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Supplementary information 

General Methods 

NMR binding experiments. Samples of C (25 M to 2 mM, depending  on  the experiment) were 

prepared by diluting  a 10 mM stock solution of C in  water with the appropriate amount of water, 

phosphate buffer 200 mM, pH 7.2 , D2O and were added of aliquots of  a stock solution  of B)so that 

the final sample contained phosphate buffer of the desired concentration (5 to 100 mM depending 

of the experiment), 10% of D2O v/v and the desired concentration of the ligand (0 to 5 mM 

depending on the experiment). Samples were left to equilibrate for a minimum of 1 hour before the 
1H NMR spectrum was recorded in a Bruker AV600 NMR spectrometer. 

NMR diffusion experiments. A sample  of C and B 200 M each in  phosphate buffer 5 mM pH 7.2 

and 10 %  D2O was prepared by mixing the appropriate quantities of stock solutions  of B and C in 

water, water, phosphate buffer 200 mM, pH 7.2 and D2O . The sample was left equilibrate for 6 

hours. The experiment was carried in a Bruker AV600 NMR spectrometer. 

UV binding experiments. Samples of C (1 M to 2 mM, depending on the experiment) were 

prepared by diluting  a stock solution of 10 mM C in water with the appropriate amount of water, 

phosphate buffer 200 mM, pH 7.2  and aliquots of the stock solutions of B so that the final samples 

contained phosphate buffer of the desired concentration (5 to 100 mM depending of the 

experiment) and the desired concentration of B (0 to 5 mM depending on the experiment). Samples 

were left to equilibrate for a minimum of 1 hour before the UV spectrum was recorded in a Cary300 

UV spectrophotometer. 

EM experiments. For negative stain EM, 5L of a solution of C and B ([B]=[C] = 50 M) in 100 mM 

phosphate buffer pH 7.2 were applied to a carbon-coated, glow discharged, 300-mesh copper grid 

and blotted after 30 seconds. The grids were stained twice with 10 L of 2% (w/v)  uranyl acetate, 

blotted after 30 seconds and allow to air-dry. Images were collected using minimal electron dose at 

a nominal magnification of 26000x and 67000x in a Tecnai 12 microscope (FEI, Eindhoven, NL) with a 

tungsten filament operating at 120 kv. Images were recorded with a Gatan 1K Ultrascan camera 

(Gatan, USA) between 1.2-2.0 m underfocus.  
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NMR diffusion experiments.  

DOSY experiment was carried out on a sample 200 M of C and B, in buffer phosphate 5 mM and  pH 

7.20. In these conditions the spectrum shows 7 singlet peaks between 8.5 and 9.5 ppm assigned to 

the beta porphyrin proton (see Fig. 2A and Fig. S1 A).  The change in intensity of these peaks was 

used to derive the corresponding diffusion coefficients (Fig. S1).For comparison, the diffusion 

coefficient of the corresponding species was calculated using the program Hydropro (see ref. 33) 

(Table S1). Hydropro computes the hydrodynamic properties of rigid macromolecules from their 

atomic-level structure, as specified by the atomic coordinates taken from a PDB. The PDB structure 

of the relevant complexes was generated based on the x-ray data of CB complexes in reference 36. 

There is an excellent correlation between the coefficients calculated and the ones experimentally 

derived (Table S1). 

Table S1. Diffusion coefficients. 

 CB CB2 C2B C2B3 C2B2 

Experimental 2.62E-06 2.56E-06 1.97E-06 1.88E-06 1.85E-06 

Experimental normalized 1.00 0.98 0.75 0.72 0.71 

Calculated 2.18E-06 2.12E-06 1.75E-06 1.68E-06 1.71E-06 

Calculated normalized 1.00 0.97 0.80 0.77 0.79 

The units in the diffusion coefficients are cm2s-1. The error in the experimental value is of the order 

of 10%. 
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Figure S1. A. Section of the DOSY-NMR experiment showing the changes in intensity with time of the 

peaks assigned to the  proton of the different species present. The assignment to each specie is 

also shown. B-G. Fit of the integral of each of the peaks to the diffusion model that yields the 

diffusion coefficient shown in Table S1. For C2B2, the diffusion coefficient was calculated as the 

average from the coefficients derived from fittings in F and G.  
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UV titration experiments 

UV spectroscopy was used to determine the stepwise binding constants for complexes with 

bipyridine B in concentration conditions where the dominant species are of the form CB and CB2 

(that is, with concentration of C less than 5 M).  The stepwise formation constants K1 and K2 for 

complexes CB and CB2 are  

𝐾1 =
[𝐂𝐁]

[𝐂][𝐁]
 (1) 

𝐾2 =
[𝐂𝐁2]

[𝐂𝐁][𝐁]
 (2) 

The observed absorbance at a particular wavelength A is: 

𝐴 = 𝜀𝐂[𝐂] + 𝜀𝐂𝐁[𝐂𝐁] + 𝜀𝐂𝐁2[𝐂𝐁2]   (S1) 

where C, CB and CB2 are  the corresponding extinction coefficients at the wavelength under study. 

The mass balances are: 

[𝐂]0 = [𝐂𝐁2] + [𝐂𝐁] + [𝐂]    (S2) 

[𝐁]0 = 2[𝐂𝐁2] + [𝐂𝐁] + [𝐁]    (S3) 

Were [C]o and [B]o are the total concentration of C and B. In order to remove the baseline drifting we 

performed a graphical derivative of the spectra, by subtracting to the absorbance at a given 

wavelength the absorbance at a 5 nm greater wavelength (spectra 1 and 2 in Figure S2). Equation 

(S1) can be used for a difference on absorbances as much as for absorbance. Therefore, the 

derivative of the spectra was used to determine the stepwise binding constants by fitting the 

changes in the absorbance derivative  at three different wavelengths to the model defined by 

equations (1), (2), (S1)-(S3). We used the program Micromath Scientist 2.0 (Fig. S2) for the data 

fitting. 
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Figure S2. A. Changes in the Soret band of C upon addition of increasing amounts of B. B.  Changes in 

the first derivative of the spectra shown in A. C. Changes in the intensity of the derivative of the 

absorbance at 426 (empty circles) and best fit to the model defined by equations (1), (2), (S1)-(S3) 

(red line).  C. Idem for changes in intensity at 432 nm. D. Idem for changes in intensity at 436 nm. 

The concentration of C in this experiment is 9.4 M with a cell pathlength of 0.4 cm. 

Table S2. Binding parameters in sodium phosphate 100 mM, pH 7.20a 

K1 K2 K3 

9.7x10
5
 ± 8.3x10

4
 1.1x10

4
 ± 7.5x10

3
 

 
3.0x10

4
 ± 6.0x10

3 (b)
 

 

(a) The units for the binding constants are M-1 in all cases. The quoted error is twice the 

standard deviation of the mean. (b) Determined by integration of the NMR signal. 

X-Ray crystalography-derived oligomer-dimer structure. 

The molecular model displayed in Fig. 3C was build up from the crystal structure reported in ref. 36. 

For Fig. 3C, using the program Discovery Studio 4.0, we took a section of the PDB structure of the 

crystal containing two complexes of the form CB in close proximity (i.e., a dimer of the monomer CB, 

Fig. S3A) and generated the dimer of the oligomer C2B2 by duplicating it (Fig. S3B). The distances 

between the porphyrin rings within the original dimer of monomer CB and the new inter-porphyrin 

distances in the C2B2 dimer are virtually the same.  
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Figure S3. X-ray Crystal structure of the oligomer dimer. A. Section of the crystal structure reported 

in reference 36. B. Reconstruction of the oligomer based on the structure displayed in A. 

 

TEM data analysis. 

We used pictures obtained with a nominal magnification of 67000x to estimate the average width of 

the fibre-like features found. For this magnification the value of pixels per Angstrom is 1.022, and 

this value was used to convert the width in pixels, as measured using the program GIMP 2.8, to the 

corresponding value in Angstroms. From 2 different pictures (Fig. S4 A and B), we chose the 60 

features that where the best defined. The distribution of widths is shown in Figure S4 C. Figure 3D is 

composed of a section of Figure S4 B and a section of a third picture showing an isolated fibrilar 

feature. 
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Figure S4. A anb B. TEM pictures obtained at a nominal magnification of 67000x. C. Distribution of 

the widths of the best defined needle-like features in A and B. The average width obtained from this 

analysis is 22 ±2 Å   

 

 

Figure S5. Section of the UV spectrum of a mixture  C/B in a ratio 1 to 1 (concentration of C = 1 M) 

in buffer phosphate 5 mM, pH 7.20 (blue trace) and in buffer phosphate 500 mM, pH 7.20 (red 

trace). 
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Model of the single strand oligomerization.  

The expressions for the stepwise binding constants K1, K2 and K3 for complexes CB, CB2 and C2B, are:  

𝐾1 =
[𝐂𝐁]

[𝐂][𝐁]
 (1) 

𝐾2 =
[𝐂𝐁𝟐]

[𝐂𝐁][𝐁]
 (2) 

𝐾3 =
[𝐂𝟐𝐁]

[𝐂𝐁][𝐂]
 (3) 

K1, K2 and K3 where calculated by integration of the signals assigned to the beta protons of the 

corresponding complex. K1 and K2 were also calculated by UV spectroscopy methods as described 

above. The resulting values are the same, within the error, using either technique (Table 1). 

Using C and B as building blocks, three kinds of oligomers can be formed: (i) with the same number 

of C and B building blocks, with generic formula CnBn, (ii) an oligomer capped with B molecules and 

generic formula CnBn+1 and (iii) and oligomer capped with C molecules with generic formula Cn+1Bn . 

The formation constants for these oligomers, K1o, K2o and K3o can be expressed as: 

𝐾1𝑂 =
[𝐂𝐧𝐁𝐧]

[𝐂]𝑛[𝐁]𝑛
    (S4) 

𝐾2𝑂 =
[𝐂𝐧𝐁𝐧+𝟏]

[𝐂]𝑛[𝐁]𝑛+1
    (S5) 

𝐾3𝑂 =
[𝐂𝐧+𝟏𝐁𝐧]

[𝐂]𝑛+1[𝐁]𝑛
    (S6) 

It is reasonable to assume that the binding of any B unit to a pre-existing oligomer is determined by 

K2, while the addition of any C unit by K3, applying the corresponding statistical corrections. For 

example , the binding constant for the addition of B to an oligomer of the form CnBn is K2: 

𝐾2 =
[𝐂𝒏𝐁𝐧+𝟏]

[𝐂𝒏𝐁𝒏][𝐁]
    (S7) 

since CnBn has exactly the same number and kind of free binding sites as present in CB. 

On the other hand, for the addition of B over an oligomer of the form CnBn-1 a statistical correction 

should be applied accounting for the fact that twice as many binding sites are now available (relative 

to CnBn), thus the corresponding binding constant is: 

4𝐾2 =
[𝐂𝒏𝐁𝐧]

[𝐂𝒏𝐁𝒏−𝟏][𝐁]
   (S8) 

Similarly, for the addition of C over CnBn we have that the binding constant K3 is: 

𝐾3 =
[𝐂𝒏+𝟏𝐁𝐧]

[𝐂𝒏𝐁𝒏][𝐂]
    (S9) 

and that for the addition of C over Cn-1Bn is: 

4𝐾3 =
[𝐂𝒏𝐁𝐧]

[𝐂𝒏−𝟏𝐁𝒏][𝐂]
   (S10) 
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Therefore,  taking into account the statistical corrections, K1o, K2o and K3o can be written as a function 

of K1, K2 and K3 :  

𝐾1𝑂 = 𝐾1(4𝐾2𝐾3)
𝑛−1   (S11) 

𝐾2𝑂 = 𝐾1𝐾2(4𝐾2𝐾3)
𝑛−1  (S12) 

𝐾3𝑂 = 𝐾1𝐾3(4𝐾2𝐾3)
𝑛−1  (S13) 

On the other hand, the total concentration of receptor in solution, [C]0, is the sum of all the C 

species: 

[𝐂]0 = [𝐂] + ∑ 𝑛[𝐂𝐧𝐁𝐧] + ∑ 𝑛[𝐂𝐧𝐁𝐧+𝟏] + ∑ (𝑛 + 1)[𝐂𝐧+𝟏𝐁𝐧]
∞
𝑛=1

∞
𝑛=1

∞
𝑛=1  (S14) 

Combining equations (S4)-(S6) with equations (S11)-(S13) we have that: 

[𝐂𝐧𝐁𝐧] = 𝐾1(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛    (S15) 

[𝐂𝐧𝐁𝐧+𝟏] = 𝐾1𝐾2(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛+1   (S16) 

[𝐂𝐧+𝟏𝐁𝐧] = 𝐾1𝐾3(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛+1[𝐁]𝑛   (S17) 

Substituting equations (S15)-(S17) in equation (S14) we have that: 

[𝐂]0 = [𝐂] +∑𝑛𝐾1(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛

∞

𝑛=1

+∑𝑛𝐾1𝐾2(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛+1 +∑(𝑛 + 1)𝐾1𝐾3(4𝐾2𝐾3)

𝑛−1[𝐂]𝑛+1[𝐁]𝑛
∞

𝑛=1

∞

𝑛=1

 

    (S18) 

Re-arranging equation (S18) we have: 

[𝐂]0 = [𝐂] + 𝐾1[𝐂][𝐁]∑𝑛(4𝐾2𝐾3[𝐂][𝐁])
𝑛−1

∞

𝑛=1

+ 𝐾1𝐾2[𝐂][𝐁]
2∑𝑛(4𝐾2𝐾3[𝐂][𝐁])

𝑛−1 +𝐾1𝐾3[𝐂]
2[𝐁]∑ 𝑛(4𝐾2𝐾3[𝐂][𝐁])

𝑛−1

∞

𝑛=1

∞

𝑛=1

+ 𝐾1𝐾3[𝐂]
2[𝐁]∑(4𝐾2𝐾3[𝐂][𝐁])

𝑛−1

∞

𝑛=1

 

    (S19) 
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which can be further re-arranged into: 

[𝐂]0 = [𝐂] + (1 + 𝐾2[𝐁] + 𝐾3[𝐂])𝐾1[𝐂][𝐁]∑𝑛(4𝐾2𝐾3[𝐂][𝐁])
𝑛−1

∞

𝑛=1

+ 𝐾1𝐾3[𝐂]
2[𝐁]∑(4𝐾2𝐾3[𝐂][𝐁])

𝑛−1

∞

𝑛=1

 

    (S20) 

Taylor formulae for the relevant convergent series state that, for x < 1: 

∑ 𝑛𝑥𝑛−1∞
𝑛=1 =

1

(1−𝑥)2
    (S21) 

and 

∑ 𝑥𝑛−1∞
𝑛=1 =

1

1−𝑥
    (S22) 

Applying  equations (S21) and (S22) to the equation (S20) we have: 

[𝐂]0 = [𝐂] + (1 + 𝐾2[𝐁] + 𝐾3[𝐂])
𝐾1[𝐂][𝐁]

(1 − 4𝐾2𝐾3[𝐂][𝐁])
2
+

𝐾1𝐾3[𝐂]
2[𝐁]

1 − 4𝐾2𝐾3[𝐂][𝐁]
 

    (S23) 

For the total concentration of bipyridine , [B]0, we have that: 

[𝐁]0 = [𝐁] + ∑ 𝑛[𝐂𝐧𝐁𝐧] + ∑ (𝑛 + 1)[𝐂𝐧𝐁𝐧+𝟏] + ∑ 𝑛[𝐂𝐧+𝟏𝐁𝐧]
∞
𝑛=1

∞
𝑛=1

∞
𝑛=1  (S24) 

Applying the analogous transformations that have been applied to equation (S14) for  [C]0, we have 

that: 

[𝐁]0 = [𝐁] + (1 + 𝐾2[𝐁] + 𝐾3[𝐂])
𝐾1[𝐂][𝐁]

(1 − 4𝐾2𝐾3[𝐂][𝐁])
2
+

𝐾1𝐾2[𝐂][𝐁]
2

1 − 4𝐾2𝐾3[𝐂][𝐁]
 

    (S25) 

Knowing K1, K2 and K3 the systems of equations (S23) and (S25) can be solved for any set of total 

concentrations [C]0 and [B]0, obtaining the concentrations of free building blocks, [C] and [B] as the 

solutions of the system of equations. Knowing [C] and [B] the concentration of any particular 

oligomeric species can be calculated, using equations (S15)-(S17).  For example, the curves that show 

the variation of the main species in the NMR experiment (C, CB, CB2, C2B, C2B2, and C2B3, Figure 2C) 

as a function of total concentration of bypiridine, [B]0, at constant [C]o were generated solving the 

system of equations (S23) and (S24) and applying the values of [C] and [B] found to the equations 

(S26)-(S30) below: 

[𝐂𝐁] = 𝐾1[𝐂][𝐁]      (S26) 

[𝐂𝐁𝟐] = 𝐾1𝐾2[𝐂][𝐁]
2      (S27) 
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[𝐂𝟐𝐁] = 𝐾1𝐾3[𝐂]
2[𝐁]      (S28) 

[𝐂𝟐𝐁𝟐] = 𝐾1(4𝐾2𝐾3)[𝐂]
2[𝐁]2     (S29) 

[𝐂𝟐𝐁𝟑] = 𝐾1𝐾2(4𝐾2𝐾3)[𝐂]
2[𝐁]3    (S30) 

Equations (S26)-(S30) were obtained by replacing the appropriate n values in equations (S15)-(S17). 

We used the program Micromath Scientist 2.0 to generate the curves shown in Figure 2C. 

Average number of repeats in the oligomer of the form CnBn 

In an isodesmic oligomerization the average length of the oligomer corresponds to the average 

number of monomer repeats, <N>, and it can be calculated from the concentration of the free 

monomer and the oligomerization constant as follows: 

< 𝑁 >=
1

1−𝐾𝑜[𝐌]
   (S31) 

Combining equation (1) with equation (S15) we have that:   

[𝐂𝐧𝐁𝐧] = 𝐾1(4𝐾2𝐾3)
𝑛−1 [𝐂𝐁]

𝑛

𝐾1
𝑛     (S32) 

That can be re-arranged as: 

(4𝐾2𝐾3)
𝑛−1

𝐾1
𝑛−1 =

[𝐂𝐧𝐁𝐧]

[𝐂𝐁]𝑛
    (S33) 

On the other hand, the oligomerization constant Ko of the monomer CB can be expressed as: 

𝐾𝑜
𝑛−1 =

[𝐂𝐧𝐁𝐧]

[𝐂𝐁]𝑛
    (S34) 

Combining equations (S33) and (S34) we have that: 

𝐾𝑜 =
4𝐾2𝐾3

𝐾1
    (S35) 

On the other hand, applying equation (S31) to the oligomerization of CB we have: 

< 𝑁 >=
1

1−𝐾𝑜[𝐂𝐁]
   (S36) 

Combining equations (1) and (S36) we have: 

< 𝑁 >=
1

1−4𝐾2𝐾3[𝐂][𝐁]
   (5) 
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Model for the dimerization of the oligomer 

In our system, only long oligomers undergo dimerization. For long oligomers, the number of C and B 

building blocks can be assumed to be the same. We need therefore only to consider the formation of 

oligomers of the form CnBn, which can be de-assembled by the presence of excess C (to yield C2B) or 

excess B (resulting in CB2). CnBn can also dimerize to form oligomer dimers (CnBn)2. The dimerization 

constant for an oligomer with n repeats, Knl, can be expressed as:    

𝐾𝑛𝑙 =
[(𝐂n𝐁n)2]

[𝐂n𝐁n]
2   (6) 

Knl can be expressed as a function of the binding affinity per unit repeat, Kd, and the effective 

molarity between the dimerization sites, EM: 

𝐾𝑛𝑙 = 𝐾𝑙
𝑛𝐸𝑀𝑛−1 (7) 

Substituting equation (5) in equation (S35) we have that: 

𝐾𝑙
𝑛𝐸𝑀𝑛−1 =

[(𝐂n𝐁n)2]

[𝐂n𝐁n]
2   (S37) 

And combining equations (S15) and (S37) we have that: 

[(𝐂n𝐁n)2] = 𝐾𝑙
𝑛𝐸𝑀𝑛−1(𝐾1(4𝐾2𝐾3)

𝑛−1[𝐂]𝑛[𝐁]𝑛)2    (S38) 

The total concentration of C, [C]0, is therefore 

[𝐂]0 = [𝐂] + [𝐂𝐁𝟐] + 2[𝐂𝟐𝐁] + ∑ 𝑛[𝐂𝐧𝐁𝐧] + ∑ 2𝑛[(𝐂n𝐁n)2]
∞
𝑛=1

∞
𝑛=1  (S39) 

Combining  equations (1), (2), (3), (S15), (S38) and (S39) we have that: 

[𝐂]0 = [𝐂] + 𝐾1𝐾2[𝐂][𝐁]
2 + 2𝐾1𝐾3[𝐂]

2[𝐁]

+∑𝑛𝐾1(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛 +∑2𝑛𝐾𝑙

𝑛𝐸𝑀𝑛−1(𝐾1(4𝐾2𝐾3)
𝑛−1[𝐂]𝑛[𝐁]𝑛)2

∞

𝑛=1

∞

𝑛=1

 

   (S40) 

that can be re-arranged into: 

[𝐂]0 = [𝐂] + 𝐾1𝐾2[𝐂][𝐁]
2 + 2𝐾1𝐾3[𝐂]

2[𝐁] + 𝐾1[𝐂][𝐁]∑𝑛(4𝐾2𝐾3[𝐂][𝐁])
𝑛−1

∞

𝑛=1

+ 2𝐾1
2[𝐂]2[𝐁]2𝐾𝑑 ∑𝑛(𝐾𝑙𝐸𝑀(4𝐾2𝐾3)

2[𝐂]2[𝐁]2)𝑛−1
∞

𝑛=1

 

   (S41) 
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Applying equations (S21) to equation (S41) we have that: 

[𝐂]0 = [𝐂] + 𝐾1𝐾2[𝐂][𝐁]
2 + 2𝐾1𝐾3[𝐂]

2[𝐁] +
𝐾1[𝐂][𝐁]

(1 − 4𝐾2𝐾3[𝐂][𝐁])
2

+
2𝐾𝑙𝐾1

2[𝐂]2[𝐁]2

(1 − 𝐾𝑙𝐸𝑀(4𝐾2𝐾3)
2[𝐂]2[𝐁]2)2

 

  (S42) 

Similarly, for  [B]0 we have:  

[𝐁]0 = [𝐁] + 2𝐾1𝐾2[𝐂][𝐁]
2 + 𝐾1𝐾3[𝐂]

2[𝐁] +
𝐾1[𝐂][𝐁]

(1 − 4𝐾2𝐾3[𝐂][𝐁])
2

+
2𝐾𝑙𝐾1

2[𝐂]2[𝐁]2

(1 − 𝐾𝑙𝐸𝑀(4𝐾2𝐾3)
2[𝐂]2[𝐁]2)2

 

  (S43) 

The system of equations (S42) and (S43) is rather complex and solving it is not an easy task. A useful 

simplification can be drawn from the fact that K1, which is responsible for the formation of the 

repeating unit in the oligomer (i.e., the specie CB) is much larger than all the other constants.  We 

can therefore assume that this is the dominant equilibrium that determines how much of the 

repeating unit CB is available for oligomerization or for interaction with free B or C. Thus, the first 

step is to determine the available concentration of CB prior of oligomerization, that is, [CB]0 the 

excess concentration of B, [B]x,  (that is, B free after formation of CB) and excess concentration of C, 

[C]x, (that is , C free after formation of CB) using the following system of equations: 

𝐾1 =
[𝐂𝐁]0

[𝐂]𝑥[𝐁]𝑥
   (S44) 

[𝐂]0 = [𝐂]𝑥 + [𝐂𝐁]0  (S45) 

[𝐁]0 = [𝐁]𝑥 + [𝐂𝐁]0  (S46) 

The monomer CB may also form CB2 and C2B by interaction with B or C, according to equations (2) 

and (3). Upon oligomerization or interaction with excess C and B, the total concentration of 

monomer, [CB]0, is: 

[𝐂𝐁]0 = [𝐂𝐁𝟐] + [𝐂𝟐𝐁] + ∑ 𝑛[𝐂𝐧𝐁𝐧] + ∑ 2𝑛[(𝐂𝐧𝐁𝐧)2]
∞
𝑛=1

∞
𝑛=1   (S47) 

Using the corresponding mass balances: 

[𝐁]𝑥 = [𝐁] + [𝐂𝐁𝟐]  (S48) 

[𝐂]𝑥 = [𝐂] + [𝐂𝟐𝐁]  (S49) 
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and equations (2) and (3), the concentrations of species CB2 and C2B can be written as a function of 

the corresponding constant, the concentration of free monomer CB and the total excess B or C, [B]x 

or [C]x: 

[𝐂𝐁𝟐] =
𝐾2[𝐂𝐁][𝐁]𝑥

(1+𝐾2[𝐂𝐁])
  (S50) 

[𝐂𝟐𝐁] =
𝐾3[𝐂𝐁][𝐂]𝑥

(1+𝐾3[𝐂𝐁])
  (S51) 

On the other hand, combining (1) with (S35) and (S15) we have that: 

[𝐂𝐧𝐁𝐧] = (𝐾𝑜[𝐂𝐁])
𝑛−1    (S52) 

And combining (1) with (S35) and (S38): 

[(𝐂n𝐁n)2] = (𝐾𝑙𝐸𝑀𝐾𝑜
2[𝐂𝐁]2)𝑛−1  (S53) 

Combining equations (S47) with equations (S50)-(S53) we have: 

[𝐂𝐁]0 =
𝐾2[𝐂𝐁][𝐁]𝑥
(1 + 𝐾2[𝐂𝐁])

+
𝐾3[𝐂𝐁][𝐂]𝑥
(1 + 𝐾3[𝐂𝐁])

+ [𝐂𝐁]∑𝑛(𝐾𝑜[𝐂𝐁])
𝑛−1 + 2𝐾𝑙[𝐂𝐁]

2∑𝑛(𝐾𝑙𝐸𝑀𝐾𝑜
2[𝐂𝐁]2)𝑛−1

∞

𝑛=1

∞

𝑛=1

 

 (S54) 

and applying equation (S21) to the relevant convergent series in equation (S54) we have: 

[𝐂𝐁]0 =
𝐾2[𝐂𝐁][𝐁]𝑥
(1 + 𝐾2[𝐂𝐁])

+
𝐾3[𝐂𝐁][𝐂]𝑥
(1 + 𝐾3[𝐂𝐁])

+
[𝐂𝐁]

(1 − 𝐾𝑜[𝐂𝐁])
2
+

2𝐾𝑙[𝐂𝐁]
2

(1 − 𝐾𝑙𝐸𝑀𝐾𝑜
2[𝐂𝐁]2)2

 

  (8) 

which in combination with equations (S45) and (S46) allow us to estimate the concentration of free 

CB for any set of initial C and B concentrations. Knowing free CB it is then possible to determine the 

concentration of any particular assembly in solution. 

Changes in absorbance at wavelength around 460 nm are attributed to changes in concentration of 

polymer building block CB at the of double stranded polymer (CnBn)2, [CB@dsp],  an can be written 

as: 

𝐴 = 𝜀[𝐂𝐁@𝑑𝑠𝑝]    (S55) 

where  is the molar extinction coefficient for the monomer units within the polymer dimer at the 

wavelength under study. 

On the other hand, , [CB@dsp] is:  

[𝐂𝐁@𝑑𝑠𝑝] = ∑ 2𝑛[(𝐂n𝐁n)2]
∞
𝑛=1   (S56) 
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which, substituting in equation (S55) becomes: 

[𝐂𝐁@𝑑𝑠𝑝] = 2𝐾𝑙[𝐂𝐁]
2∑ 𝑛(𝐾𝑙𝐸𝑀𝐾𝑜

2[𝐂𝐁]2)𝑛−1∞
𝑛=1  (S57) 

and applying equation (S23) becomes: 

𝐴 = 𝜀
2𝐾𝑙[𝐂𝐁]

2

(1−𝐾𝑙𝐸𝑀𝐾𝑜
2[𝐂𝐁]2)2

    (9) 

To fit the experimental data we first obtained the values of [CB]0, [C]x and [B]x from the initial 

concentration of C and B used in the experiments, i.e., [C]0 and [B]0. [CB]0, [C]x and [B]x were then 

used as the independent variables input in the  model described by equations (8) and (9). We used 

Micromath Scientist 3.0 to fit the data. We then use the ratio B/C in the x axis for clarity in the 

graphical representation shown in Figure 4B and in Figure S6. 

 

Figure S6. A. Variation of the percentage of C present in each of the species with the ratio of 

concentrations of B and C during the the titration experiment shown in Figure 3B. B. Changes in the 

average number of repeats <N> for the single stranded oligomer and the double stranded polymer 

during the titration experiment shown in Figure 3B.  

 

Average size of the oligomer and the oligomer dimer.  

The formation of the polymer dimer can be approached as the dimerization of linear oligomers of 

the form CnBn or as the polymerization of the dimer (CB)2 , formed by the lateral association of two 

CB complexes. From equation (S37), it can be shown that the dimerization of an oligomer with a 

single repeat unit can be written as: 

𝐾𝑙 =
[(𝐂𝐁)2]

[𝐂𝐁]2
  (S58) 

The polymerization of the dimer (CB)2 can be then written as a function of the oligomerization 

constant of the dimer, K2o: 

𝐾2𝑜 =
[(𝐂n𝐁n)2]

[(𝐂n−1𝐁n−1)2][(𝐂𝐁)2]
  (S59) 

K2o can be also written as a function of Ko, the oligomerization constant of the complex CB: 

𝐾2𝑜 = 𝐾𝑜
2𝐸𝑀  (S60) 
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By combining equations (S36), (S59) and (S60), the average number of repeats in the polymer dimer, 

<N2>, can be written as: 

< 𝑁2 >=
1

1−𝐾𝑜
2𝐸𝑀[(𝐂𝐁)2]

   (S61) 

and substituting in equation (S58) we have: 

< 𝑁2 >=
1

1−𝐾𝑜
2𝐸𝑀𝐾𝑙[𝐂𝐁]

2   (10) 

Equation (10) was used to calculate the average number of repeats shown in Figure S6 B. 

Modelling of the formation of oligomer bundles. 

We assume that the formation of the bundle is isodesmic, that is, pre-formed bundles have the same 

affinity for an additional strand regardless of the number of bundles already present.  Unlike the 

growth in the longitudinal direction, the number of strands that form the bundle is discrete. The 

affinity constant between a bundle and an additional strand is Kl.  The total concentration of 

monomer for an oligomer that can form bundles of m strands is: 

[𝐌]0 = ∑ ∑ 𝑖𝑛[(𝐌n)𝑖]
∞
𝑛=1

𝑖=𝑚
𝑖=1   (S62) 

Let’s assume that n = 4. Equation (S65) becomes: 

[𝐌]0 = ∑ 𝑛[𝐌𝐧] + ∑ 2𝑛[(𝐌n)2]
∞
𝑛=1

∞
𝑛=1 + ∑ 3𝑛[(𝐌n)3]

∞
𝑛=1 +∑ 4𝑛[(𝐌n)4]

∞
𝑛=1   (S63) 

The formation of a linear strand Mn can be written as a function of the free monomer concentration 

[M] as follows (See equilibrium 1 in Fig. 5A): 

𝐾𝑜
𝑛−1 =

[𝐌n]

[𝐌]𝑛
  (S64) 

while the formation of a multi-stranded bundle of m strands from the assembly linear single strands 

Mn can be written as (equilibrium 3 in Fig. 5A):  

𝐾𝑛𝑙
𝑚−1 =

[(𝐌n)𝑚]

[𝐌n]
𝑚   (S65) 

which in combination with equation (5) gives: 

(𝐾𝑙
𝑛𝐸𝑀𝑛−1)𝑚−1 =

[(𝐌n)𝑚]

[𝐌n]
𝑚   (S66) 

Alternatively, the formation of a bundle of monomers of M, Mm, can be written as (equilibrium 2, 

Fig. 5A): 

𝐾𝑙
𝑚−1 =

[𝐌m]

[𝐌]𝑚
  (S67) 

while the polymerization of Mm (equilibrium 4 in Fig. 5A) can be written as: 

(𝐾𝑚𝑜)
𝑛−1 =

[(𝐌n)𝑚]

[𝐌n]
𝑚   (S68) 
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which in combination with equation (11) gives: 

(𝐾𝑜
𝑚𝐸𝑀𝑚−1)𝑛−1 =

[(𝐌n)𝑚]

[𝐌n]
𝑚   (S69) 

Combining either equations (S64) and (S66) or (S67) and (S69) allows writing the concentration of 

any bundle as a function of the concentration of free monomer: 

[(𝐌n)𝑚] = (𝐾𝑙
𝑛𝐸𝑀𝑛−1)𝑚−1(𝐾𝑜

𝑛−1[𝐌]𝑛)𝑚    (S70) 

Substituting equation (S70) in equation (S63) we have, for m = 4: 

[𝐌]0 =

∑ 𝑛𝐾𝑜
𝑛−1[𝐌]𝑛 + ∑ 2𝑛𝐾𝑙

𝑛𝐸𝑀𝑛−1(𝐾𝑜
𝑛−1[𝐌]𝑛)2∞

𝑛=1
∞
𝑛=1 +∑ 3𝑛𝐾𝑙

2𝑛𝐸𝑀2(𝑛−1)(𝐾𝑜
𝑛−1[𝐌]𝑛)3∞

𝑛=1 +

∑ 4𝑛𝐾𝑙
3𝑛𝐸𝑀3(𝑛−1)(𝐾𝑜

𝑛−1[𝐌]𝑛)4∞
𝑛=1    

(S71) 

Applying the Taylor convergent series formula (S21) we have that: 

[𝐌]0 =
[𝐌]

(1 − 𝐾𝑜[𝐌])
2
+

2𝐾𝑙[𝐌]
2

(1 − 𝐾𝑜
2𝐾𝑙𝐸𝑀[𝐌]

2)2
+

3𝐾𝑙
2[𝐌]3

(1 − 𝐾𝑜
3𝐾𝑙

2𝐸𝑀2[𝐌]3)2
+

4𝐾𝑙
3[𝐌]4

(1 − 𝐾𝑜
4𝐾𝑙

3𝐸𝑀3[𝐌]4)2
 

(S72) 

which for the general case where we can have up to m strands in a bundle, can be written as: 

[𝐌]𝑜 = ∑
𝑖𝐾𝑙

𝑖−1[𝐌]𝑖

(1−𝐾𝑜
𝑖𝐾𝑙

𝑖−1𝐸𝑀𝑖−1[𝐌]𝑖)2
𝑖=𝑚
𝑖=1    (12) 

The average number of repeats in the polymer bundle, <Nm>, can be written as a function of the 

concentration of the corresponding monomer, Mm, with polymerization constant Kmo: 

< 𝑁𝑚 >=
1

1−𝐾𝑚𝑜[𝐌𝑚]
   (S73) 

Using equation (S67) and (11) in (S73) we have that: 

< 𝑁𝑚 >=
1

1−𝐾𝑜
𝑚𝐾𝑙

𝑚−1𝐸𝑀𝑚−1[𝐌]𝑚
   (13) 

Equations (12) and (13) where used to generate the plots in Figure 5. 

Inspecting equation (12) it becomes clear that the concentration of free monomer is limited by the 

fact that the denominator has to be a positive number.  That is: 

(1 − 𝐾𝑜
𝑚𝐾𝑙

𝑚−1𝐸𝑀𝑚−1[𝐌]𝑚)2 > 0   (S74) 

which means that [M] has to be: 

[𝐌] <
(𝐾𝑙𝐸𝑀)

1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜
   (S75) 
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Therefore the maximum concentration of M that can be reached, [M]x, is:  

[𝐌]𝑥 =
(𝐾𝑙𝐸𝑀)

1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜
    (S76) 

Before  [M]x is reached only monomer and single stranded oligomers are present to any meaningful 

extent. After [M]x is reached any additional monomer added is added exclusively to the bundle with 

the maximum number of strands m (Fig. 5B). Therefore, in practice, the total concentration of 

monomer, [M]0 is:  

 [𝐌]𝑜 = ∑ 𝑛𝐾𝑜
𝑛−1[𝐌]𝑛∞

𝑛=1 + ∑ 𝑚𝑛[(𝐌n)𝑚]
∞
𝑛=1    (S77) 

which can be written as a function of the concentration of free monomer as follows: 

[𝐌]𝑜 =
[𝐌]

(1−𝐾𝑜[𝐌])
2 +

𝑚𝐾𝑙
𝑚−1[𝐌]𝑚

(1−𝐾𝑜
𝑚𝐾𝑙

𝑚−1𝐸𝑀𝑚−1[𝐌]𝑚)2
   (S78) 

We define the nucleation concentration, NC, as the total concentration of monomer at which [M]x is 

reached. Since in practice only monomer and single stranded oligomer exist before [M]x is reached, 

the NC is the sum of single stranded oligomer and monomer when  [M]x is reached, that is: 

𝑁𝐶 =
[𝐌]𝑥

(1−𝐾𝑜[𝐌]𝑥)
2   (S79) 

Substituting in  equation (S76) we have that: 

𝑁𝐶 =

(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜

(1−𝐾𝑜
(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜
)2

   (S80) 

that can be simplified to: 

𝑁𝐶 =
(𝐾𝑙𝐸𝑀)

1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜(1−
(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀
)2

   (14) 

Combining  equation (13) with equation (S78) we have that: 

[𝐌]𝑜 =
[𝐌]

(1−𝐾𝑜[𝐌])
2 +𝑚𝐾𝑙

𝑚−1[𝐌]𝑚(< 𝑁𝑚 >)2   (S81) 

which,  when [M]x is reached, becomes: 

[𝐌]𝑜 =
[𝐌]𝑥

(1−𝐾𝑜[𝐌]𝑥)
2 +𝑚𝐾𝑙

𝑚−1[𝐌]𝑥
𝑚
(< 𝑁𝑚 >)2   (S82) 

Substituting in equation (S79) we have: 

[𝐌]𝑜 = 𝑁𝐶 +𝑚𝐾𝑙
𝑚−1[𝐌]𝑥

𝑚
(< 𝑁𝑚 >)2   (S83) 

Substituting  equation (S76) in equation (S83) and re-arranging we have that: 

(< 𝑁𝑚 >)2 =
[𝐌]𝑜−𝑁𝐶

𝑚𝐾𝑙
𝑚−1(

(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜
)

𝑚   (S84) 
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and with further re-arrangement we have: 

< 𝑁𝑚 >= √
𝐾𝑜

𝑚𝐸𝑀𝑚−1

𝑚
([𝐌]𝑜 −𝑁𝐶)   (S85) 

which in the logarithmic form is: 

𝑙𝑜𝑔 < 𝑁 >= 0.5𝑚𝑙𝑜𝑔𝐾𝑜 + 0.5(𝑚 − 1)𝑙𝑜𝑔𝐸𝑀 − 0.5𝑙𝑜𝑔𝑚 + 0.5𝑙𝑜𝑔([𝐌]𝑜 −𝑁𝐶)  

 (15) 

Substituting equation (14) into (15) we have: 

𝑙𝑜𝑔 < 𝑁 >= 0.5𝑚𝑙𝑜𝑔𝐾𝑜 + 0.5(𝑚 − 1)𝑙𝑜𝑔𝐸𝑀 − 0.5𝑙𝑜𝑔𝑚 + 0.5𝑙𝑜𝑔([𝐌]𝑜 −
(𝐾𝑙𝐸𝑀)

1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜(1−
(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀
)2
)

  (S86) 

When the total concentration of M, [M]0, is twice the NC, equation (S83) adopts the form: 

𝑙𝑜𝑔 < 𝑁 >= 0.5𝑚𝑙𝑜𝑔𝐾𝑜 + 0.5(𝑚 − 1)𝑙𝑜𝑔𝐸𝑀 − 0.5𝑙𝑜𝑔𝑚 + 0.5𝑙𝑜𝑔(
(𝐾𝑙𝐸𝑀)

1/𝑚

𝐾𝑙𝐸𝑀𝐾𝑜(1−
(𝐾𝑙𝐸𝑀)1/𝑚

𝐾𝑙𝐸𝑀
)2
)  

(S87) 

which can be rearranged to: 

𝑙𝑜𝑔 < 𝑁 >= 0.5(𝑚 − 1) log𝐾𝑜𝐸𝑀 − 0.5𝑙𝑜𝑔𝑚 − 0.5 (
𝑚−1

𝑚
) log𝐾𝑙𝐸𝑀 − 𝑙𝑜𝑔(1 − (𝐾𝑙𝐸𝑀)

(1−𝑚)/𝑚)

  (16) 

 

 

 

 

 


