Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supplemental Material for

# A Widespread Bacterial Phenazine

### Forms Conjugates with Biogenic Thiols and Crosslinks Proteins

Daniel Heine, Srividhya Sundaram, Matthias Beudert, Karin Martin and Christian Hertweck

| Analytical data of compounds <b>3</b> and <b>4</b>                       | 2   |
|--------------------------------------------------------------------------|-----|
| Binding of phenazine to biogenic thiols                                  | 3   |
| Synthesis of probes                                                      | 5   |
| Phenazine-protein binding assays with KS-B                               | 5   |
| Tryptic mass fingerprinting of labelled KS-B                             | 6   |
| Phenazine-protein binding assays with carbonic anhydrase III and albumin | .10 |
| Tryptic mass fingerprinting of labelled albumin                          | 11  |
| Antimicrobial properties of isolated phenazines <b>3</b> and <b>4</b>    | 13  |
| NMR spectra                                                              | 14  |

## Analytical data of compounds 3 and 4



**Figure S1**: Selected <sup>1</sup>H,<sup>13</sup>C HMBC and <sup>1</sup>H,<sup>1</sup>H COSY correlations of panphenazines **3** and **4**.

|          | 3                        |                             | 4                                    |                 |
|----------|--------------------------|-----------------------------|--------------------------------------|-----------------|
| Position | $\delta_{H^a}$ (J in Hz) | δ <sub>C</sub> <sup>b</sup> | $\delta_{\rm H^a}$ ( <i>J</i> in Hz) | δc <sup>b</sup> |
| 1        | -                        | _c                          | -                                    | _c              |
| 2        | 8.62, d (7.0)            | 135.5                       | 8.32, m                              | 134.7           |
| 3        | 8.03, dd (8.7, 7.0)      | 131.7                       | -                                    | 143.3           |
| 4        | 8.40, dd (8.7, 1.3)      | 134.8                       | 8.17, d (2.2)                        | 126.6           |
| 4a       | -                        | 144.6                       | -                                    | 144.8           |
| 5a       | -                        | 145.3                       | -                                    | 145.1           |
| 6        | 8.05, d (2.1)            | 123.2                       | 8.22, dd (7.6, 2.2)                  | 130.2           |
| 7        | -                        | 145.2                       | 7.96, m                              | 133.0           |
| 8        | 7.87, dd (9.1, 2.1)      | 134.3                       | 7.96, m                              | 132.8           |
| 9        | 8.18, d (9.1)            | 129.4                       | 8.28, dd (7.6, 2.2)                  | 129.9           |
| 9a       | -                        | 141.0                       | -                                    | 142.0           |
| 10a      | -                        | 140.8                       | -                                    | 140.4           |
| 1`       | 3.38, m                  | 32.0                        | 3.39, m                              | 32.3            |
| 2`       | 3.59,td (6.90, 1.5)      | 39.3                        | 3.59, t (6.8)                        | 39.2            |
| 3`       | -                        | 174.1                       | -                                    | 174.1           |
| 4`       | 2.43, t (6.7)            | 36.5                        | 2.42, t (6.6)                        | 36.5            |
| 5`       | 3.48, m                  | 36.4                        | 3.49, m                              | 36.3            |
| 6`       | -                        | 176.1                       | -                                    | 176.1           |
| 7`       | 3.87, s                  | 77.3                        | 3.87, s                              | 77.3            |
| 8`       | -                        | 40.4                        | -                                    | 40.4            |
| 9`/10`   | 0.89, s                  | 21.3/20.9                   | 0.89, s                              | 21.3/20.9       |
| 11`      | 3.39, m                  | 70.4                        | 3.40, m                              | 70.4            |
| соон     | -                        | 169.7                       | -                                    | 170.2           |
|          |                          |                             |                                      |                 |

**Table S1**: NMR spectroscopic data for Compounds **3** and **4** in methanol-*d*4.

<sup>a</sup> recorded at 600.3 MHz, <sup>b</sup> recorded at 150.9 MHz; <sup>c</sup> signals not detectable.

### Binding of phenazine to biogenic thiols



#### Conjugate formation of PCA with pantetheine following irradiation at 370 nm

**Figure S2.** SIM-HRMS (m/z = 501.1788-501.1828) analysis of the obtained product after incubation of PCA and pantetheine with irradiation at 370 nm; comparison with the isolated reference compounds **3** and **4**. SIM: selected ion monitoring.



#### Coupling of PCA to cysteine and glutathione

**Figure S3**. HRMS(/MS) spectrum of PCA-cysteine adduct ([M+H]<sup>+</sup>) after incubation of PCA with cysteine under sunlight.



**Figure S4**. HRMS(/MS) spectrum of PCA-glutathione-adduct ([M+H]<sup>+</sup>) after incubation of PCA with glutathione under sunlight.

#### Conjugate formation of PCA with pantetheine in presence of AIBN



**Figure S5**. SIM-MS spectrum of the product after incubation of PCA with pantetheine in presence of AIBN in the dark (top). MS spectrum of PCA-pantetheine-adduct ([M+Na]<sup>+</sup>) (bottom).



Synthesis of phenazine probes 9 (with biotin) and 10 (with rhodamine).

Figure S6: Synthesis of biotin- and rhodamine-B-tagged phenazine probes.

### Phenazine-protein binding assays with KS-B



**Figure S7.** SDS-PAGE (12% gel) after incubation of KS-B with rhodamine-B-labelled phenazine probe **10** under the following conditions: A)  $\lambda$  = 370 nm, 20 h, in H<sub>2</sub>O, B)  $\lambda$  = 370 nm, 20 h, DMSO, C) sunlight, 8 h, H<sub>2</sub>O, D) D: sunlight, 8 h, DMSO, E) E: AIBN, 20 h, DMSO, F) F: AIBN, 20 h, H<sub>2</sub>O.

# Tryptic mass fingerprinting of labelled KS-B

| - | - |
|---|---|
|   |   |
|   |   |
|   |   |

| Protein:         | RhiE KsBb                 |                  |                  |             |                   |            |            |
|------------------|---------------------------|------------------|------------------|-------------|-------------------|------------|------------|
| Intensity covera | ge: 54.2 % (250           | 1997 cnts) Seque | nce coverage MS: | 42.5 % Sequ | ence coverage MS/ | MS: 5.5 %  | pl: 5.9    |
| 10               | 20                        | 30               | 40               | 50          | 60                | 70         | 80         |
| мкннннннн        | GGLVPRGSHG                | GSSGERVEDN       | ELANYIAVIG       | LGGYYPGADS  | IDELWQNLAN        | GVDCMSDFPA | DRWDHSKIYY |
| 90               | 100                       | 110              | 120              | 130         | 140               | 150        | 160        |
| KNRKVLGKTT       | CI <mark>NGS</mark> FIKDV | DKFDYSYFKM       | PKVYADHMSP       | EVRLFLQVAV  | HTFEDAGYSK        | ETLLSRYNGD | VGVLLGTMSN |
| 170              | 180                       | 190              | 200              | 210         | 220               | 230        | 240        |
| DYHYYGFESN       | VFRGSMASGS                | GMATIPMTVS       | YFYGLTGPSL       | FIDTMCSSSS  | TCIHTACQML        | KHDETKMVLA | GGLNLMYHPY |
| 250              | 260                       | 270              | 280              | 290         | 300               | 310        | 320        |
| TTVNTSQGNF       | TSITSESVNS                | YGVGADGTVI       | GEGIGAVLLK       | RLDRAIADRD  | QIYGVIKGSA        | MTNAGERNGF | NVPNPDLQTI |
| 330              | 340                       | 350              | 360              | 370         | 380               | 390        | 400        |
| AIRQAMDQAK       | VHPSSISYIE                | GHGSGTKLGD       | PIEVLGLNNA       | FRWATDDKQF  | CYLGSIKSNI        | GHLLAASGIA | GLTKTLLQF  |
| 410              | 420                       | 430              | 440              | 450         | 460               | 470        | 480        |
| HKQIAPSIHS       | SQLNQDIDFA                | DTPFVVPQQL       | IEWRQPERII       | NGRKQVFPRR  | AGLTSIAAGG        | MNAHMIVEEY | PEPADSAGQI |
| 490              | 500                       | 510              | 520              | 530         | 540               | 550        | 560        |
| SEDQLVFVFS       | VHKLALLAQ <mark>N</mark>  | LTSFRDWLAS       | SEAPLAQIAY       | TLQVGKNNLR  | NRLAIRCRTR        | QALSRALNAC | IDGHYQSSAI |
| 570              | 580                       | 590              | 600              | 610         | 620               | 630        | 640        |
| SKIFYRFQES       | DAVQPLESDL                | NDPLAPLLTQ       | WLNGDSQVDW       | ASLYAQPPVR  | ISLPAYRFEK        | TRCWYTEEGY | ESSIVNPLME |
| 650              | 660                       | 670              | 680              | 690         | 700               | 710        | 720        |
| KNKLHPLVAK       | NCSTPQPGAI                | FRTDFVEDEL       | LDYVYSGRGG       | RRLSAFNFAD  | VALAMPALAS        | RFDGRTLSVS | CAFEHYIADU |
| 730              | 740                       | 750              | 760              | 770         | 780               | 790        | 800        |
| TTVTGLEYRL       | FEIDSEQLEL                | EFDFRRSGEQ       | PTHLGFAVIN       | PLTSDEPPLP  | QQWLDDAREL        | LNRQALQAGR | QLSAAEVSQR |
| 810              | 820                       | 830              | 840              | 850         | 860               | 870        | 880        |
| LAQAGYDFAP       | YLDHDGELTI                | GRSGLVLKGR       | PPVNRHNHYA       | DNVQLSPYLA  | TTIDKALYLL        | LDELGLPQGR | VIVRNIERLO |
| 890              | 900                       | 910              | 920              | 930         | 940               | 950        |            |
| CYHTPAGGFS       | VVLSGIGLND                | NELSLSLLVL       | DEREQICVKL       | DKVSLYLGKQ  | EVASVDRKHS        | LLTGT      |            |

**Figure S8.1.** Tryptic mass fingerprinting of KS-B after incubation with **9** and AIBN followed by affinity chromatography.



| Protein:                                | BhiFKs8h                  |                   |                  |            |                    |              |            |
|-----------------------------------------|---------------------------|-------------------|------------------|------------|--------------------|--------------|------------|
| Intensity covera                        | ge: 49.7 % (228)          | 3686 cnts) Sequer | nce coverage MS: | 16.3% Sequ | ence coverage MS/1 | ¥5: 83%      | pl: 5.9    |
| 10                                      | 20                        | 30                | 10               | 50         | E.                 | 70           | 80         |
| мкннннннн                               | GGLVPRGSHG                | GSSGERVEDN        | ELANYIAVIG       | LGGYYPGADS | IDELCONLAN         | GVOCMSOFPA   | DRWDHSKIY  |
| 90                                      | 100                       | 110               | 120              | 130        | 140                | _50          | 160        |
| KNRKVLGKTT                              | CI <mark>NGS</mark> FIKDV | DKFDYSYFKM        | PKVYADHMSP       | EVRLFLQVAV | HIFECAGESE         | ETLLSRYNGD   | VGVLLGTMS  |
| 170                                     | 180                       | 190               | 200              | 210        | 220                | 230          | 240        |
| DYHYYGFESN                              | VFRGSMASGS                | GMATIPMTVS        | YFYGLTGPSL       | FIDTMCSSSE | TCIETACOBL         | ZHOETKMVLA   | GGLNLMYHP  |
| 250                                     | 2.60                      | 270               | 280              | 290        | 300                | 310          | 320        |
| TTV <mark>NTS</mark> QG <mark>NF</mark> | TSITSESVNS                | YGVGADGTVI        | GEGIGAVLLK       | RLDRAIADRE | QIYGVIRGEN         | STNAGERNGF   | NVPNPDLQTI |
| 330                                     | 340                       | 350               | 3.60             | 370        | 350                | 390          | 400        |
| AIRQAMDQAK                              | VHPSSISYIE                | GHGSGTKLGD        | PIEVLGLNNA       | FRWATDDKQF | CYLGEDRENI         | GHLLAASGIA   | GLTKTLLQF  |
| 410                                     | 420                       | 430               | 440              | 450        | 460                | 470          | 480        |
| HKQIAPSIHS                              | SQLNQDIDFA                | DTPFVVPQQL        | IEWRQPERII       | NGRKQVFPRF | AGLIEINAGG         | INABMIVEEY   | PEPADSAGQI |
| 490                                     | 500                       | 510               | 520              | 530        | 541                | 550          | 560        |
| SEDQLVFVFS                              | VHKLALLAQ <mark>N</mark>  | LTSFRDWLAS        | SEAPLAQIAY       | TLQVGKNNLF | NRLAIRCRIR         | CALSRALNAC   | IDGHYQSSAD |
| 570                                     | 580                       | 590               | 600              | 610        | 620                | 630          | 640        |
| SKIFYRFQES                              | DAVQPLESDL                | NDPLAPLLTQ        | WLNGDSQVDW       | ASLYAQPPVE | IELFATEFER         | TROWYTEEGY   | ESSIVNPLMF |
| 650                                     | 660                       | 670               | 680              | 690        | 700                | 710          | 720        |
| KNKLHPLVAK                              | NCSTPQPGAI                | FRTDFVEDEL        | LDYVYSGRGG       | RRLSAFNFAC | VALAEFALAS         | RFOGRTLSVS   | CAFEHYIADU |
| 730                                     | 740                       | 750               | 760              | 770        | 780                | 790          | 800        |
| TTVTGLEYRL                              | FEIDSEQLEL                | EFDFRRSGEQ        | PTHLGFAVIN       | PLTSDEPPLF | QQUICCAREL         | LNRCALQAGR   | QLSAAEVSQF |
| 810                                     | 820                       | 830               | 840              | 850        | 867                | 870          | 880        |
| LAQAGYDFAP                              | VLDHDGELTT                | GREGLVLKGR        | PPVNRHNHVA       | DNVQLSPVLA | LIP ISTITT         | LOKINGL/PQGR | VIVENTERLO |
| 890                                     | 900                       | 910               | 920              | 930        | 542                | 950          |            |
| CYNTRAGGES                              | VVLSCICLND                | NELSLSLLVL        | DEREOICVKL       | DKVSLVLGKO | FVAEVODERES        | LATGT        |            |

Figure S8.2. Tryptic mass fingerprinting of KS-B after crosslinking with 10 under UV light (1).

| Protein:                 | RhiE KsBb                 |                  |                  |             |                    |            |            |
|--------------------------|---------------------------|------------------|------------------|-------------|--------------------|------------|------------|
| Intensity covera         | ige: 54.9 % (117.         | 3386 cnts) Seque | nce coverage MS: | 14.5 % Sequ | ence coverage MS/I | MS: RR%    | pl: 5.9    |
| 10                       | 20                        | 30               | 40               | 50          | 60                 | 70         | 80         |
| мкниннини                | GGLVPRGSHG                | GSSGERVEDN       | ELANVIAVIG       | LGGYYPGADS  | IDELWQNLAN         | GVDCMSDFPA | DRWDHSKIY  |
| 90                       | 100                       | 110              | 120              | 130         | 140                | 150        | 160        |
| KNRKVLGKTT               | CI <mark>NGS</mark> FIKDV | DKFDYSYFKN       | PKVYADIIMSP      | EVRLFLQVAV  | HTFEDAGYSK         | ETLLSRYNGD | VGVLLGTMS  |
| 170                      | 180                       | 190              | 200              | 210         | 220                | 230        | 2.40       |
| DYHYYGFESN               | VFRGSMASGS                | GMATIPMTVS       | YFYGLTGPSL       | FIDTMC3333  | TCIHTACQML         | KHDETKHVLA | GGLNL MYHP |
| 2.50                     | 2.60                      | 270              | 260              | 290         | 300                | 310        | 320        |
| TTV <mark>NTSQGNF</mark> | TSITSESVNS                | YGVGADGTVI       | GEGIGAVLLK       | RLDRAIADRD  | Q1YGV1KG5A         | MINAGERNGF | NVPNPDLQTI |
| 330                      | 340                       | 350              | 360              | 370         | 380                | 390        | 400        |
| AIRQAMDQAK               | VHPSSISYIE                | GHGSGTKLGD       | PIEVLGLNNA       | FRUATDDKQF  | CYLGSIKSNI         | GHLLAASGIA | GLTKTLLQF  |
| 410                      | 420                       | 430              | 440              | 450         | 460                | 470        | 480        |
| HKQIAPSIHS               | SQLNQDIDFA                | DIFFAAROOF       | TEWRQPERII       | NGRKQVFPRR  | AGLTSIAAGG         | MNAHMIVEEY | PEPADSAGQI |
| 490                      | 500                       | 510              | 520              | 530         | 540                | 550        | 560        |
| SEDQLVFVFS               | VHKLALLAQ <mark>N</mark>  | LTSFRDWLAS       | SEAPLAQIAY       | TLQVGKNNLR  | NRLAIRCRTR         | QALSRALNAC | IDGHYQSSAI |
| 570                      | 580                       | 590              | 600              | 610         | 620                | 630        | 640        |
| SKIFYRFQES               | DAVQPLESDL                | NDPLAPLLTQ       | WLNGDSQVDW       | ASLYAQPPVR  | ISLPAYRFEK         | TRCWYTEEGY | ESSIVNPLM  |
| 650                      | 660                       | 670              | 680              | 690         | 700                | 710        | 720        |
| KNKLHPLVAK               | NCSTPQPGAI                | FRTDFVEDEL       | LDYVYSGRGG       | RRLSAFNFAD  | VALAMPALAS         | RFDGRTLSVS | CAFEHYIAD  |
| 730                      | 740                       | 750              | 760              | 770         | 780                | 790        | 800        |
| TTVTGLEYRL               | FEIDSEOLEL                | EFDFRRSGEO       | PTHLGFAVIN       | PLTSDEPPLP  | OOWLDDAREL         | LNROALOAGR | OLSAAEVSON |
| 810                      | 820                       | 830              | 840              | 850         | 860                | 870        | 880        |
| LAQAGYDFAP               | YLDHDGELTI                | GREGLVLKGR       | PPVNRHNHYA       | DNVQLSPYLA  | TTIDKALVLL         | LDELGLPQGR | VIVENIERL  |
| 890                      | 900                       | 910              | 920              | 930         | 940                | 950        |            |
| CYHTPACCFS               | VVLSCICLND                | NELSLSLLVL       | DEREQICVKL       | DKVSLYLCKQ  | EVASVDRKHS         | LLTCT      |            |

Figure S8.3. Tryptic mass fingerprinting of KS-B after crosslinking with 10 under UV light (1).

| Protein:         | RhiE KeBb                 |                 |                  |             |                    |            |            |
|------------------|---------------------------|-----------------|------------------|-------------|--------------------|------------|------------|
| Intensity covera | ge: 47.8 % (976           | 679 cnts) Seque | nce coverage MS: | 14.4 % Sequ | ence coverage MS/I | MS: 6.6 %  | pl: 5.9    |
| 10               | 20                        | 30              | 40               | 50          | 60                 | 70         | 80         |
| икниннинн        | GGLVPRGSHG                | GSSGERVEDN      | ELANYIAVIG       | LGGYYPGADS  | IDELUQNLAN         | GVDCMSDFPA | DRWDHSKIY  |
| 90               | 100                       | 110             | 120              | 130         | 140                | 150        | 160        |
| KNRKVLGKTT       | CI <mark>NGS</mark> FIKDV | DEEDYSYFEN      | PKVYADHMSP       | EABTEFTOATA | HTFEDIGYSK         | ETLLSRYNGD | VGVLLGTHSI |
| 170              | 180                       | 190             | 200              | 210         | 220                | 230        | 240        |
| DYHYYGFESN       | VERGSMASGS                | GMATIPMTVS      | YFYGI.TGPSI.     | FIDTMCSSSS  | TOTHTACOMI.        | KHDETKMVLA | GGLNLMYHPY |
| 250              | 260                       | 270             | 280              | 290         | 300                | 310        | 320        |
| TTVNTSOGNF       | TSITSESVNS                | YGVGADGTVI      | GEGIGAVLLK       | RLDRAIADRD  | OIYGVIKGSA         | MTNAGERNGF | NVPNPDLOTI |
| 330              | 340                       | 350             | 3 60             | 370         | 360                | 390        | 400        |
| AIRQAMDQAK       | VHPSSISYIE                | GHGSGTKLGD      | PIEVLGLNNA       | FRUATDDKQF  | CYLGSIKSNI         | GHLLAASGIA | GLTKTLLQFI |
| 410              | 420                       | 430             | 440              | 450         | 460                | 470        | 480        |
| HKQIAPSIHS       | SQLNQDIDFA                | DTPFVVPQQL      | IEWRQPERII       | NGRKQVFPRR  | AGLTSIAAGG         | MNAHMIVEEY | PEPADSAGQI |
| 490              | 500                       | 510             | 520              | 530         | .540               | 550        | 560        |
| SEDQLVFVFS       | VHKLALLAQ <mark>N</mark>  | LT3FRDWLAS      | SEAPLAQIAY       | TLQVGKNNLR  | NRLAIRCRTR         | QALSRALNAC | IDGHYQSSAI |
| 570              | 580                       | 590             | 600              | 610         | 620                | 630        | 640        |
| SKIFYRFQES       | DAVQPLESDL                | NDPLAPLLTQ      | WLNGDSQVDW       | ASLYAQPPVR  | IGLPAYRFEK         | TRCUYTEEGY | ESSIVNPLM  |
| 650              | 660                       | 670             | 680              | 690         | 700                | 710        | 720        |
| KNKLHPLVAK       | NCSTPQPGAI                | FRTDFVEDEL      | LDYVYSCRCC       | RRLSAFNFAD  | VALAMPALAS         | RFDGRTLSVS | CAFEHVIADU |
| 730              | 740                       | 750             | 760              | 770         | 780                | 790        | 800        |
| TTVTGLEYRL       | FEIDSEQLEL                | EFDFRRSGEQ      | PTHLGFAVIN       | PLTSDEPPLP  | QQWLDDAREL         | LNRQALQAGR | QLSAAEVSQR |
| 810              | 820                       | 830             | 840              | 850         | 860                | 870        | 880        |
| LAQAGYDFAP       | YLDHDGELTI                | GREGLVLKGR      | PPVNRHNHYA       | DNVQLSPYLA  | TTIDKALVLL         | LDELGLPQGR | VIVRNIERLO |
| 890              | 900                       | 910             | 920              | 930         | 940                | 950        |            |
| CYHTPAGGES       | VVLSGIGLND                | NELSLSLLVL      | DEREQICVKL       | DKVSLYLGKQ  | EVASVDRKHS         | LLTGT      |            |

Figure S8.4. Tryptic mass fingerprinting of KS-B after crosslinking with 10 under UV light (1).

| Piutein.<br>Intensity covera | NhĩE Ks0b<br>ge: 47.8 % (154) | 3905 cnts) Sequer | nce coverage MS: | 35.7 % Seque | ance coverage MS/I | MS: 8.3%   | pl: 5.9    |
|------------------------------|-------------------------------|-------------------|------------------|--------------|--------------------|------------|------------|
| 10                           | 20                            | 30                | 10               | 50           | 60                 | 70         | 80         |
| мкннннннн                    | GGLVPRGSHG                    | GSSGERVEDN        | ELANYIAVIG       | LGGYYPGADS   | IDELUQNLAN         | GVDCMSDFPA | DRUDHSKIY  |
| 90                           | 100                           | 110               | 120              | 130          | 110                | 150        | 160        |
| <b>KNRKVLGKTT</b>            | CI <mark>NGS</mark> FIKDV     | DKFDYSYFKM        | PKVYADHMSP       | EVRLFLQVAV   | HTFEDAGYSK         | ETLLSRYNGD | VGVLLGTMS  |
| 170                          | 100                           | 190               | 200              | 210          | 220                | 200        | 240        |
| DYHYYGFESN                   | VFRGSMASGS                    | GMATIPMTVS        | YFYGLTGPSL       | FIDTHCSSSS   | TCIHTACQML         | KHDETKMVLA | GGLNLMYHP  |
| 250                          | 2.60                          | 270               | 200              | 290          | 000                | 010        | 020        |
| TTVNTSQCNF                   | TSITSESVNS                    | YCVCADCTVI        | CECICAVLLK       | RLDRAIADRD   | QIVCVINCSA         | MINAGERNGE | NVPNPDLQTI |
| 22011                        | 5411                          | 2611              | 2411             |              | 100                | 2000       | 2010       |
| AIRQAMDQAK                   | VHPSSISYIE                    | GHGSGTKLGD        | PIEVLGLNNA       | FRWATDDKQF   | CYLGSIKSNI         | GHLLAASGIA | GLTKTLLQFI |
|                              |                               |                   |                  |              |                    | 100        |            |
| 410                          | 420                           | 430               | 440              | 450          | 460                | 470        | 480        |
| HKQIAPSIHS                   | SQUNQDIDFA                    | DTPFVVPQQL        | IEWROPERII       | NGRKQVFPRR   | AGLTSTAAGG         | MNAHMIVEEY | PEPADSAGQ. |
| 490                          | 500                           | 510               | 520              | 500          | 540                | 550        | 560        |
| SEDQLVFVFS                   | VHKLALLAQ <mark>N</mark>      | LTSFRDWLAS        | SEAPLAQIAY       | TLQVGKNNLR   | NRLAIRCRTR         | QALSRALNAC | IDGHYQSSAI |
| 570                          | 500                           | 590               | 600              | 610          | 620                | 630        | 640        |
| SKIFYRFQES                   | DAVQPLESDL                    | NDPLAPLLTQ        | ULNCDSQVDU       | ASLYAQPPVR   | ISLPAYRFEK         | TRCWYTEEGY | ESSIVNPLM  |
| 650                          | 660                           | 670               | 600              | 690          | 700                | 710        | 720        |
| KNKLHPLVAK                   | NCSTPQPGAI                    | FRTDFVEDEL        | LDYVYSCRCC       | RRLSAFNFAD   | VALAMPALAS         | RFDCRTLSVS | CAFEHYIADU |
| 730                          | 740                           | 750               | 760              | 770          | 780                | 790        | 800        |
| TTVTGLEYRL                   | FEIDSEQLEL                    | EFDFRRGGEQ        | PTHLGFAVIN       | PLTSDEPPLP   | QQULDDAREL         | LNRQALQAGR | QUCAREVOQR |
| 810                          | 820                           | 830               | 840              | 850          | 860                | 870        | 880        |
| LAQAGYDFAP                   | YLDHDGELTI                    | GRSGLVLKGR        | PPVNRHNHYA       | DNVQLSPYLA   | TTIDKALYLL         | LDELGLPQGR | VIVRNIERLO |
| 890                          | 900                           | 910               | 920              | 930          | 940                | 950        |            |
| CYNTPAGGES                   | VVLSGTGLND                    | NELSLSLLVL        | DEREOICVKL       | DKVSLYLGKO   | EVASVDRKHS         | LLTGT      |            |

Figure S8.5. Tryptic mass fingerprinting of KS-B after crosslinking with 10 under UV light (1).

| Protein:                                | RhiE K∞Bb                      |                   |                              |              |                    |            |             |
|-----------------------------------------|--------------------------------|-------------------|------------------------------|--------------|--------------------|------------|-------------|
| Intensity covera                        | ger 40.7 % (173.               | 2434 cnts) Sieque | nce coverage MS <sup>+</sup> | 35.9 % Seque | ence coverage MS/I | MS: 6.6 %  | pl: 5.9     |
| 10                                      | 20                             | 30                | 40                           | 50           | 60                 | 70         | 80          |
| мкниннини                               | GGLVPRGSHG                     | GSSGERVEDN        | ELANYIAVIG                   | LGGYYPGADS   | IDELWONLAN         | GVDCMSDFPA | DRWDHSKIYY  |
| 90                                      | 100                            | 110               | 120                          | 130          | 140                | 150        | 160         |
| KNRKVLGKTT                              | CI <mark>NGS</mark> FIKDV      | DKFDYSYFKN        | PKVYADHMSP                   | EVRLFLOVAV   | HTFEDAGYSK         | ETLLSRYNGD | VGVLLGTMSN  |
| 170                                     | 180                            | 190               | 200                          | 210          | 220                | 230        | 240         |
| DYHYYGFESN                              | VFRGSMASGS                     | GMATIPMTVS        | VFYGLTGPSI.                  | FIDTMCSSSS   | TOTHTACOMI.        | KHDETKMVLA | GGLNLMYHPY  |
| 250                                     | 2.60                           | 270               | 280                          | 290          | 300                | 310        | 320         |
| TTV <mark>NTS</mark> QG <mark>NF</mark> | TSITSESVNS                     | YGYGADGTVI        | GEGIGAVLLK                   | RLDRATADED   | QTYGVTKGSA         | MTNAGERNGE | NVPNPDI.QTI |
| 330                                     | 340                            | 350               | 3 60                         | 370          | 380                | 390        | 400         |
| AIRQAMDQAK                              | VHPSSISVIE                     | CHCSCTKLCD        | PIEVLCLNNA                   | FRUATDDKQF   | CYLCSIKSNI         | CHLLAASCIA | CLTKTLLQFI  |
| 110                                     | 120                            | 130               | 110                          | 150          | 160                | 170        | 180         |
| HKOIAPSIHS                              | SOLNODIDFA                     | DTPFVVPOOL        | IEUROPERII                   | NGRKOVFPRR   | AGLTSIAAGG         | MNAHMIVEEY | PEPADSAGO   |
| 490                                     | 500                            | 510               | 520                          | 530          | 540                | 550        | 560         |
| SEDQLVEVES                              | VHKI. AT. I. AQ <mark>N</mark> | I.TSFRDMLAS       | SEAPLAQUAY                   | TI.QVGKNNI.R | NRLATECETE         | QALSRALNAC | IDGHYQSSAT  |
| 570                                     | 580                            | 590               | 600                          | 610          | 620                | 630        | 640         |
| SKIFYRFORS                              | DAVQPI.ESDI.                   | NDPLAPLITQ        | MLNGDSQVDW                   | ASI.VAQPPVR  | TSLPAYREEK         | TRCHYTEEGY | ESSIVNPLME  |
| 650                                     | 660                            | 670               | 680                          | 690          | 700                | 710        | 720         |
| KNKLHÞLVAK                              | NCS TPOPGAI                    | FRTDFVEDEL        | LDYVYSGRGG                   | PRLSAFNFAD   | VALAMPALAS         | REDGRTLSVS | CAFEHVIADU  |
| 730                                     | 740                            | 750               | 760                          | 770          | 780                | 790        | 800         |
| TTVTGLEYRL                              | FEIDSEQLEL                     | EFDFRRSGEQ        | PTHLGFAVIN                   | PLTSDEPPLP   | QQULDDAREL         | LNRQALQAGR | QUSINEVSQR  |
|                                         |                                |                   |                              |              |                    |            | 1           |
| 810                                     | 820                            | 830               | 840                          | 850          | 860                | 870        | 880         |
| LAQAGYDF AP                             | YLDHDGELTI                     | GRIGLVLKGR        | PPVNRIINIIYA                 | DNVQLOPYLA   | TTIDKALYLL         | LDELGLPQGR | VIVRNIERLO  |
| 890                                     | 900                            | 910               | 920                          | 930          | 940                | 950        |             |
| CVITTRAGES                              | VAL COTOLND                    | NELCICIUM         | DEPENTCURI                   | DEVCI VI GRO | FURCUDDUIC         | LITGT      |             |

CYHTPAGGFS VVLSGIGLND NELSLSLLVL DEREQICVKL DKVSLYLGKQ EVASVDRKHS LLTGT

Figure S8.6. Tryptic mass fingerprinting of KS-B after crosslinking with 10 under UV light (1).

#### Phenazine-protein binding assays with carbonic anhydrase III and albumin



**Figure S9.** A) Scheme for the functionalization of carbonic anhydrase III by probe **10** after irradiation with UV-light. B) SDS-PAGE (10%) of carbonic anhydrase III after the incubation with probe **10** or rhodamine B in water; a) rhodamine B, 370 nm, 10 h; b) **10**, 370 nm, 15 min; c) **10**, 370 nm, 30 min; d) **10**, 370 nm, 1 h; e) **10**, 370 nm, 5 h; f) **10**, 370 nm, 10 h, C) carbonic anhydrase III control, L: Ladder. The fluorescent bands would correspond to potential conjugates of carbonic anhydrase III and **9** with n>5.



**Figure S10.** SDS-PAGE (10%) of albumin after the incubation with probe **10** or rhodamine B in water (left picture: under white light; right picture at 370 nm); L, Ladder, a) rhodamine B, 370 nm, 10 h; b) **10**, 370 nm, 15 min; c) **10**, 370 nm, 30 min; d) **10**, 370 nm, 1 h; e) **10**,

370 nm, 5 h; f) **10**, 370 nm, 10 h, C) albumin control. The fluorescent band potentially corresponds to a 70 kDa monoadduct of **10** and albumin.

## Tryptic mass fingerprinting of labelled albumin

|   | - | - | - |   |   |   |
|---|---|---|---|---|---|---|
|   | - | - |   |   |   | - |
|   |   |   |   |   |   |   |
| - |   |   |   | ſ |   |   |
|   | Π | Π | Π |   |   |   |
|   |   |   |   |   | 1 |   |
|   |   |   |   |   |   |   |

| Protein:<br>Intensity covera | BSA<br>ge: 51.2 % (1748 | 6939 cnts) Sequer | nce coverage MS: | 52.2 % Sequ | ence coverage MS/I | MS: 5.1 %  | pl: 5.8    |
|------------------------------|-------------------------|-------------------|------------------|-------------|--------------------|------------|------------|
| 10                           | 20                      | 30                | 40               | 50          | 60                 | 70         | 80         |
| MKWVTFISLL                   | LLFSSAYSRG              | VFRRDTHKSE        | IAHRFKDLGE       | EHFKGLVLIA  | FSQYLQQCPF         | DEHVKLVNEL | TEFAKTCVAD |
| 90                           | 100                     | 110               | 120              | 130         | 140                | 150        | 160        |
| ESHAGCEKSL                   | HTLFGDELCK              | VASLRETYGD        | MADCCEKQEP       | ERNECFLSHK  | DDSPDLPKLK         | PDPNTLCDEF | KADEKKFWGK |
| 170                          | 180                     | 190               | 200              | 210         | 220                | 230        | 240        |
| YLYEIARRHP                   | YFYAPELLYY              | ANKYNGVFQE        | CCQAEDKGAC       | LLPKIETMRE  | KVLASSARQR         | LRCASIQKFG | ERALKAWSVA |
|                              |                         |                   |                  |             |                    |            |            |
| 250                          | 2.60                    | 270               | 280              | 290         | 300                | 310        | 320        |
| RLSQKFPKAE                   | FVEVTKLVTD              | LTKVHKECCH        | GDLLECADDR       | ADLAKYICDN  | QDTISSKLKE         | CCDKPLLEKS | HCIAEVEKDA |
| 220                          | 340                     | 350               | 3.60             | 370         | 390                | 200        | 400        |
| IPENLPPLTA                   | DFAEDKDVCK              | NYQEAKDAFL        | GSFLYEYSRR       | HPEYAVSVLL  | RLAKEYEATL         | EECCAKDDPH | ACYSTVFDKL |
|                              |                         |                   |                  |             |                    |            |            |
| 410                          | 420                     | 430               | 440              | 450         | 460                | 470        | 480        |
| KHLVDEPQNL                   | IKQNCDQFEK              | LGEYGFQNAL        | IVRYTRKVPQ       | VSTPTLVEVS  | RSLGKVGTRC         | CTKPESERMP | CTEDYLSLIL |
| 490                          | 500                     | 510               | 520              | 530         | 540                | 550        | 560        |
| NRLCVLHEKT                   | PVSEKVTKCC              | TESLVNRRPC        | FSALTPDETY       | VPKAFDEKLF  | TFHADICTLP         | DTEKQIKKQT | ALVELLKHKP |
|                              |                         | _                 |                  |             |                    |            |            |
| 570                          | 580                     | 590               | 600              | 610         |                    |            |            |
| KATEEQLKTV                   | MENFVAFVDK              | CCAADDKEAC        | FAVEGPKLVV       | STQTALA     |                    |            |            |

**Figure S11.** Tryptic mass fingerprinting of albumin after functionalization with **10** under UV light (1).



**Figure S12.** A) Model of the rhodamine-based probe (**10**) crosslinked to the Cys<sub>557</sub> of albumin under UV light (PDB code 4F5S) B) MALDI-MS/MS spectrum of the rhodamine-based probe (**10**)-linked peptide of albumin.

|         |        | Inhibition zone (mm) |        |        |      |     |        |        |        |        |  |  |
|---------|--------|----------------------|--------|--------|------|-----|--------|--------|--------|--------|--|--|
| Cpd.    | B. sub | S. aur               | E. col | P. aer | MRSA | VRE | M. vac | S. sal | C. alb | P. not |  |  |
| 3       | 0      | 0                    | 17     | 0      | 0    | 15  | 13     | 20     | 0      | 0      |  |  |
| 4       | 10     | 0                    | 0      | 15     | 0    | 0   | 13     | 0      | 0      | 0      |  |  |
| PCA (2) | 31     | 25                   | 32     | 0      | 20   | 0   | 27     | 20     | 35     | 16     |  |  |

### Antimicrobial properties of isolated phenazines 3 and 4

**Table S2**. Antimicrobial properties of the phenazine-pantetheine conjugates **3** and **4** in comparison with PCA (**2**). *B. sub: Bacillus subtilis* ATCC 6633; *S. aur: Staphylococcus aureus* SG 511; *E. col: Escherichia coli* SG 458; *P. aer: Pseudomonas aeruginosa* SG 137; MRSA: Methicillin- and quinolone-resistant *Staphylococcus aureus* 134/93; VRE: Vancomycin-resistant *Enterococcus faecalis* 1528; *M. vac: Mycobacterium vaccae* IMET 10670; *S. sal: Sporobolomyces salmonicolor* SBUG 549; *C. alb: Candida albicans* BSMY 212; *P. not: Penicillium notatum* JP36; cpd, compound; PCA: phenazine-1-carboxylic acid (**2**).



<sup>&</sup>lt;sup>13</sup>C NMR spectrum (150 MHz, MeOD) of **3**.



COSY and HSQC spectra of compound 3.



HMBC spectrum of compound **3**.



<sup>13</sup>C NMR spectrum (150 MHz, MeOD) of **4**.



COSY and HSQC spectra of compound 4.



HMBC spectrum of compound 4.



 $^{\rm 13}{\rm C}$  NMR spectrum (125 MHz, DMSO-D<sub>6</sub>) of **5**.



<sup>1</sup>H NMR spectrum (600 MHz, DMSO-D<sub>6</sub>) of **6**.



<sup>1</sup>H NMR spectrum (500 MHz, DMSO-D<sub>6</sub>) of **7**.







<sup>1</sup>H NMR spectrum (600 MHz,  $CDCl_3$ ) of **10**.



<sup>1</sup>H NMR spectrum (600 MHz, MeOD) of **11**.

