 6.24 (d, J = 6.6 Hz, 1H), 5.41 (dd, J = 4.3, 3.4 Hz, 1H), 4.95 (ddd, J = 9.6, 3.3, 0.9 Hz, 1H), 4.35 (dd, J = 6.1, 4.9 Hz, 1H), 4.15, (dd, J = 8.5, 5.8 Hz, 2H), 3.89 (ddd, J = 9.1, 5.1, 3.1 Hz, 1H), 3.01 (s, 6H), 2.11 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ (ppm) 170.63, 169.62, 169.51, 162.50, 90.17, 72.84, 72.30, 69.10, 68.53, 63.11, 39.90, 21.00, 20.86, 20.76; HRMS (m/z): [M + H]+ calculated for $C_{15}H_{23}N_2O_7S$: 375.1226; found 375.1221; [M + Na]+ calculated for $C_{15}H_{22}NaN_2O_7S$: 397.1045; found 397.1037.

3,4,6,-*tri-O*-acetyl-1,2-dideoxy-2'[(2-propyl)amino]-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (14d): ¹H NMR (400 MHz, CDCl₃) δ 6.28 (d, J = 6.5 Hz, 1H), 5.43 (dd, J = 4.3, 3.0 Hz, 1H), 4.98 (ddd, J = 9.4, 3.0, 1.0 Hz, 1H), 4.40 (ddd, J = 6.5, 4.3, 1.1 Hz, 1H), 4.21 – 4.15 (m, 2H), 3.90 (dt, J = 8.9, 4.2 Hz, 1H), 3.27 (ddt, J = 27.4, 13.1, 6.7 Hz, 2H), 2.15 (s, 3H), 2.12 (s, 3H), 2.11 (s, 3H), 1.71 – 1.61 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.53, 169.68, 169.44, 162.21, 87.67, 70.81, 69.56, 68.11, 66.18, 62.84, 29.70, 22.68, 20.90, 20.85, 20.73, 11.24. HRMS (m/z): [M + H]+ calculated for C₁₆H₂₅N₂O₇S: 389.1382 (M+H); found 389.1383; [M + Na]+ calculated for C₁₆H₂₄NaN₂O₇S: 411.1202; found 411.1199.

3,4,6,*tri-O*-acetyl-1,2-dideoxy-2'[(2-butyl)amino]-*a*-D-glucopyranoso[2,1-d]- Δ 2'-thiazoline (14e): ¹H NMR (500 MHz, CDCl₃) δ 6.29 (d, J = 6.5 Hz, 1H), 5.42 (dd, J = 4.4, 3.2 Hz, 1H), 5.01 – 4.91 (m, 1H), 4.46 – 4.33 (m, 2H), 4.19 (dd, J = 4.2, 2.8 Hz, 2H), 3.91 (ddd, J = 8.9, 5.2, 3.3 Hz, 1H), 3.41 – 3.25 (m, 2H), 2.15 (s, 3H), 2.12 (s, 3H), 2.11 (s, 3H), 1.62 (p, J = 7.2 Hz, 2H), 1.43 – 1.36 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.50, 169.85, 169.60, 162.30, 92.67, 71.75, 69.26, 68.33, 66.21, 62.08, 31.60, 20.93, 20.82, 20.66, 19.95, 16.88, 13.67. δ (ppm); HRMS (m/z): [M + H]+ calculated for C₁₇H₂₇N₂O₇S: 403.1539; found 403.1535.

3,4,6-*tri-O*-acetyl-1,2-dideoxy-2'-[(2-fluoroethyl)amino]-α-D-glucopyranoso[2,1-d]- Δ 2'-thiazoline (14f): ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 6.25 (d, J = 6.5 Hz, 1H), 5.40 (dd, J = 3.9, 2.6 Hz, 1H), 4.97 – 4.93 (m, 1H), 4.71 – 4.44 (m, 2H), 4.37 – 4.33 (m, 1H), 4.16 – 4.11 (m, 2H), 3.85 – 3.78 (m, 1H), 3.73 – 3.46 (m, 2H), 2.11 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃) 170.75, 169.68, 169.59, 159.80, 90.02, 82.04 (d, J = 166.8 Hz), 72.73, 71.78, 69.17, 68.62, 63.35, 44.59 (d, J = 20.2 Hz), 21.08, 20.90, 20.85; LRMS (m/z): [M + H]+ calculated for C₁₅H₂₂FN₂O₇S: 393.1132; found 393.1122.

3,4,6-*tri-O*-acetyl-1,2-dideoxy-2'-[(2,2-difluoroethyl)amino]-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (14g): ¹H NMR (400 MHz, CDCl₃) δ 6.25 (d, J = 6.5 Hz, 1H), 6.02 (tdd, J = 56.6, 5.0, 3.5 Hz, 1H), 5.37 (dd, J = 3.9, 2.5 Hz, 1H), 4.93 (ddd, J = 9.4, 2.4, 1.1 Hz, 1H), 4.34 (ddd, J = 6.5, 4.0, 1.1 Hz, 1H), 4.14 – 4.11 (m, 2H), 3.81 – 3.66 (m, 2H), 3.59 – 3.45 (m, 1H), 2.10 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ (ppm) 170.66, 169.56, 169.52, 159.57, 113.37 (t, J = 241.4 Hz), 90.31, 72.37, 71.44, 68.99, 68.55, 63.29, 46.10 (t, J = 27.2 Hz), 20.96, 20.73, 20.72; HRMS (m/z): [M+H]+ calculated for C₁₅H₂₁F₂N₂O₇S: 411.1038; found 411.1033; [M+Na]+ calculated for C₁₅H₂₀F₂NaN₂O₇S: 433.0857; found 433.0850.

3,4,6-*tri*-*O*-acetyl-1,2-dideoxy-2'-[(2,2,2-trifluoroethyl)amino]-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (14h): ¹H NMR (500 MHz, CDCl₃) δ 6.22 (d, J = 6.6 Hz, 1H), 5.34 (dd, J = 3.7, 2.3 Hz, 1H), 4.91 – 4.84 (m, 1H), 4.33 – 4.28 (m, 1H), 4.09 – 3.99 (m, 3H), 3.80 (td, J = 9.0, 6.3 Hz, 1H), 3.76 – 3.72 (m, 1H), 2.07 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ (ppm) 170.59, 169.70, 169.40, 159.58, 125.19 (q, J = 279.2 Hz), 89.61, 71.59, 71.19, 68.82, 68.19, 63.10, 44.98, 20.74, 20.50; HRMS (m/z): [M+H]+ calculated for C₁₇H₂₀F₃N₂O₉S: 429.0943; found 429.0941; [M+Na]+ calculated for C₁₇H₁₉F₃NaN₂O₉S: 451.0763; found 451.0756.

Deprotection of amino thiazoline 10a. Per-acetylated intermediate **10a** (114 mg, 0.20 mmol) was dissolved in 2 mL of MeOH, followed by the addition of NaOMe (14 mg, 0.25 mmol). The reaction was then stirred at room temperature for 2 hours, and subsequently quenched by the addition of AcOH. Concentration gave a colorless oil which was dissolved in 3 mL of pyridine and then 0.6 mL of piperidine was added. The resulting mixture was then stirred at room temperature for 2 hours, concentrated, and any remaining piperidine was then co-evaporated with pyridine. The resulting mixture was triturated with EtOAc to yield inhibitor **11a** (38 mg, 80% yield).

1,2-dideoxy-2'-amino-α-D-glucopyranoso[**2,1-d**]-Δ**2'-thiazoline** (**11a**): ¹H NMR (500 MHz, CD₃OD) δ 6.31 (d, J = 6.4 Hz, 1H), 4.04 (t, J = 6.1 Hz, 1H), 3.91 (t, J = 5.3 Hz, 1H), 3.78 (dd, J = 11.7, 2.1 Hz, 1H), 3.67 – 3.57 (m, 2H), 3.47 (dd, J = 9.0, 5.0 Hz, 1H). ¹³C NMR (125 MHz, CD₃OD) δ 173.50, 89.62, 77.75, 74.92, 69.74, 65.15, 63.26. Anal. Calcd. for C₇H₁₂N₂O₄S: C, 38.17; H, 5.49; N, 12.72; Found: C, 38.05; H, 5.37; N, 12.66.

General procedure for the deprotection of amino thiazolines 10b and 14a-h. A catalytic amount of K_2CO_3 (~5% w/v) was added to a solution of each per-acetylated 2'-aminothiazoline (10b, 14a-h) in anhydrous methanol. The reaction was stirred at room temperature under an atmosphere of argon for ~1-2 hours until judged complete by TLC analysis. The solution was filtered, and the solvent evaporated to yield the crude product which was then purified by silica flash chromatography (10-18% MeOH/DCM) to yield the final product. Products were isolated in yields ranging from 61-86%.

1,2-dideoxy-2'-[(2-prop-1-ene)amino]-*a*-D-glucopyranoso**[2,1-d]**- Δ **2'-thiazoline** (**11b**): ¹H NMR (500 MHz, CD₃OD) δ 6.33 (d, *J* = 6.3 Hz, 1H), 5.92 (ddt, *J* = 15.7, 10.6, 5.4 Hz, 1H), 5.27 – 5.20 (m, 1H), 5.18 – 5.10 (m, 1H), 4.08 (t, J = 6.1 Hz, 1H), 3.96 – 3.92 (m, 1H), 3.91 – 3.86 (m, 2H), 3.80 (dd, *J* = 11.7, 2.0 Hz, 1H), 3.69 – 3.60 (m, 2H), 3.49 (dd, *J* = 8.9, 5.3 Hz, 1H); ¹³C-NMR (125 MHz, CD₃OD) δ (ppm) 162.15, 134.33, 114.87, 89.45, 75.07, 74.10, 73.83, 69.77, 61.87, 45.85; HRMS (m/z): [M+H]+ calculated for C₁₀H₁₇N₂O₄S: 261.0909; found 261.0908; [M+Na]+ calculated for C₁₀H₁₆NaN₂O₄S: 283.0728; found 283.0727.

1,2-dideoxy-2'-aminomethyl-a-D-glucopyranoso[**2,1-d**]- Δ **2'-thiazoline** (**15a**): ¹H-NMR (400 MHz, D₂O) δ (ppm) 6.21 (d, J = 7.7 Hz, 1H), 4.11 (t, J = 5.9 Hz, 1H), 3.96 (t, J = 5.0 Hz, 1H), 3.73 (t, J = 7.7 Hz, 1H), 3.58 (dt, J = 10.0, 7.1 Hz, 2H), 3.49 (dd, J = 9.0, 4.5 Hz, 1H), 2.74 (s, 3H); ¹³C-NMR (101 MHz, D₂O) δ (ppm) 163.75, 88.54, 74.25, 73.64, 73.28, 69.31, 61.42, 29.87 HRMS (m/z): [M+H]+ calculated for C₈H₁₅N₂O₄S: 235.0753; found 235.0750; [M+Na]+ calculated for C₈H₁₄NaN₂O₄S: 257.0572; found 257.0570.

1,2-dideoxy-2'-dimethylamino-α-D-glucopyranoso [2,1-d]-Δ**2'-thiazoline** (**15b**): ¹H-NMR (400 MHz, CD₃OD) δ (ppm) 6.39 (d, J = 6.5 Hz, 1H), 4.09 (t, J = 6.3 Hz, 1H), 3.90 (t, J = 5.9 Hz, 1H), 3.84-3.78 (m, 1H), 3.72-3.61 (m, 2H), 3.52-3.45 (m, 1H), 3.06 (s, 6H); ¹³C-NMR (125 MHz, CD₃OD) δ (ppm) 164.30, 90.59, 75.02, 74.84. 74.45, 69.72, 61.81, 38.67; HRMS (m/z): [M + H]+ calculated for C₉H₁₇N₂O₄S: 249.0909; found 249.0908; [M+Na]+ calculated for C₉H₁₆NaN₂O₄S: 271.0728; found 271.0725.

1,2-dideoxy-2'-[(2-ethyl)amino]- α -D-glucopyranoso [2,1-d]- Δ 2'-thiazoline (15c) (ThiamEtG): Our characterization data matched what was established by Yuzwa *et al.*[2]

1,2-dideoxy-2'-[(2-propy)amino]-a-D-glucopyranoso [2,1-d]- Δ **2'-thiazoline (15d):** ¹H-NMR (500 MHz, CD₃OD) δ (ppm) 6.58 (d, J = 6.5 Hz, 1H), 4.13 (t, J = 6.6 Hz, 1H), 3.91-3.79 (m, 2H), 3.76-3.63 (m, 2H), 3.50 (dd, J = 8.8, 6.9 Hz, 1H), 1.70-1.62 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C-NMR (125 MHz, (CD₃)₂CO) δ (ppm) 182.84, 93.02, 79.42, 75.18, 68.88, 64.80, 63.16, 45.96, 21.08, 10.75; HRMS (m/z): [M+H]+ calculated for C₁₀H₁₉N₂O₄S: 263.1066; found 263.1063; [M+Na]+ calculated for C₁₀H₁₈NaN₂O₄S: 285.0885; found 285.0876.

1,2-dideoxy-2'-[(2-butyl)amino]-*a*-D-glucopyranoso **[2,1-d]**- Δ **2'-thiazoline** (**15e**): ¹H NMR (500 MHz, CD₃OD) δ 6.34 (d, J = 6.4 Hz, 1H), 4.07 (t, J = 6.2 Hz, 1H), 3.92 (t, J = 5.8 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.71 – 3.62 (m, 2H), 3.52 – 3.46 (m, 1H), 3.31 – 3.22 (m, 2H), 1.57 (p, J = 7.2 Hz, 2H), 1.41 (dt, J = 15.0, 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C-NMR (125 MHz, CD₃OD, δ (ppm) 163.07, 89.08, 75.17, 74.17, 72.75, 69.55, 61.73, 43.59, 31.00, 19.69, 12.72.; HRMS (m/z): [M+H]+ calculated for C₁₁H₂₀N₂O₄S: 277.1222 (M+H); found 277.1167; [M+Na]+ calculated for C₁₁H₂₀NaN₂O₄S: 299.1041; found 299.1040.

1,2-dideoxy-2'-[(2-fluoroethyl)amino]-α-D-glucopyranoso[2,1-d]-Δ2'-thiazoline (**15f**): ¹H-NMR (400 MHz, CD₃OD) δ (ppm) 6.34 (d, J = 6.4 Hz, 1H), 4.60-4.49 (m, 1H), 4.48-4.37 (m, 1H), 4.05 (t, J = 6.2 Hz, 1H), 3.88 (t, J = 5.8 Hz, 1H), 3.76 (dd, J = 11.7, 2.1 Hz, 1H), 3.66-3.43 (m, 5H); ¹³C-NMR (100 MHz, CD₃OD) δ (ppm) 163.45, 89.20, 81.57 (d, J = 167.4 Hz), 75.23, 73.93, 72.20, 69.40, 61.63, 44.16 (d, J = 20.3 Hz); HRMS (m/z): [M+H]+ calculated for C₉H₁₆N₂O₄SF: 267.0815; found 267.0822.

1,2-dideoxy-2'-[(2,2-difluoroethyl)amino]-α-D-glucopyranoso[2,1-d]-Δ**2'-thiazoline** (**15g**): ¹H NMR (500 MHz, CD₃OD) δ 6.29 (d, J = 6.4 Hz, 1H), 5.96 (tt, J = 56.3, 4.3 Hz, 1H), 4.04 (t, J = 6.1 Hz, 1H), 3.89 (t, J = 5.4 Hz, 1H), 3.74 (dd, J = 11.9, 2.3 Hz, 1H), 3.64 – 3.41 (m, 5H). ¹³C-NMR (125 MHz, D₂O) δ (ppm) 162.48, 113.81 (t, J = 239.6 Hz), 88.11, 73.79, 72.58, 68.78, 61.00, 48.39, 44.95 (t, J = 25.0 Hz); HRMS (m/z): [M+H]+ calculated for C₉H₁₅N₂O₄SF₂: 285.0715; found 285.0717; [M+Na]+ calculated for C₉H₁₄NaN₂O₄SF₂: 307.0540; found 307.0536.

1,2-dideoxy-2'-[(2,2,2-trifluoroethyl)amino]-α-D-glucopyranoso[2,1-d]-Δ**2'-thiazoline** (**15h**): ¹H-NMR (500 MHz, CD₃OD) δ (ppm) 6.34 (d, J = 6.4 Hz, 1H), 4.04-3.99 (m, 1H), 3.98-3.85 (m, 3H), 3.78 (dd, J = 11.9, 2.2 Hz, 1H), 3.65 (dd, J = 11.9, 6.1 Hz, 1H), 3.59 (ddd, J = 8.5, 6.2, 2.1 Hz, 1H), 3.47 (dd, J = 9.1, 3.5 Hz, 1H); ¹³C NMR (151 MHz, D₂O) δ 162.61, 123.97 (q, J = 278.5 Hz), 88.09, 73.84, 72.63, 68.68, 60.91, 44.10; HRMS (m/z): [M+H]+ calculated for C₉H₁₄N₂O₄SF₃: 303.0626; found 303.0622; [M+Na]+ calculated for C₉H₁₃NaN₂O₄SF₃: 325.0446; found 325.0440.

General procedure for the synthesis of 4-methylumbelliferyl 2-deoxy-2-acetamido-D-glucopyranosides. 4-Methylumbelliferyl 2-amino-2-deoxy- β -D-glucopyranoside hydrochloride (16) was synthesized according to the procedure described by Roeser and Leger, and was used without further purification.[3] To a solution of the hydrochloride salt 16 (250 mg, 0.5 mmol) in CH₃CN (5 ml) was added triethylamine (2.0 eq.) and the appropriate alkyl isocyanate (2.0 eq. [for 17a, TMSNCO was used]) at 0° C and the solution left to stir at room temperature (3 h). The reaction was then diluted with EtOAc (25 ml) and washed with water (25 ml), NaHCO₃ (25 ml), brine (10 ml), dried (MgSO4), filtered and concentrated. The resultant solids were then deprotected using the procedure of Macauley *et al*[4] to give the corresponding triols 17a-e in yields ranging from 49% - 63% over two steps.

General procedure for the synthesis of de-protected substrates 18a-e. All substrates were deprotected by following the procedure described for the deprotection of 4-methylumbelliferyl substrates synthesized by Macauley *et al.*[5]

4-Methylumbelliferyl-2-[(amino)oxoamino]-2-deoxy-β-D-glucopyranose (18a): ¹H NMR (600 MHz, DMSO-d₆) δ 8.60 (s, 1H), 7.71 (dd, J = 8.8, 3.6 Hz, 1H), 7.03 – 6.94 (m, 2H), 6.74 (s, 1H), 6.26 (d, J = 1.6 Hz, 1H), 6.04 (d, J = 8.2 Hz, 1H), 5.51 (s, 1H), 5.34 (d, J = 8.4 Hz, 1H), 5.21 (d, J = 8.2 Hz, 1H), 4.64 (s, 1H), 3.73 (d, J = 11.1 Hz, 1H), 3.66 (q, J = 9.2 Hz, 1H), 3.47 (q, J = 8.1, 5.8 Hz, 3H), 3.20 (q, J = 9.4 Hz, 1H), 2.41 (dd, J = 2.5, 1.3 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.16, 160.01, 158.86, 154.38, 153.25, 126.50, 114.23, 113.54, 111.77, 103.17, 98.99, 77.14, 74.69, 70.47,

60.64, 55.67, 18.11. HRMS (m/z): [M+H]+ calculated for $C_{17}H_{21}N_2O_8$: 381.1298; found 381.1293; [M+Na]+ calculated for $C_{17}H_{20}N_2NaO_8$: 403.1117; found 403.1111.

4-Methylumbelliferyl-2-[(aminomethyl)oxomethyl]amino]-2-deoxy-2-β-D-glucopyranose (18b): ¹H NMR (600 MHz, DMSO-d₆) δ 7.71 (d, J = 8.8 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.26 (d, J = 1.5 Hz, 1H), 5.96 (d, J = 8.4 Hz, 1H), 5.81 (d, J = 4.9 Hz, 1H), 5.20 (d, J = 8.3 Hz, 1H), 5.11 (dd, J = 17.7, 5.3 Hz, 2H), 4.62 (t, J = 5.8 Hz, 1H), 3.73 (dd, J = 11.4, 5.4 Hz, 1H), 3.54 – 3.38 (m, 3H), 3.20 – 3.16 (m, 2H), 2.55 (d, J = 4.6 Hz, 3H), 2.41 (d, J = 1.3 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.16, 160.04, 158.72, 154.38, 153.27, 126.43, 114.12, 113.54, 111.72, 103.16, 99.03, 77.20, 74.70, 70.45, 60.70, 56.34, 26.42, 18.11. HRMS (m/z): [M+H]+ calculated for C₁₈H₂₃N₂O₈: 395.1454; found 395.1449; [M+Na]+ calculated for C₁₈H₂₂N₂NaO₈: 417.1274; found 417.1269.

4-Methylumbelliferyl-2-[(aminoethyl)oxoethyl]amino]-2-deoxy-β-D-glucopyranose (18c): ¹H NMR (600 MHz, DMSO-d₆) δ 7.71 (d, J = 8.8 Hz, 1H), 7.00 – 6.95 (m, 2H), 6.26 (d, J = 1.5 Hz, 1H), 5.90 – 5.86 (m, 2H), 5.21 – 5.09 (m, 3H), 4.62 (t, J = 5.8 Hz, 1H), 3.73 (dd, J = 11.7, 5.1 Hz, 1H), 3.52 – 3.45 (m, 2H), 3.41 (dd, J = 9.5, 5.8 Hz, 1H), 3.24 – 3.15 (m, 1H), 3.02 (dd, J = 7.5, 6.0 Hz, 2H), 2.63 (d, J = 2.4 Hz, 1H), 2.42 – 2.39 (m, 3H), 0.99 (td, J = 7.2, 1.3 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.19, 160.04, 158.07, 154.38, 153.28, 126.43, 114.28, 113.67, 111.47, 103.09, 99.09, 77.21, 74.65, 70.47, 60.71, 56.26, 34.13, 18.11, 15.61. HRMS (m/z): [M+H]+ calculated for C₁₉H₂₅N₂O₈: 409.1608; found 409.1611; [M+Na]+ calculated for C₁₈H₂₂N₂NaO₈: 431.1430; found 431.1425.

4-Methylumbelliferyl-2-[(aminopropyl)oxopropyl]amino]-2-deoxy-β-D-glucopyranose (18d): ¹H NMR (600 MHz, DMSO-d₆) δ 7.71 (dd, J = 8.9, 1.4 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.26 (t, J = 1.3 Hz, 1H), 5.94 – 5.85 (m, 2H), 5.20 – 5.09 (m, 3H), 4.63 (t, J = 5.7 Hz, 1H), 3.76 – 3.70 (m, 1H), 3.55 – 3.45 (m, 2H), 3.42 (tt, J = 8.1, 4.6 Hz, 2H), 3.19 (s, 1H), 2.95 (ddd, J = 13.0, 10.4, 6.8 Hz, 2H), 2.41 (t, J = 1.4 Hz, 3H), 1.37 (q, J = 7.3 Hz, 2H), 0.82 (td, J = 7.4, 1.6 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.17, 160.04, 158.19, 154.38, 153.25, 126.42, 114.12, 113.51, 111.71, 103.17, 99.23, 77.21, 74.64, 70.48, 60.72, 56.27, 41.12, 23.15, 18.11, 11.31. HRMS (m/z): [M+H]+ calculated for C₂₀H₂₇N₂O₈:423.1767; found 423.1769; [M+Na]+ calculated for C₂₀H₂₆N₂NaO₈: 445.1587; found 445.1586.

4-Methylumbelliferyl-2-[(aminobutyl)oxobutyl]amino]-2-deoxy-β-D-glucopyranose (18e): ¹H NMR (600 MHz, DMSO-d₆) δ 7.71 (d, J = 8.8 Hz, 1H), 7.00 – 6.94 (m, 2H), 6.26 (d, J = 1.3 Hz, 1H), 5.90 – 5.84 (m, 2H), 5.20 (d, J = 8.3 Hz, 1H), 5.12 (dd, J = 21.0, 5.3 Hz, 2H), 4.63 (t, J = 5.7 Hz, 1H), 3.73 (dd, J = 11.6, 5.1 Hz, 1H), 3.54 – 3.45 (m, 2H), 3.19 (td, J = 9.1, 5.1 Hz, 1H), 2.99 (dp, J = 19.3, 6.5 Hz, 2H), 2.62 (d, J = 1.9 Hz, 1H), 2.41 (d, J = 1.3 Hz, 3H), 1.30 (dp, J = 47.8, 7.1 Hz, 4H), 0.85 (dd, J = 7.8, 6.8 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.21, 160.03, 158.16, 154.37, 153.27, 126.40, 114.20, 113.54, 111.73, 102.89, 99.24, 77.21, 74.60, 70.48, 60.72, 56.29, 38.96, 32.13, 19.48, 18.06, 13.71. HRMS (m/z): [M+H]+ calculated for C₂₁H₂₉N₂O₈: 437.1924; found 437.1921; [M+Na]+ calculated for C₂₁H₂₈N₂NaO₈: 459.1743; found 459.1738.

Biological evaluation: Gene expression and protein purification. hOGA was expressed and purified according to the previously described procedure by Macauley *et al.*[5] hOGA was dialyzed twice against PBS buffer after purification and its concentration determined using the Nanodrop₂₀₀₀. Human β -hexosaminidase was obtained from Micheal Tropak at the Hospital for Sick Children in Toronto, without further purification.

Kinetic analysis of hOGA. All assays were carried out in 96 well plates (Thermoscientific, FloroNunc, lot # 139825) in PBS pH 7.4 buffer (0.03% BSA) in triplicate at 37°C for 20 minutes. A continuous assay procedure was performed in which the reactions were initiated by the addition of 4-MUGlcNAc substrate (50 µL or 100 µL via a multi-channel pipette). The total assay volume was 150 μ L for the K_i determination or 200 μ L for the K_m/V_{max} determination. The progress at the end of the reaction was determined by assessing the extent of 4-methylumbelliferone liberation as determined by fluorescence measurements using a BioTek Synergy Plate Reader. The excitation and emission were 350 and 445 nm, respectively. The amount of fluorogenic substrate liberated was quantitatively assessed by using a standard curve for 4-methylumbelliferone under identical buffer conditions. A total of 6-8 inhibitor concentrations were tested, ranging from 1/5 to 5 times the K_i value. The hOGA concentrations in the assays ranged from 0.8 nM to 20 nM, depending on whether the K_i being determined was through classic Michaelis-Menten methods or the Morrison K_i fit. For full K_i analyses, 5 substrate concentrations were used ranging from 1/5 to 5 times the K_m value. For the Morrison K_i analyses, only one substrate concentration was used (at the $K_{\rm m}$) since the method of inhibition was already known from analysis using the Line-weaver Burke plots. The representative hOGA K_i plots are summarized in Supplemental Figures S1, S2 and S3. Kinetic analysis of substrates 18a-e were performed in triplicate using pH 7.4 PBS buffer (0.03% BSA) containing 2.5% DMF, with varying enzyme concentrations. The Michaelis-Menten curves for substrates 18a-e with hOGA are summarized in Supplemental Figure S6 and the kinetic parameters are described in Supplemental Table S1.

Kinetic analysis of β **-hexosaminidase.** All assays were carried out in 96 well plates (Thermoscientific, FloroNunc, lot # 139825) at pH 4.25 (50 mM citrate, 100 mM NaCl, 0.03% BSA) at 37°C in triplicate for 20 minutes. Enzymatic reactions were triggered by addition of substrate (20 µL or 15 µL) in a total volume of 45 or 40 µL. Reactions were quenched by the addition of a 4-fold excess (160 or 180 µL) of quenching buffer (200 mM glycine, pH 10.75) in order to

detect the fluorescent signal. The progress at the end of the reaction was determined by assessing the extent of 4methylumbelliferone liberation as determined by fluorescence measurements using a BioTek Synergy Plate Reader. The excitation and emission were 350 and 445 nm, respectively. A total of 6-8 inhibitor concentrations were tested, ranging from 1/5 to 5 times the K_i value. The hHexB concentrations in the assays ranged from 2 to 5 nM and the K_i values were assessed by linear regression of data from Dixon plot analysis. The representative Dixon plots are summarized in Supplemental Figure S5. Full K_i values were verified for **11a** and **15a** using the same conditions mentioned, except with 5 substrate concentrations ranging from 1/5 to 5 times the K_m value.

pK_a determination using ¹³C NMR. All titrations were carried out on the Bruker AVANCE II 600 MHz NMR spectrometer. The samples prepared for each titration contained 5 µL of 1,4-dioxane as an internal standard, an equal mol amount of inhibitor and 3-nitrophenol or 3.4-dinitrophenol (depending on the availability of each compound) in 500 µL of H_2O and 75 µL of D_2O . Previous studies by Perrin *et al* have reported no differences in chemical shifts for varying the compound concentration in the titration assay. [6] Each sample was made basic with 25-70 µL of 2M NaOH, and prior to titration, it was ensured that there was no change in chemical shift with further addition of base in 5 µL increments, in order to accurately establish the δ_d for each compound. The basic sample was then titrated with 10 μ L of 0.5 M (15f-15h, NButGT) or 1 M HCl (15c) until there was no further change in chemical shift, indicating that the end point of the titration was reached. The point where the chemical shift stopped changing was the recorded $\hat{\delta}_p$ for each compound. The relative $pK_a(\Delta pK_a)$ was then determined by non-linear fitting of data to Equation S1, which provides the value of R (R = K_a^x/K_a^r) and describes the relationship between the difference (Δ) in chemical shifts (δ) between each compound of unknown p $K_a(x)$ and the reference compound with known p $K_a(r)$. δ_p and δ_d represent the chemical shifts of the protonated and de-protonated species of each compound, where Δ_d expresses the difference between the de-protonated species (δ_d^x – δ_d^r), Δ^x represents the difference between the deprotonated and protonated species of x ($\delta_d^x - \delta_p^x$), and Δ^r for that of the reference compound ($\Delta^r = \delta_d^r - \delta_p^r$). The fractional protonation of the reference compound is represented by n and is equal to $(\delta - \delta_d)/(\delta_p - \delta_d)$.[7]

$$\Delta = \Delta_d + \frac{Rn(\Delta^x)}{Rn-n+1} - n(\Delta^r)$$
 (S1)

The reference compound for titration of **15c-15g** was 3-nitrophenol ($pK_a = 8.42$)[8] and for NButGT and **15h** was 3,4dinitrophenol ($pK_a = 5.42$). Both phenols have a single site of protonation in the pH range of interest and have ¹³C resonances well separated from the resonances observed for the inhibitors. We observed the 2'-carbon of the aminothiazoline system and the C-1 carbon of 3-nitrophenol since these are most proximal to the ionizable center. Fitting of the resulting data to Equation S1 (Figure 5 (ThiamEt-G), Supplemental Figure S7) enabled us to obtain values of R for each compound and, by comparison to the reference compound, absolute pK_a values (Table 1). The observed pK_a values range from 7.68 to 4.65 and fall in the expected order with the conjugate acid of the trifluoromethyl-containing analogue (**15h**) being the most acidic of the aminothiazoline inhibitors. Supplemental Table S2 summarizes the specific chemical shifts used to determine the parameters outlined in Supplemental Table S4.

Structural analysis of *Bacteroides thetaiotaomicron* **GH84** (**BtGH84**). Expression and purification of BtGH84 was carried out as described previously.[9] Crystals of the apo form were grown in sitting drop format, mixing 0.5 μ l protein solution (12mg/ml) with 0.5 μ l reservoir solution (0.1 M Imidazole pH 8, 3 % (w/v) trimethylamine N-oxide dehydrate, 10% (w/v) PEG 8000 15 % ethanediol).

For soaking experiments the ligand was dissolved in $H_2O/DMSO$ (95%/5% (v/v)) at a concentration of 100 mM. Crystals of *apo*-BtGH84 were soaked in a solution containing the reservoir compounds with 2 % elevated PEG concentration, 25 % ethanediol as cryoprotectant and the respective inhibitor at a concentration of 10 mM. Subsequently, crystals were mounted using a Nylon fibre loop (Hampton Research) and flash frozen in liquid nitrogen. Data were collected at the Diamond light source beamline I04 at 100 K, using a Pilatus 6M-F detector or at the ESRF ID14.1 beamline, equipped with an ADSC Q210 CCD detector. The relevant data collections statistics can be found in Supplemental Table S3.

Data were processed using XDS[10] or Mosflm/SCALA[11, 12]. The indexing was chosen to be consistent with previous datasets using Pointless[13] part of the CCP4 software suite[14]. Initial electron density maps were obtained by direct refinement with an unliganded structure. Further model building and refinement was carried out by alternating cycles or reciprocal refinement using Refmac[15] or phenix refine[16] followed by manual rebuilding in COOT[17]. A model of the ligand and the respective library for refinement was generated in Jligand[18]. The ligand was included in the model followed by further rounds of refinement till convergence. The quality of the structure was evaluated using Molprobity[19] part of the Phenix software suite[16]. Figures were prepared using CCP4MG[20].

Figure S1. Lineweaver-Burke plots for inhibition of hOGA by compounds *15e-15h* (left panels) and the K_m^{app} vs. [I] plots for each inhibitor (right panels). The inhibitor concentrations used for each experiment are indicated in the legend of the K_i plots and the [hOGA] used in all cases was 1 nM.

Figure S2. Comparison of K_i values determined for compound **11b** with hOGA using the Michaelis-Menten and Morrison approaches. A) Michaelis-Menten analysis of the inhibition of hOGA-catalyzed hydrolysis of 4-methylumbelliferyl 2-acetamido-2-deoxy- β -D-glucopyranoside (4-MUGlcNAc) reveals a pattern of competitive inhibition with a $K_i = 2.3 \pm 0.3$. The concentrations of **11b** used in the assays were 33.0, 11.0, 3.7, 1.2, 0.4 and 0.0 nM, and that of hOGA was 0.8 nM. **Inset:** graphical determination of the K_i value obtained by plotting K_m apparent (K_m^{app}) values against the concentration of **11b** affords a K_i value of 4.7 nM. B) Determination of the K_i value using the Morrison approach ($K_i = 3.2 \pm 0.4$). Concentrations of 11b started at 50 to 0.17 nM and were diluted by 1.5-fold. The substrate concentration used was the same as the K_m value determined for the hOGA enzyme batch (60 μ M) and the concentration of hOGA used in the assay was 10 nM.

Figure S3. Morrison K_i plots for compounds *11a*, *15b* and *15d*. *11a*: [hOGA] = 15 nM, [4-MUGlcNAc] = 170 μ M; *15b*: [hOGA] = 10 nM, [4-MUGlcNAc] = 60 μ M; *15d*: [hOGA] = 10 nM, [4-MUGlcNAc] = 180 μ M.

Figure S4. Lineweaver-Burke plots for inhibition of hHexB by compounds *11a* (panel A) and *15a* (panel B) using 4-MUGlcNAc as the substrate. Inhibitor concentrations are presented in each graph.

Figure S5. Dixon plot analysis of inhibition of hHexB by compounds *11b*, *15d-15h* using 4-MUGlcNAc as a substrate. A) [E] = 5 nM, [S] = 230 μ M; B) [E] = 5 nM, [S] = 500 μ M; C) [E] = 2 nM, [S] = 60 μ M; D) [E] = 2nM, [S] = 60 μ M; E) [E] = 5 nM, [S] = 220 μ M; F) [hHexB] = 5 nM, [4-MUGlcNAc] = 220 μ M; G) [E] = 5 nM, [S] = 220 μ M. Inhibitors were serially diluted 3-fold from the highest concentration. The K_i values were determined by assessing the point of intersection between the 1/V_{max} (dotted) line and the linear regression curve.

Figure S6. Michaelis-Menten plots obtained for urea substrates **18a-18e** and 4-MUGlcNAc with hOGA. All assays were performed in triplicate using pH 7.4 PBS buffer (0.03% BSA) containing 2.5% DMF. A) $[E] = 0.1 \ \mu\text{M}$ B) $[E] = 0.1 \ \mu\text{M}$ C) $[E] = 0.2 \ \mu\text{M}$ D) $[E] = 0.5 \ \mu\text{M}$ E) $[E] = 12 \ \mu\text{M}$ F) $[E] = 0.010 \ \mu\text{M}$.

Figure S7. The difference between the chemical shifts of the thiazoline carbon resonances (Δ ppm) for *15f* (**A**) and *15g* (**B**) as a function of the fractional protonation (n) of 3-nitrophenol (p $K_a = 8.42$) and *15h* (**C**) and **NButGT** (**D**) as a function of the fractional protonation (n) of 3,4-dinitrophenol (p $K_a = 5.42$); In all cases, n = $(\delta - \delta_d)/(\delta_p - \delta_d)$ and the data was fit to Equation 3. **A**) R ($K_a^{15f}/K_a^{3-nitrophenol}$) = 0.0316 ± 0.0063; R² = 0.9955; **B**) R ($K_a^{15g}/K_a^{3-nitrophenol}$) = 0.0058 ± 0.0002; R² = 0.9999; **C**) ($K_a^{15h}/K_a^{3.4-dinitrophenol}$) = 1.213 ± 0.049; R² = 0.9991; **D**) ($K_a^{\text{NButGT}}/K_a^{3.4-dinitrophenol}$) = 5.474 ± 3.281; R² = 0.9903. Values determined using data from Tables S2 and S4.

Compound	$K_{\rm m}(\mu{ m M})$	$k_{\text{cat}}/K_{\text{m}}$ (μ M ⁻¹ min ⁻¹)	log K _m /k _{cat}	$K_{\rm i}(\mu{ m M})$	$\log K_{\rm i}$
18a : R=NH ₂	^[a] 1265 \pm 259	^[b] 1.75 x 10 ⁻³	2.76	$4.7 \pm 3.0 \text{ x } 10^{-3}$	-2.32
18b : R=NHCH ₃	$^{[a]}1825 \pm 542$	^[b] 1.36 x 10 ⁻²	1.86	$5.1 \pm 0.5 \text{ x } 10^{-4}$	-3.30
18c : R=NHCH ₂ CH ₃	85 ± 20	^[b] 3.49 x 10 ⁻³	2.46	$2.1 \pm 0.3 \text{ x } 10^{-3}$	-2.68
18d : R=NH(CH ₂) ₂ CH ₃	120 ± 11	^[b] 2.55 x 10 ⁻³	2.59	$2.0 \pm 0.2 \text{ x } 10^{-3}$	-2.69
18e : R=NH(CH ₂) ₃ CH ₃	30 ± 3	^[b] 3.01 x 10 ⁻⁵	4.52	$3.5 \pm 0.9 \text{ x } 10^{-1}$	-0.46
19a : R=CH ₃		^[c] 7.69 x 10 ⁻³	2.11		
19b : R=CH ₂ CH ₃		^[c] 6.67 x 10 ⁻³	2.18		
19c : R=(CH ₂) ₂ CH ₃		^[c] 5.26 x 10 ⁻³	2.28		
19d : R=(CH ₂) ₃ CH ₃		^[c] 5.56 x 10 ⁻⁴	3.25		

Table S1. Summary of parameters used to determine the correlation between $K_{\rm m}/k_{\rm cat}$ and $K_{\rm i}$ for the substrates and inhibitors with parallel structural alterations.

^a Values were estimated by non-linear regression of the Michealis-Menten data since saturation of hOGA

with these substrates was not observed. ^b Values of k_{cat}/K_m were determined from the linear regression of the second-order region of the Michealis-Menten plot. ^c Values used were previously determined by Whitworth et al⁷⁷ and used for a comparison between the thiazoline and aminothiazoline series of inhibitors as transition state analogues.

^a 15	ic	^a 15	5f	^a 15	g	^b 15	h	^b NBu	tGT
N-C-N	C-O	N-C-N	C-O	N-C-N	C-O	N-C-N	C-O	C-C-N	C-O
162.77	167.24	162.89	167.25	163.11	167.26	163.21	177.08	176.08	177.08
162.83	166.65	162.90	167.25	163.11	167.25	163.46	176.62	176.09	176.63
162.94	165.66	162.90	167.24	163.11	167.25	164.63	174.70	176.10	175.18
163.04	164.85	162.92	166.85	163.11	167.05	166.03	172.51	176.12	173.84
163.19	163.94	162.97	164.16	163.12	165.51	166.13	172.47	176.15	172.42
163.31	163.31	163.20	160.75	163.12	163.12	167.58	170.62	176.16	171.90
163.49	162.48	163.78	158.42	163.18	160.55	169.24	168.20	176.16	172.06
163.69	161.61	165.79	157.07	163.35	158.12	170.86	165.92	176.18	171.66
163.95	161.09	168.34	156.75	164.34	156.94	171.85	162.60	176.25	169.38
164.22	160.69	168.31	156.63	166.28	156.71	171.86	162.57	177.79	163.62
164.50	159.99	170.01	156.62	168.54	156.64	171.86	162.57	177.11	162.76
164.90	159.36			171.02	156.61	171.86	162.57	177.65	162.50
165.02	159.23			171.26	156.61			177.65	162.50
165.50	158.82								
166.19	158.12								
166.76	157.76								
167.20	157.48								
167.74	157.22								
168.34	157.10								
168.93	156.77								

Table S2. ¹³C chemical shifts (δ , ppm) for compounds **15c-15h** and **NButGT** which were used to measure the parameters necessary for $\Delta p K_a$ determination.

^a The chemical shifts which were directly compared were those of the amino-thiazoline carbon (N-C-N) for inhibitors *15c-15g* and those of the C-O carbon of 3-nitrophenol. *15c*: 0.161 mmol of each compound titrated with 1M HCl in 10 μ L increments (20 injections); *15f*: 0.0262 mmol (11 injections), *15g*: 0.0302 mmol (13 injections).

^b The chemical shifts which were directly compared were those of the amino-thiazoline carbon (N-C-N) for inhibitors *15h* and **NButGT** and those of the C-O carbon of 3,4-dinitrophenol. *15h*: 0.0397 mmol (12 injections) of each compound, titrated with 0.5 M HCl in 10 μ L increments. **NButGT**: 0.0728 mmol of each compound titrated with 0.5 M HCl in 10 μ L increments up to 80 μ L, then 20 μ L increments after that, up to 140 μ L (13 injections).

	11a	11b	15e
pdb-ID	5fky	5fl1	5f10
x-ray-source	ESRF-ID14-1	Diamond-I04	Diamond-I04
wavelength	0.93400	0.97949	0.97625
resolution range	33.8-1.80	49.08-1.95	44.96-1.95
space group	P1	$P22_{1}2_{1}$	P22 ₁ 2 ₁
unit cell Å	a=51.4 Å b=93.7 Å c=99.0 Å α=104.07 β=94.18	a=51.5 Å b=162.1 Å c=223.2 Å α=β=γ=90°	a=51.5 Å b=162.1 Å C=223.6 Å α=β=γ=90°
	γ=102.97°		
completeness [%]	95.8(91.9)	99.8(96.9)	99.9(100)
R _{merge}	0.080(0.424)	0.129(1.724)	0.097(1.860)
R _{meas}	0.113(0.599)	0.135(1.801)	0.105(2.013)
$\mathbf{R}_{\mathrm{pim}}$	0.080(0.424)	0.037(0.512)	0.040(0.762)
I/sig(I)	9.4(1.9)	15.7(1.8)	12.2(1.2)
multiplicity	2.0(2.0)	13.2(12.0)	6.7(6.9)
Wilson B-Factor [Å ²]	15.6	30.3	35.0
solvent content [%]	54.8	55.3	56.7
Refinement			
R_{work}/R_{free} [%]	21.1/24.9	19.3/22.2	19.9/22.7
average B-Factor			
protein	25.59	48.8	52.35
water	28.43	41.3	45.18
ligand	10.2	29.5	38.80
r.m.s.d.			
bond length [Å]	0.017	0.008	0.007
bond angle [°]	1.698	0.897	0.835
Ramachandran plot			
favored/allowed/ disallowed [%]	96.8/3.2/0.0	95.6/4.3/0.1	96.9/3.0/0.1

Table S3. Data collections statistics for X-ray structures of 11a, 11b and 15e with BtGH84.

Values in parentheses refer to the highest resolution shell

Inhibitor	^[a] Δ_d (ppm)	^[b] Δ^{r} (ppm)	$^{[c]}\Delta^{x}(ppm)$	$\mathbf{R}\left(K_{a}^{x}/K_{a}^{r}\right)$	$^{[d]}\Delta pK_a$	$[e] pK_a$
15c	4.47	10.47	-6.16	0.1823 ± 0.0042	-0.74	7.68
15f	4.36	10.63	-7.12	0.0316 ± 0.0063	-1.50	6.92
15g	4.15	10.65	-8.15	0.0058 ± 0.0002	-2.24	6.18
15h	13.87	14.51	-8.65	1.213 ± 0.049	0.08	5.33
NButGT	1.00	14.58	-1.57	5.47 ± 3.28	0.73	4.65

Table S4. R, $\Delta p K_a$, absolute $p K_a$, and fitting parameters determined from each titration for compounds **15c**, **15f**, and **15g** (3-Nitrophenol as the reference compound) and **15h** and NButGT (3,4-dinitrophenol as a reference compound).

^a The difference between the ¹³C chemical shift of the deprotonated inhibitor (2'-aminothiazoline carbon) and 3-nitrophenol (C-O carbon) for **15c-15g** and 3,4-dinitrophenol for 15h and NButGT ($\Delta d = \delta dx - \delta dr$); Determined for each point during the course of the titration.

^b The chemical shift difference between the de-protonated and protonated 3-nitrophenol C-O (15c-15g) and for that of 3,4-dinitrophenol (15h and NButGT) ($\Delta r = \delta dr - \delta pr$).

^c The chemical shift difference between the de-protonated and protonated thiazoline for each inhibitor ($\Delta x = \delta dx - \delta px$).

^d Δ pKa = log R. [e] pKa = 8.42 - Δ pKa for 15c-15g and 5.42 - Δ pKa for 15h and NButGT.

References:

- 1. Avalos Gonzalez, M., et al., Synthesis of 1,3,4,6-tetra-O-acetyl-2-[3-alkyl-(aryl)-thioreido]-2deoxy-α-D-glucopyranoses and their transformation into 2-alkyl(aryl)amino-(1,2-dideoxy-α-Dglucopyrano)[2,1-d]-2-thiazolines. Carb Res, 1986. **154**(1): p. 49-62.
- 2. Yuzwa, S.A. *et.al.*, *A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo*. Nat Chem Biol, 2008. **4**(8): p. 483-90.
- 3. Roeser, K.R. and Legler, G., *Role of sugar hydroxyl groups in glycoside hydrolysis. Cleavage mechanism of deoxyglucosides and related substrates by β-glucosidase A3 from Aspergillus wentii.* Bioch et Biophys Acta (BBA) Enzymology, 1981. **657**(2): p. 321-333.
- 4. Macauley, M.S., et al., O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem, 2005. **280**(27): p. 25313-22.
- 5. Macauley, M.S., Stubbs, K.A. and Vocadlo, D.J., *O-GlcNacase Catalyzes Cleavage of Thioglycosides without General Acid Catalysis.* J Am Chem Soc, 2005. **127**(49): p. 17202-17203.
- 6. Perrin, L.C. and Fabian, M.A., *Multicomponent NMR Titration for Simultaneous Measurement of Relative pK_a's.* Anal Chem, 1996. **68**: p. 2127-2134.
- 7. Rabenstein, D.L. and Mariappan, S.V.S., *Determination of* ¹⁵*N Isotope Effects on the Acid-Base Equilibria of Amino Groups in Amino Acids by* ¹³*C NMR.* J Org Chem, 1993. **58**: p. 4487-4489.
- 8. Roses, M. *et.al.*, *Dissociation constants of phenols in methanol-water mixtures*. J Chromatograph A, 2000. **867**: p. 45-56.
- 9. Dennis, R.J., *et al.*, *Structure and mechanism of a bacterial* β-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol, 2006. **13**(4): p. 365-71.
- 10. Kabsch, W., *Xds*. Acta Crystallogr D Biol Crystallogr, 2010. **66**(Pt 2): p. 125-32.
- 11. Evans, P., *Scaling and assessment of data quality.* Acta Crystallogr D Biol Crystallogr, 2006. **62**(Pt 1): p. 72-82.
- 12. Leslie, A.W. and Powell, H., *Processing diffraction data with mosflm*, in *Evolving Methods for Macromolecular Crystallography*, R. Read and J. Sussman, Editors. 2007, Springer Netherlands. p. 41-51.
- 13. Evans, P.R. and Murshudov, G.N., *How good are my data and what is the resolution?* Acta Crystallogr D Biol Crystallogr, 2013. **69**(Pt 7): p. 1204-14.
- 14. Winn, M.D. *et al., Ongoing developments in CCP4 for high-throughput structure determination.* Acta Crystallogr D Biol Crystallogr, 2002. **58**: p. 1929-1936.
- 15. Murshudov, G.N., *et al., REFMAC5 for the refinement of macromolecular crystal structures*. Acta Crystallogr D Biol Crystallogr, 2011. **67**(Pt 4): p. 355-67.
- 16. Adams, P.D., *et al.*, *The Phenix software for automated determination of macromolecular structures.* (1095-9130 (Electronic)).
- 17. Emsley, P., *et al., Features and development of Coot.* Acta Crystallographica Section D, 2010. **66**(4): p. 486-501.
- 18. Lebedev, A.A., *et al.*, *JLigand: a graphical tool for the CCP4 template-restraint library*. Acta Crystallogr D Biol Crystallogr, 2012. **68**(4): p. 431-440.
- 19. Chen, V.B., *et al., MolProbity: all-atom structure validation for macromolecular crystallography.* Acta Crystallogr D Biol Crystallogr, 2010. **66**(1): p. 12-21.
- 20. McNicholas, S., Potterton, E., Wilson, K.S. and Noble, M.E.M., *Presenting your structures: the CCP4mg molecular-graphics software.* Acta Crystallogr D Biol Crystallogr, 2011. **67**: p. 386-394.