Electronic Supplementary Information (ESI) for

A Versatile Glycosylation Strategy via Au(III) Catalyzed

Activation of Thioglycoside Donors

Amol M. Vibhute, Arun Dhaka, Vignesh Athiyarath and Kana M. Sureshan*

School of Chemistry, Indian Institute of Science Education and Research

Thiruvananthapuram, KERALA-695016, India, E-mail: <u>kms@iisertvm.ac.in</u>.

1. Materials and methods	S2	20.Glycosylation of $D6$ with $A5$	S18
2. Synthesis of D11	S 3	21.Glycosylation of D6 with A2	S19
3. Synthesis of D2	S4	22.Glycosylation of D7 with A3	S20
4. Synthesis of 2	S 5	23.Glycosylation of D8 with A5	S20
5. Synthesis of D5	S5	24.Glycosylation of D9 with A2	S21
6. Synthesis of D3	S 6	25.Glycosylation of D9 with A5	S21
7. General procedure for glycosylation	S 8	26.Glycosylation of D10 with A5	S22
8. Glycosylation of D1 with A1	S 8	27.Glycosylation of D3 with A7	S22
9. Glycosylation of D1 with A2	S 9	28.Glycosylation of D11 with A5	S23
10.Glycosylation of D1 with A3	S 9	29.Glycosylation of D8 with A5	S24
11.Glycosylation of $D2$ with $A2$	S 10	30.Glycosylation of D9 with A5	S24
12.Glycosylation of D3 with A1	S 11	31.Glycosylation of D1 with A8	S24
13.Glycosylation of D3 with A2	S12	32.Glycosylation of D1 with A9	S26
14.Glycosylation of D3 with A4	S 13	33.Glycosylation of D1 with A10	S27
15.Glycosylation of D3 with A5	S14	34.Glycosylation of D1 with A11	S27
16.Glycosylation of D3 with A6	S15	35.Structural assignment of 26	S28
17.Glycosylation of D4 with A3	S 16	36.Hydrolysis of Thioglycosides	S 30
18.Glycosylation of $D5$ with $A2$	S17	37.General procedure for hydrolysis	S36
19.Glycosylation of D3 with A5	S18	38.References	S41

INDEX

(A) Materials and Methods:

All chemicals and solvents were purchased from commercial sources and used directly without further purification. AuCl₃ and AuBr₃ were purchased from Sigma-Aldrich. All the reactions were carried out under argon or nitrogen atmosphere employing oven dried glassware. Chromatograms were visualized under UV light and by dipping plates into either sulphuric acid in MeOH or anisaldehyde in ethanol, followed by heating. ¹H NMR, COSY, HMBC and HMQC spectra were recorded on a 500 MHz NMR spectrometer. Proton chemical shifts are reported in ppm (δ) relative to the internal standard tetramethylsilane (TMS, δ 0.0 ppm) or with the solvent reference relative to TMS employed as the internal standard (CDCl₃, δ 7.26 ppm; DMSO-d₆, δ 2.55 ppm). Data are reported as follows: chemical shift (multiplicity [singlet (s), doublet (d), doublet of doublet (dd), triplet (t), quartet (q), and multiplet (m)], coupling constants [Hz], integration and peak identification). All NMR signals were assigned on the basis of ¹H NMR, ¹³C NMR, COSY and HMQC experiments. ¹³C spectra were recorded with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard. All NMR data were collected at 25 °C. The concentration of the compounds for ¹H NMR was 5 mg per 0.5 mL and for ¹³C NMR it was 5-20 mg per 0.5 mL. Melting points were determined using melting point apparatus and are uncorrected. Flash column chromatography was performed using 230-400 mesh silica gel.

X-ray intensity data measurements of freshly grown crystals of **D3** was carried out at 296 K on a Bruker-KAPPA APEX II CCD diffractometer with graphite-monochromatized (MoK = 0.71073Å) radiation. The X-ray generator was operated at 50 kV and 30 mA. Data were collected with scan width of 0.3° at different settings of φ (0°, 90° and 180°) keeping the sample to detector distance fixed at 40 mm and the detector position (2 θ) fixed at 24°. The X-ray data collection was monitored by SMART program. All the data were corrected

for Lorentzian polarization and absorption effects using SAINT and SADABS programs. SHELX-97 was used for structure solution and full matrix least-squares refinement on *F*2. Molecular and packing diagrams were generated using Mercury-3.1. Geometrical calculations were performed using SHELXTL and PLATON.

(B) Synthesis of glucopyranoside donors D2, D3, D5, and D11:

Scheme S1. Reagents and conditions: (a) AllBr, NaH, DMF, 0 °C-rt, 2 h, 93%; (b) EtI, NaH, DMF, 0 °C-rt, 1.5 h, 97%); (c) 2,3-butanedione, CH(OMe)₃, CSA, MeOH, 70 °C, 6 h, 45%; (d) BnBr, NaH, DMF, 0 °C-rt, 2 h, 98%; (e) TBDMSCl, imidazole, DMF, rt, 2 h, 95%

i. Synthesis of *p*-tolyl 2,3,4,6-tetra-*O*-allyl-1-thio-β-D-glucopyranoside (D11):

A solution of *p*-tolyl 1-thio- β -D-glucopyranoside (1)¹ (1.0 g, 3.5 mmol) in anhydrous DMF (20 mL) was cooled to 0 °C and sodium hydride (0.7 g, 17.5 mmol) was added in two portions. The mixture was stirred at 0 °C for 10 min. Allyl bromide (1.5 mL, 17.5 mmol) was then added slowly and the reaction mixture was stirred for 2 h, slowly warming to room temperature. When TLC showed complete conversion of the starting material, the reaction mixture was cooled to 0 °C and quenched by adding ice. The reaction mixture was extracted with ethyl acetate (2 x 20 mL) and washed with water (2 x 20 mL) followed by brine. The combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford donor **D11** (1.45 g, 93%) as a colourless gum. $R_f = 0.33$ (EtOAc-hexane, 1:4, v/v); ¹H

NMR (500 MHz, CDCl₃): δ 2.24 (s, 3H, Ar-CH₃), 3.15 (dd, J = 10.0, 9.0 Hz, 1H, H-2), 3.27-3.28 (m, 2H, H-4, H-5), 3.30-3.33 (m, 1H, H-3), 3.53-3.56 (m, 1H, H-6_A), 3.62-3.64 (m, 1H, H-6_B), 3.92-3.93 (m, 1H, CH₂-CH=CH₂), 3.96-3.97 (m, 1H, CH₂-CH=CH₂), 4.02-4.06 (m, 1H, CH₂-CH=CH₂), 4.12-4.15 (m, 1H, CH₂-CH=CH₂), 4.18-4.27 (m, 4H, CH₂-CH=CH₂), 4.39 (d, J = 12.0 Hz, 1H, H-1), 5.06-5.11 (m, 4H, CH=CH₂), 5.15-5.23 (m, 4H, CH=CH₂), 5.79-5.90 (m, 4H, CH=CH₂), 7.00 (d, J = 8.0 Hz, 2H, Ar-H), 7.37 (d, J = 8.0 Hz, 2H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 21.1, 69.0, 72.3, 73.8, 74.1, 74.4, 77.4, 79.0, 80.3, 86.2, 87.7, 116.6, 116.8, 116.9, 117.2, 129.5, 129.9, 132.5, 134.8, 134.82, 135.0, 137.5. Anal. Calcd for C₂₅H₃₄O₅S: C, 67.24; H, 7.67; found: C, 67.40; H, 7.54.

ii. Synthesis of *p*-Tolyl 2,3,4,6-tetra-*O*-ethyl-1-thio-β-D-glucopyranoside (D2):

A solution of tetraol **1** (1.0 g, 3.5 mmol) in anhydrous DMF (20 mL) was cooled to 0 °C and sodium hydride (0.7 g, 17.5 mmol) was added in two portion. The mixture was stirred at room temperature for 10 min. Ethyl iodide (1.4 mL, 17.5 mmol) was then added slowly and the reaction was stirred at room temperature for 2 h. When TLC showed complete conversion of the starting material, the reaction mixture was cooled to 0 °C and quenched by adding ice. The reaction mixture was extracted with ethyl acetate (2 x 20 mL) and washed with water (2 x 20 mL) followed by brine. The combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford donor **D2** (1.35 g, 97%) as white solid. R_f = 0.25 (EtOAc-hexane, 1:4, v/v); Mp: 47-49 °C; ¹H NMR (500 MHz, CDCl₃): δ 1.09-1.17 (m, 12H, Ethl-C*H*₃), 2.24 (s, 3H, Ar-C*H*₃), 3.04 (t, *J* = 9.0 Hz, 1H, H-2), 3.14-3.16 (m, 1H, H-4), 3.19-3.23 (m, 2H, H-3, H-5), 3.40-3.42 (m, 1H, H-6_A), 3.46-3.52 (m, 2H, H-6_B, 0.5 x OC*H*₂), 3.54-3.62 (m, 2H, OC*H*₂), 3.66-3.71 (m, 1H, 0.5 x OC*H*₂), 3.73-3.78 (m, 4H, 2 x OC*H*₂), 4.36 (d, *J* = 10.0 Hz, 1H, H-1), 7.00 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.37 (d, *J* = 8.0 Hz, 2H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 1.5.2, 15.7, 15.8, 21.0, 66.8, 68.2, 68.8, 68.9, 69.5, 77.9, 79.2,

80.9, 86.6, 87.8, 129.4, 130.2, 132.3, 137.3. Anal. Calcd for C₂₁H₃₄O₅ S: C, 63.29; H, 8.60; found: C, 63.44; H, 8.77.

iii. Synthesis of diol 2:

To a solution of tetraol 1 (1.0 g, 3.5 mmol) in anhydrous MeOH (20 mL), trimethyl orthoformate (1 mL), 2,3-butanedione (0.35 mL, 3.9 mmol) and camphorsulfonic acid (0.043 g, 0.18 mmol) were added. The reaction mixture was refluxed for 4 h. When the TLC showed complete conversion of the starting material, the reaction mixture was cooled to room temperature and quenched by adding triethylamine (1 mL). The reaction mixture was concentrated under reduced pressure. The residue thus obtained was dissolved in ethyl acetate (20 mL) and washed with water (2 x 20 mL) followed by brine. The organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford desired diol 2 (0.63 g, 45%) along with its 3,4-regioisomer ($R_f = 0.31$; EtOAc-hexane, 1:3, v/v) as colourless foam. Data for diol **2**: $R_f = 0.21$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.24 (s, 3H, CH₃), 1.26 (s, 3H, CH₃), 2.23 (s, 3H, Ar-CH₃), 3.15 (s, 3H, OCH₃), 3.20 (s, 3H, OCH₃), 3.28-3.31 (m, 1H, H-5), 3.49 (t, J = 9.0 Hz, 1H, H-5), 3.62-3.73 (m, 3H, H-3, H-4, H-6_A), 3.79 (dd, J = 12.0, 3.0 Hz, 1H, H-6_B), 4.67 (d, J = 10.0 Hz, 1H, H-1), 7.01 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 17.5, 17.6, 21.0, 47.9, 48.2, 62.1, 67.4, 68.2, 74.3, 77.2, 80.0, 85.5, 99.6, 100.1, 129.3, 129.5, 129.6, 132.2, 133.4, 137.6. Anal. Calcd for C₁₉H₂₈O₇S: C, 56.98; H, 7.05; found: C, 57.22; H, 7.23.

iv. Synthesis of donor D5:

A solution of diol 2 (1.0 g, 2.5 mmol) in anhydrous DMF (20 mL) was cooled to 0 °C and imidazole (0.42 g, 6.2 mmol) followed by *tert*-butyldimethylsilyl chloride (0.9 g, 6.2 mmol) were added. The reaction was stirred at room temperature for 2 h. When the TLC showed complete conversion of the starting material, the reaction mixture was quenched by adding

ice. The reaction mixture was extracted with ethyl acetate (2 x 20 mL) and washed successively with aqueous sodium bicarbonate (20 mL), water and brine. The combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford donor **D5** (1.5 g, 95%) as a colourless gum. $R_f = 0.51$ (EtOAc-hexane, 1:9, v/v); ¹H NMR (500 MHz, CDCl₃): δ -0.03 (s, 3H, SiCH₃), -0.0002 (s, 3H, SiCH₃), 0.004 (s, 3H, SiCH₃), 0.07 (s, 3H, SiCH₃), 0.78 (s, 9H, 'BuCH₃), 0.81 (s, 9H, 'BuCH₃), 1.20 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 2.22 (s, 3H, Ar-CH₃), 3.12 (s, 3H, OCH₃), 3.17 (s, 3H, OCH₃), 3.19-3.20 (m, 1H, H-5), 3.47 (t, J = 9.0 Hz, 1H, H-2), 3.53-3.61 (m, 2H, H-3, H-4), 3.66 (dd, J = 11.0, 4.0 Hz, 1H, H-6_A), 3.75 (dd, J = 11.0, 2.0 Hz, 1H, H-6_B), 4.62 (d, J = 10.0 Hz, 1H, H-1), 6.96 (d, J = 8.0 Hz, 2H, Ar-H), 7.35 (d, J = 8.0 Hz, 2H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ -5.3, -5.1, -4.9, -3.5, 17.4, 17.6, 17.9, 18.4, 21.0, 25.8, 25.9, 25.93, 25.98, 47.9, 48.0, 62.1, 67.8, 68.3, 74.7, 76.7, 77.0, 77.2, 81.9, 85.4, 99.5, 99.9, 129.3, 129.4, 130.3, 131.9, 133.0, 137.0. Anal. Calcd for C₃₁H₅₆O₇SSi₂ : C, 59.19; H, 8.97; found: C, 59.03; H, 9.11.

v. Synthesis of donor D3:

A solution of diol **2** (1.0 g, 2.5 mmol) in anhydrous DMF (20 mL) was cooled to 0 °C and sodium hydride (0.3 g, 7.5 mmol) was added in one portion. The mixture was stirred at room temperature for 10 min. Benzyl bromide (0.9 mL, 7.5 mmol) was then added slowly and the reaction mixture was stirred at room temperature for 2 h. When the TLC showed complete conversion of the starting material, the reaction mixture was cooled to 0 °C and quenched by adding ice. The reaction mixture was extracted with ethyl acetate (2 x 20 mL) and washed with water (2 x 20 mL) followed by brine. The combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford donor **D3** (1.42 g, 98%) as a white solid. $R_f = 0.45$ (EtOAc-hexane, 1:4, v/v); Mp: 110-112 °C; ¹H NMR (500 MHz,

CDCl₃): δ 1.27 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 2.20 (s, 3H, Ar-CH₃), 3.14 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.41-3.44 (m, 1H, H-5), 3.58-3.64 (m, 3H, H-2, H-4, H-6_A), 3.68 (d, J =11.0 Hz, 1H, H-6_B), 3.83 (t, J = 9.0 Hz, 1H, H-3), 4.42 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 4.50 (d, J = 11.0 Hz, 2H, 1 x OCH₂Ph), 4.60 (d, J = 10.0 Hz, 1H, H-1), 4.84 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 6.93 (d, J = 8.0 Hz, 2H, Ar-H), 7.17-7.24 (m, 10H, Ar-H), 7.38 (d, J =8.0 Hz, 2H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 16.6, 16.7, 20.0, 46.8, 47.1, 67.1, 68.1, 72.3, 73.6, 73.9, 74.4, 78.4, 84.1, 98.5, 99.0, 126.4, 126.6, 126.7, 126.9, 127.2, 127.3, 128.4, 131.4, 136.4, 137.3, 137.39. Anal. Calcd for C₃₃H₄₀O₇S: C, 68.25; H, 6.94; found: C, 68.37; H, 6.78.

The donor **D3** was crystallized from the mixture of ethyl acetate: petroleum ether (1:4, v/v) by slow evaporation.

Figure S1. ORTEP diagram with 30% probability ellipsoids and molecular structure of donor **D3**.

CCDC: 1430710, Refined formula: $C_{33}H_{40}O_7S$, Formula weight: M = 580.71, colourless needle, 0.20 x 0.15 x 0.10 mm³, Monoclinic, space group: P2(1), Unit cell dimensions and volume: a = 11.0077(6), b = 9.7685(6), c = 14.9709(7) Å, V = 1910.3(14) Å³, No of formula units in the unit cell Z = 2, T = 296(2) K, 20max = 42.90°, Calculated density pcalcd: (g cm⁻ ³) = 1.230, F(000) = 620, Linear absorption coefficient μ : 0.149 mm⁻¹, 14426 reflections collected, 6875 unique reflections ($R_{int} = 0.1106$), multi-scan absorption correction, $T_{min} = 0.971$, $T_{max} = 0.985$, number of parameters = 370, number of restraints = 1, GoF = 0.895, R1 = 0.0497, wR2 = 0.1087, R indices based on 3842 reflections with I >2\s(I) (refinement on F2). $\Delta \rho_{max} = 0.000$, $\Delta \rho_{min} = 0.000$ (eÅ⁻³).

(C) General procedure for glycosylation:

A suspension of donor (0.1-0.5 mmol), acceptor (1.1-1.3 equiv) and 4 Å molecular sieves (0.3-0.5 g) in anhydrous dichloromethane (5 mL) was stirred at room temperature for 15 min under nitrogen atmosphere. AuCl₃ (3-5 mol%) was then added and the reaction mixture was then stirred at room temperature. The reaction was monitored by TLC. The reaction was quenched by adding aqueous NaHCO₃ solution, filtered through a Celite bed and washed with dichloromethane. The filtrate was then partitioned and the organic layer was washed successively with water and brine, dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The crude product thus obtained was purified by flash column chromatography using ethyl acetate and petroleum ether as eluents. All the new products were fully characterized by spectroscopic techniques and elemental analysis. In case of glycosylations with acid stable acceptors and donors the reaction mixture was partially evaporated and chromatographed directly without work up.

1. Glycosylation of donor D1² with acceptor A1:

The treatment of donor **D1** (0.15 g, 0.23 mmol) with acceptor **A1** (0.047 mL, 1.16 mmol) in presence of 3 mol% of AuCl₃ gave 78 mg (65%) of methyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside (**3** α)³ and 31 mg (26%) of methyl 2,3,4,6-tetra-*O*-benzyl- β -D-

glucopyranoside $(3\beta)^4$ as colourless gums. The spectral data is identical to that of reported data. **3a**: $R_f = 0.41$ (EtOAc-hexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.30 (s, 3H, OCH₃), 3.48 (dd, J = 10.0, 3.5 Hz, 1H, H-2), 3.53-3.57 (m, 2H, H-4, H-6_A), 3.62-3.67 (m, 2H, H-5, H-6_B), 3.90 (t, J = 10.0, Hz, 1H, H-3), 4.38-4.42 (m, 2H, 1 x OCH₂Ph), 4.52 (d, J = 12.0, Hz, 1H, 0.5 x OCH₂Ph), 4.55 (d, J = 3.5 Hz, 1H, H-1), 4.58 (d, J = 12.0, Hz, 1H, 0.5 x OCH₂Ph), 4.70-4.76 (m, 3H, 1.5 x OCH₂Ph), 4.90 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 7.05-7.27 (m, 20H, Ar-H); **3β**: $R_f = 0.43$ (EtOAc-hexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.34-3.40 (m, 2H, H-2, H-5), 3.50 (s, 3H, OCH₃), 3.52-3.57 (m, 2H, H-3, H-4) 3.59-3.63 (m, 1H, H-6_A), 3.66-3.69 (m, 1H, H-6_B), 4.23 (d, J = 7.8, Hz, 1H, H-1), 4.44-4.49 (m, 2H, 1 x OCH₂Ph), 4.70-4.75 (m, 2H, 1 x OCH₂Ph), 4.83-4.85 (m, 2H, 1 x OCH₂Ph), 7.08 (d, J = 6.0, Hz, 2H, Ar-H), 7.17-7.26 (m, 18H, Ar-H).

2. Glycosylation of donor D1 with acceptor A2:

The treatment of donor **D1** (0.1 g, 0.15 mmol) with acceptor **A2** (0.048 mL, 0.46 mmol) in presence of 5 mol% of AuCl₃ gave 94 mg (97%, $\alpha/\beta = 2.5$:1) of 1,2,3,4,6-penta-*O*-benzyl-D-glucopyranosides ($4\alpha\beta$)⁵ as colourless gum. $R_f = 0.44$ (EtOAc-hexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.49-3.53 (m, 0.4H), 3.58-3.62 (m, 2.5H), 3.67-3.71 (m, 1.8H), 3.72-3.75 (m, 1.4H), 3.78-3.87 (m, 1.5H), 4.08 (t, J = 9.0 Hz, 1H), 4.50-4.52 (m, 2H), 4.58-4.63 (m, 4H), 4.65-4.66 (m, 0.7H), 4.70-4.75 (m, 3H), 4.81-4.89 (m, 3.9H), 4.95-4.98 (m, 0.6H), 5.02 (t, J = 11.0, Hz, 1.6H), 7.05-7.27 (m, 35H, Ar-*H*).

3. Glycosylation of donor D1 with acceptor A3:

The treatment of donor **D1** (0.2 g, 0.31 mmol) with acceptor **A3** (0.066 mL, 0.62 mmol) in presence of 5 mol% of AuCl₃ gave 186 mg (97%, $\alpha/\beta = 3.3:1$) of cyclohexyl 2,3,4,6-tetra-*O*-benzyl-D-glucopyranosides (**5** α β)⁵ as colourless gum. $R_f = 0.43$ (EtOAc-hexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.22-1.33 (m, 4H, cyclohex-H), 1.36-1.47 (m, 1.3H, cyclohex-H), 1.44-1.52 (m, 1.5H, cyclohex-H), 1.55-1.60 (m, 1.5H, cyclohex-H), 1.75-1.81 (m, 2.6H, cyclohex-H), 1.87-1.98 (m, 2.2H, cyclohex-H), 2.02-2.06 (m, 0.3H, cyclohex-H), 3.46-3.50 (m, 0.7H), 3.56-3.61 (m, 2.2H), 3.64-3.70 (m, 2.6H), 3.73-3.78 (m, 1.6H), 3.90-3.93 (m, 1H), 4.03 (t, J = 9.0 Hz, 1H), 4.48-4.51 (m, 2H), 4.53-4.55 (m, 0.3H), 4.56-4.60 (m, 0.7H), 4.63-4.65 (m, 1.3H), 4.67-4.70 (m, 1H), 4.73-4.76 (m, 1H), 4.78-4.80 (m, 0.5H), 4.82-4.84 (m, 0.8H), 4.85-4.87 (m, 1.6H), 4.94-4.96 (m, 0.3H), 4.9 (d, J = 4.0 Hz, 1H), 5.02-5.04 (m, 1.2H), 7.16-7.39 (m, 26H, Ar-*H*).

4. Glycosylation of donor D2 with acceptor A2:

The treatment of donor **D2** (0.2 g, 0.5 mmol) with acceptor **A2** (0.26 mL, 2.5 mmol) in presence of 5 mol% of AuCl₃ gave 155 mg (81%) of benzyl 2,3,4,6-tetra-*O*-ethyl- α -Dglucopyranoside (**6a**) and 34 mg (18%) of benzyl 2,3,4,6-tetra-*O*-ethyl- β -D-glucopyranoside (**6** β) as colourless gums. **6a**: $R_f = 0.40$ (EtOAc-hexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.09-1.15 (m, 12H, 4 x CH₃), 3.21 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.27 (t, J = 9.6Hz, 1H, H-3), 3.38-3.41 (m, 1H, 0.5 x OCH₂CH₃), 3.44-3.52 (m, 5H, H-5, H-6_A, 1.5 x OCH₂CH₃), 3.54-3.59 (m, 3H, H-4, H-6', 0.5 x OCH₂CH₃), 3.69-3.76 (m, 1H, 0.5 x OCH₂CH₃), 3.77-3.83 (m, 2H, OCH₂CH₃), 4.52 (d, J = 12.4 Hz, 1H, 0.5 x OCH₂Ph), 4.3 (d, J = 12.4 Hz, 1H, 0.5 x OCH₂Ph), 4.85 (d, J = 3.6 Hz, 1H, H-1), 7.19-7.32 (m, 5H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 15.1, 15.5, 15.7, 15.9, 66.6, 66.8, 68.2, 68.6, 68.8, 69.0, 70.4, 77.6, 80.2, 81.5, 95.8, 126.9, 127.5, 127.6, 128.23, 128.24, 137.4; **6β**: $R_f = 0.42$ (EtOAchexane, 1:5, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.10-1.15 (m, 12H, 4 x CH₃), 3.09 (t, J = 9.6 Hz, 1H, H-2), 3.17-3.22 (m, 3H, H-3, H-4, H-5), 3.43-3.48 (m, 1H, 0.5 x OCH₂CH₃), 3.51-3.59 (m, 3H, H-6_A, 1 x OCH₂CH₃), 3.62-3.64 (m, 2H, H-6_B, 0.5 x OCH₂CH₃), 3.68-3.72 (m, 1H, 0.5 x OCH₂CH₃), 3.73-3.85 (m, 3H, 1.5 x OCH₂CH₃), 4.27 (d, J = 7.7 Hz, 1H, H-1), 4.55 (d, J = 12.1 Hz, 1H, 0.5 x OCH₂Ph), 4.84 (d, J = 12.1 Hz, 1H, 0.5 x OCH₂Ph), 7.19-7.25 (m, 5H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 15.1, 15.6, 15.7, 15.8, 66.9, 68.2, 68.3, 68.8, 69.5, 70.9, 75.0, 78.0, 82.1, 84.1, 102.5, 127.5, 127.6, 128.2, 137.7. Anal. Calcd for C₂₁H₃₄O₆: C, 65.94; H, 8.96; found: C, 66.12; H, 9.17.

5. Glycosylation of donor D3 with acceptor A1:

The treatment of donor **D3** (0.1 g, 0.17 mmol) with acceptor **A1** (0.069 mL, 1.7 mmol) in presence of 3 mol% of AuCl₃ gave 66 mg (79%) of methyl glycoside **7a** as a colourless gum and 11 mg (13%) of methyl glycoside **7β** as a white solid. **7a**: $R_f = 0.35$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.27 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 3.20 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.32 (s, 3H, OCH₃), 3.58-3.59 (m, 1H, H-5), 3.66-3.69 (m, 3H, H-4, H-6_A, H-6_B), 3.75 (dd, J = 10.0, 3.5 Hz, 1H, H-2), 4.13 (dd, J = 10.0, 8.0 Hz, 1H, H-3), 4.40-4.43 (m, 2H, 1 x OCH₂Ph), 4.56 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 4.70 (d, J = 3.5, 1H, H-1), 4.84 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 7.12-7.27 (m, 10H, Ar-H); ¹³C NMR

(125 MHz, CDCl₃): δ 17.7, 18.0, 47.8, 47.9, 54.9, 68.3, 70.5, 70.6, 73.4, 74.8, 75.0, 77.2, 97.9, 99.3, 99.8, 127.6, 127.8, 127.9, 128.3, 128.34, 138.1, 138.5; **7** β : R_f = 0.37 (EtOAchexane, 1:4, v/v); Mp: 130-132 °C; ¹H NMR (500 MHz, CDCl₃): δ 1.26 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 3.20 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.41-3.48 (m, 4H, H-5, OCH₃), 3.50 (dd, J = 8.0, 2.0 Hz, 1H, H-2), 3.58-3.68 (m, 3H, H-4, H-6_A, H-6_B), 3.81 (t, J = 10.0 Hz, 1H, H-3), 4.32 (d, J = 8.0, 1H, H-1), 4.44-4.47 (m, 2H, 1 x OCH₂Ph), 4.54 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 4.84 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 7.14-7.26 (m, 10H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 17.8, 47.9, 48.0, 56.8, 68.9, 69.4, 73.4, 73.7, 74.9, 74.94, 75.6, 77.2, 99.42, 99.48, 101.3, 127.5, 127.7, 128.0, 128.3, 138.2, 138.3. Anal. Calcd for C₂₇H₃₆O₈: C, 66.38; H, 7.43; found: C, 66.19; H, 7.23.

6. Glycosylation of donor D3 with acceptor A2:

The treatment of donor **D3** (0.2 g, 0.34 mmol) with acceptor **A2** (0.18 mL, 1.72 mmol) in presence of 3 mol% of AuCl₃ gave 161 mg (82%) of benzyl glycoside **8a** and 18 mg (9%) of benzyl glycoside **8b** were obtained as colourless gum. **8a**: $R_f = 0.36$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.27 (s, 6H, 2*CH*₃), 3.17 (s, 3H, OC*H*₃), 3.22 (s, 3H, OC*H*₃), 3.38 (dd, J = 10.0, 1.5 Hz, 1H, H-6_A), 3.59 (dd, J = 10.0, 3.5 Hz, 1H, H-6_B), 3.62-3.69 (m, 1H, H-5), 3.70 (t, J = 10.0, Hz, 1H, H-4), 3.75 (dd, J = 10.0, 3.5 Hz, 1H, H-2), 4.17 (dd, J = 10.0, 9.0 Hz, 1H, H-3), 4.37 (d, J = 12.0, Hz, 1H, 0.5 x OC*H*₂Ph), 4.40 (d, J = 11.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.53 (d, J = 12.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.61-4.62 (m, 2H, 1 x OC*H*₂Ph), 4.82 (d, J = 11.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.88 (d, J = 3.5, 1H, H-1), 7.11-7.31 (m, 15H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 18.0, 47.8, 47.9, 68.2, 68.3, 69.8, 70.6,

71.0, 73.4, 74.9, 75.1, 96.6, 99.3, 99.8, 126.98, 127.5, 127.6, 127.64, 127.8, 128.0, 128.1, 128.30, 128.32, 128.5, 137.5, 138.1, 138.5; **8** β : R_f = 0.38 (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.36 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 3.31 (s, 3H, OCH₃), 3.33 (s, 3H, OCH₃), 3.51-3.54 (m, 1H, H-5), 3.67-3.73 (m, 3H, H-2, H-4, H-6_A), 3.76 (dd, J = 10.0, 3.5 Hz, 1H, H-6_B), 3.91 (t, J = 10.0, Hz, 1H, H-3), 4.55-4.58 (m, 2H, H-1, 0.5 x OCH₂Ph), 4.60-4.65 (m, 2H, 1 x OCH₂Ph), 4.69 (d, J = 12.0, Hz, 1H, 0.5 x OCH₂Ph), 4.95 (dd, J = 11.0 10.0 Hz, 2H, 1 x OCH₂Ph), 7.24-7.41 (m, 15H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 17.8, 47.8, 47.9, 69.5, 69.0, 70.7, 73.4, 73.7, 74.8, 75.6, 96.46, 99.47, 99.9, 127.3, 127.41, 127.48, 127.5, 127.7, 128.0, 128.1, 128.30, 137.8, 138.32, 138.35. Anal. Calcd for C₃₃H₄₀O₈: C, 70.19; H, 7.14; found: C, 70.46; H, 6.98.

7. Glycosylation of donor D3 with acceptor A4:

The treatment of donor **D3** (0.1 g, 0.17 mmol) with acceptor **A4** (0.032 g, 0.20 mmol) in presence of 3 mol% of AuCl₃ gave 79 mg (75%) of menthyl glycoside **9a** and 22 mg (21%) of menthyl glycoside **9β** as colourless gum. **9a**: $R_f = 0.37$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 0.70 (d, J = 7.0 Hz, 3H, mnth-CH₃), 0.77 (d, J = 7.0 Hz, 4H, mnth-CH and mnth-CH₃), 0.80 (d, J = 7.0 Hz, 3H, mnth-CH₃), 0.90-0.92 (m, 2H, mnth-CH₂), 1.16 (s, 3H, BDA-CH₃), 1.18 (s, 2H, mnth-CH₂), 1.25 (s, 3H, BDA-CH₃), 1.50-1.52 (m, 2H, mnth-CH₂), 2.01-2.10 (m, 1H, mnth-CH), 2.20-2.30 (m, 1H, mnth-CH), 3.16 (s, 3H, OCH₃), 3.18 (s, 3H, OCH₃), 3.20-3.21 (m, 1H, mnth-CH), 3.56 (dd, J = 10.0, 1.0 Hz, 1H, H-5), 3.60-3.69 (m, 3H, H-2, H-4, H-6_A), 3.86 (d, J = 10.0 Hz, 1H, H-6_B), 4.14 (t, J = 10.0 Hz, 1H, H-3), 4.39 (t, J = 11.0 Hz, 2H, 1 x OCH₂Ph), 4.57 (d, 1H, J = 12.0 Hz, 0.5 x OCH₂Ph), 4.79 (d, J = 3.0

Hz, 1H, H-1), 4.83 (d, J = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 7.11-7.26 (m, 10H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 16.8, 17.4, 18.0, 20.4, 22.2, 24.0, 25.5, 31.5, 34.4, 42.7, 47.6, 47.7, 48.6, 68.6, 68.7, 70.4, 71.1, 73.3, 74.8, 75.2, 81.8, 98.6, 99.2, 99.3, 127.5, 127.57, 127.8, 127.9, 128.2, 138.2, 138.6; **9**; $R_f = 0.39$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 0.72 (d, J = 7.0 Hz, 3H, mnth-CH₃), 0.80-0.82 (m, 7H, mnth-CH₃), 0.83-0.85 (m, 2H, mnth-CH₂), 1.17-1.18 (m, 2H, mnth-CH₂), 1.23 (s, 3H, BDA-CH₃), 1.27 (s, 3H, BDA-CH₃), 1.54 (d, J = 12.0 Hz, 2H, mnth-CH₂), 2.02 (d, J = 12.0 Hz, 1H, mnth-CH), 2.21-2.23 (m, 1H, mnth-CH), 3.20 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.36-3.45 (m, 3H, H-2, H-5, mnth-CH), 3.55 (t, J = 10.0 Hz, 1H, H-4), 3.61-3.62 (m, 2H, H-6_A, H-6_B), 3.79 (t, J = 10.0 Hz, 1H, H-3), 4.45-4.46 (m, 2H, H-1, 0.5 x OCH₂Ph), 4.51-4.54 (m, 2H, 1 x OCH₂Ph), 4.84 (d, 1H, J = 11.0 Hz, 0.5 x OCH₂Ph), 7.18-7.25 (m, 10H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 16.1, 17.6, 20.9, 22.2, 23.4, 25.4, 31.5, 34.4, 40.7, 47.7, 47.8, 69.5, 69.54, 73.5, 74.0, 74.8, 74.9, 75.5, 78.0, 98.2, 99.4, 99.43, 127.3, 127.5, 127.6, 128.0, 128.2, 128.3, 138.4, 138.5. Anal. Calcd for C₃₆H₅₂O₈: C, 70.56; H, 8.55; found: C, 70.29; H, 8.71.

8. Glycosylation of donor D3 with acceptor A5⁶:

The treatment of donor **D3** (0.1 g, 0.17 mmol) with acceptor **A5** (0.088 g, 0.18 mmol) in presence of 3 mol% of AuCl₃ gave 132 mg (83%, $\alpha/\beta = 1.4$:1) of disaccharide **10** $\alpha\beta$ as colourless gum. $R_f = 0.34$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.13-1.26 (m, 14.5H), 3.11-3.12 (m, 4.8H), 3.19-3.20 (m, 4.9H), 3.28-3.30 (m, 4.8H), 3.40-3.46 (m, 2.8H), 3.48-3.61 (m, 5.6H), 3.62-3.80 (m, 9.3H), 3.89 (t, J = 9.0 Hz, 1.6H), 4.02-4.05 (m, 1H), 4.15 (t, J = 10.0 Hz, 1H), 4.34-4.42 (m, 2.5H), 4.43-4.48 (m, 2.3H), 4.50-4.54 (m, 2.6H), 4.56-4.61 (m, 2.6H), 4.66-4.71 (m, 2.5H), 4.73-4.83 (m, 4.8H), 4.86-4.90 (m, 1.6H),

4.92 (d, J = 3.0 Hz, 0.8H), 7.09-7.23 (m, 43H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 17.8, 17.9, 47.6, 47.8, 47.87, 54.9, 55.0, 68.3, 68.4, 69.1, 70.3, 70.38, 71.0, 73.1, 73.3, 73.7, 74.7, 74.9, 75.0, 75.5, 77.9, 79.8, 82.2, 97.6, 127.4, 127.5, 127.53, 127.56, 127.6, 127.65, 127.7, 127.8, 127.86, 127.9, 128.0, 128.03, 128.09, 128.1, 128.2, 128.3, 128.34, 128.38, 128.4, 138.1, 138.2, 138.21, 138.22, 138.3. Anal. Calcd for C₅₄H₆₄O₁₃: C, 70.42; H, 7.00; found: C, 70.17; H, 7.28.

9. Glycosylation of donor D3 with acceptor A6⁷:

The treatment of donor **D3** (0.2 g, 0.34 mmol) with acceptor **A6** (0.11 g, 0.34 mmol) in presence of 3 mol% of AuCl₃ gave 218 mg (82%) of disaccharide **11***a* and 43 mg (16%) of disaccharide **11***β* as colourless gum. **11***a*: $R_f = 0.21$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.22 (s, 3H, *CH*₃), 1.24 (s, 3H, *CH*₃), 1.92 (s, 3H, *COCH*₃), 1.94 (s, 3H, COC*H*₃), 1.99 (s, 3H, COC*H*₃), 3.15 (s, 3H, OC*H*₃), 3.18 (s, 3H, OC*H*₃), 3.31 (s, 3H, OC*H*₃), 3.49 (dd, J = 11.0, 2.0 Hz, 1H), 3.54 (dd, J = 11.0, 2.0 Hz, 1H), 3.64-3.67 (m, 2H), 3.69-3.73 (m, 2H), 3.81 (d, J = 10.0, Hz 1H), 3.98 (dt, J = 10.0, 7.0, 2.0 Hz, 1H), 4.10 (t, J = 10.0 Hz, 1H), 4.37-4.41 (m, 2H), 4.54 (d, J = 12.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.76-4.86 (m, 5H), 5.38 (t, J = 10.0 Hz, 1H), 7.11 (d, J = 7.0 Hz, 2H, Ar-*H*), 7.17-7.25 (m, 8H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 17.9, 20.6, 20.7, 47.6, 47.9, 55.0, 66.5, 67.9, 68.2, 68.3, 69.7, 70.2, 70.3, 70.9, 71.0, 73.4, 74.7, 74.8, 77.2, 96.1, 96.8, 99.2, 99.7, 127.5, 127.6, 127.7, 127.8, 128.2, 128.3, 138.0, 138.7, 169.8, 170.0, 170.1; **11***β*: $R_f = 0.23$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.19 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 1.91 (s, 3H, COCH₃), 1.92 (s, 3H, COCH₃), 3.20 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃

OC*H*₃), 3.41 (dd, J = 9.0, 4.0 Hz, 1H), 3.49 (t, J = 8.0 Hz, 1H), 3.55-3.66 (m, 4H), 3.76-3.80 (m, 1H), 3.84 (d, J = 11.0 Hz 1H), 3.94 (t, J = 9.0 Hz, 1H), 4.40-4.45 (m, 3H), 4.52 (d, J = 12.0 Hz, 1H), 4.79-4.90 (m, 4H), 5.37 (t, J = 10.0 Hz, 1H), 7.13-7.25 (m, 10H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 17.4, 17.8, 20.6, 20.7, 20.73, 47.8, 54.9, 68.4, 68.46, 68.9, 69.1, 69.3, 70.4, 70.9, 73.4, 73.6, 74.6, 74.8, 75.6, 96.2, 99.3, 99.4, 100.9, 127.5, 127.7, 128.0, 128.3, 138.2, 138.29, 169.5, 170.1. Anal. Calcd for C₃₉H₅₂O₁₆: C, 60.30; H, 6.75; found: C, 60.51; H, 6.94.

10. Glycosylation of donor D4⁸ with acceptor A3:

Treatment of donor **D4** (0.2 g, 0.40 mmol) with acceptor **A3** (0.064 mL, 0.60 mmol) in presence of 3 mol% of AuCl₃ gave 166 mg (77%) of cyclohexyl 2,3-di-*O*-benzyl-4,6-*O*benzylidene-α-D-glucopyranoside (**12***α*) and 41 mg (19%) of cyclohexyl 2,3-di-*O*-benzyl 4,6-*O*-benzylidene-β-D-glucopyranoside (**12***β*) as colourless gum. **12***α*: R_f = 0.35 (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.14-1.22 (m, 6H, cyclohex-H), 1.70-1.72 (m, 2H, cyclohex-H), 1.80-1.82 (m, 2H, cyclohex-H), 3.44-3.49 (m, 2H, H-2, cyclohex-H), 3.53 (t, *J* = 10.0 Hz, 1H, H-4), 4.62 (t, *J* = 10.0 Hz, 1H, H-6_A), 3.88 (td, *J* = 10.0, 5.0 Hz, 1H, H-5), 3.99 (t, *J* = 10.0 Hz, 1H, H-3), 4.18 (dd, *J* = 10.0, 5.0 Hz, 1H, H-6_B), 4.62 (d, 1H, *J* = 11.0 Hz, 0.5 x OCH₂Ph), 4.73 (d, 1H, *J* = 12.0 Hz, 0.5 x OCH₂Ph), 4.77 (d, 1H, *J* = 11.0 Hz, 0.5 x OCH₂Ph), 4.84-4.86 (m, 2H, H-1, 0.5 x OCH₂Ph), 5.48 (s, 1H, benzylidene-*H*), 7.19-7.43 (m, 15H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 24.1, 24.3, 25.5, 29.6, 31.5, 33.4, 62.4, 69.1, 73.3, 75.3, 76.0, 78.6, 79.3, 82.4, 96.0, 101.1, 125.9, 127.5, 127.7, 127.94, 127.98, 128.2, 128.26, 128.3, 128.8, 137.4, 138.3, 138.9; **12***β*: R_f = 0.37 (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.17-1.19 (m, 4H, cyclohex-H), 1.21-1.22 (m, 2H, cyclohex-H), 1.68 (d, J = 5.0 Hz, 2H, cyclohex-H), 1.88 (d, J = 11.0 Hz, 2H, cyclohex-H), 3.32 (td, J = 10.0, 5.0 Hz, 1H, H-5), 3.38 (t, J = 8.0 Hz, 1H, H-2), 3.59-3.68 (m, 3H, H-3, H-6_A, cyclohex-H), 3.72 (t, J = 10.0 Hz, 1H, H-4), 4.26 (dd, J = 10.0, 5.0 Hz, 1H, H-6_B), 4.54 (d, J = 8.0 Hz, 1H, H-1), 4.68 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 4.71 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 4.82 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 4.86 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 5.48 (s, 1H, benzylidene-*H*), 7.18-7.42 (m, 15H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 23.9, 24.0, 25.5, 31.9, 33.7, 66.0, 68.8, 75.0, 75.3, 76.7, 78.1, 81.0, 81.4, 82.1, 101.0, 102.3, 126.0, 127.5, 127.6, 127.9, 128.1, 128.2, 128.25, 128.3, 128.8, 137.3, 138.4, 138.6. Anal. Calcd for C₃₃H₃₈O₆: C, 74.69; H, 7.22; found: C, 74.85; H, 7.02.

11. Glycosylation of donor D5 with acceptor A2:

The treatment of donor **D5** (0.2 g, 0.31 mmol) with acceptor **A2** (0.05 mL, 0.47 mmol) in presence of 3 mol% of AuCl₃ gave 148 mg (78%) of benzyl glycoside **13a** and 17 mg (9%) of benzyl glycoside **13β** were obtained as colourless gum. **13a**: $R_f = 0.45$ (EtOAc-hexane, 1:9, v/v); ¹H NMR (500 MHz, CDCl₃): δ -0.004 (s, 3H, SiCH₃), -0.0002 (s, 3H, SiCH₃), 0.02 (s, 3H, SiCH₃), 0.11 (s, 3H, SiCH₃), 0.84 (s, 18H, 'BuCH₃), 1.21 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 3.16 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.50-3.63 (m, 5H, H-2, H-4, H-5, H-6_A, H-6_B), 3.91 (t, *J* = 9.0 Hz, 1H, H-3), 4.61 (d, *J* = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 4.69 (d, *J* = 12.0 Hz, 1H, 0.5 x OCH₂Ph), 4.77 (s, 1H, H-1), 7.28-7.36 (m, 5H, Ar-H), ¹³C NMR (125 MHz, CDCl₃): δ - 5.3, -5.1, -4.9, -3.5, 17.6, 17.68, 18.0, 18.4, 25.9, 25.94, 29.7, 47.8, 47.85, 62.1, 68.5, 68.7, 68.73, 69.7, 95.4, 99.3, 99.6, 127.4, 128.1, 137.6. Anal. Calcd for C₃₁H₅₆O₈Si₂: C, 60.75; H, 9.21; found: C, 61.05; H, 8.95.

12. Glycosylation of donor D3 with acceptor A1:

The treatment of donor **D3** (0.1 g, 0.17 mmol) with acceptor **A1** (0.069 mL, 1.7 mmol) in presence of 3 mol% of AuCl₃ gave 19 mg (23%) of methyl glycoside 7α as colourless gum and 61 mg (72%) of methyl glycoside 7β as white solid.

13. Glycosylation of donor D3 with acceptor A5:

The treatment of donor **D3** (0.2 g, 0.34 mmol) with acceptor **A5** (0.17 g, 0.37 mmol) in presence of 3 mol% of AuCl₃ gave 234 mg (74%, $\alpha/\beta = 1:2.5$) of disaccharide **10** $\alpha\beta$ as colourless gum. ¹H NMR (500 MHz, CDCl₃): δ 1.13-1.26 (m, 12.3H), 3.11-3.12 (m, 2.5H), 3.19-3.20 (m, 5.9H), 3.24-3.32 (m, 3.9H), 3.42-3.46 (m, 2.6H), 3.48-3.60 (m, 5H), 3.64-3.70 (m, 4.8H), 3.76-3.80 (m, 1.4H), 3.89 (t, *J* = 9.0 Hz, 1.3H), 4.03 (d, *J* = 9.0 Hz, 1H), 4.15 (t, *J* = 9.7 Hz, 0.4H), 4.34-4.40 (m, 1.9H), 4.44-4.48 (m, 2.8H), 4.50-4.61 (m, 3.8H), 4.66-4.71 (m, 2.4H), 4.74-4.90 (m, 5.3H), 4.92 (d, *J* = 3.0 Hz, 0.3H), 7.14-7.23 (m, 35H, Ar-*H*);

14. Glycosylation of donor D6⁹ with acceptor A5:

The treatment of donor **D6** (0.1 g, 0.15 mmol) with acceptor **A5** (0.085 g, 0.18 mmol) in presence of 5 mol% of AuCl₃ gave 134 mg (88%, $\alpha/\beta = 2.0$:1) of disaccharide **14a** β as colourless gum. $R_f = 0.38$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, DMSO-d₆): δ 3.24-3.38 (m, 8.5H), 3.59-3.68 (m, 7.2H), 3.73-3.77 (m, 3H), 3.83-3.85 (m, 2H), 3.88-3.89 (m, 1.2H), 3.98-4.00 (m, 2.5H), 4.36-4.42 (m, 2H), 4.43-4.46 (m, 3.4H), 4.49 (s, 3H), 4.50 (s, 3H), 4.54-4.56 (m, 4H), 4.63-4.73 (m, 10H), 4.76-4.84 (m, 7H), 5.01 (d, J = 3.0 Hz, 1H), 5.22 (t, J = 6.0 Hz, 3.5H), 7.21-7.37 (m, 70H, Ar-H); ¹³C NMR (125 MHz, DMSO-d₆): δ 54.8, 54.9, 63.3, 69.1, 69.4, 70.1, 71.6, 71.9, 72.7, 72.8, 73.0, 74.4, 74.5, 74.8, 75.3, 76.5, 77.6, 77.8, 81.6, 97.3, 126.8, 127.1, 127.6, 127.7, 127.8, 127.88, 127.9, 127.98, 128.0, 128.1, 128.18, 128.4, 128.5, 128.6, 128.68, 128.7, 138.6, 138.8, 139.0, 139.2, 139.3, 142.8. Anal. Calcd for C₆₂H₆₆O₁₁: C, 75.43; H, 6.74; found: C, 75.61; H, 6.93.

15. Glycosylation of donor D6 with acceptor A2:

The treatment of donor **D6** (0.1 g, 0.15 mmol) with acceptor **A2** (0.08 mL, 0.77 mmol) in presence of 5 mol% of AuCl₃ gave 92 mg (95%, $\alpha/\beta = 1.7$:1) of 1,2,3,4,6-penta-*O*-benzyl-Dgalactopyranosides (**15** α β)¹⁰ as colourless gum. $R_f = 0.41$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, DMSO-d₆): δ 3.52-3.61 (m, 4.9H), 3.67-3.70 (m, 0.8H), 3.73-3.78 (m, 0.8H), 3.85 (dd, J = 10.0, 3.0 Hz, 1.1H), 3.92 (dd, J = 10.0, 2.0 Hz, 1.1H), 3.95-3.98 (m, 1.5H), 4.07 (s, 1H), 4.44-4.51 (m, 5.9H), 4.58-4.61 (m, 3.2H), 4.63-4.80 (m, 5.3H), 5.01 (d, J = 3.0 Hz, 1H), 7.23-7.39 (m, 40H, Ar-*H*); ¹³C NMR (125 MHz, DMSO-d₆): δ 68.9, 69.3, 69.6, 70.4, 72.0, 72.8, 73.0, 74.5, 75.4, 76.1, 78.4, 79.3, 81.7, 96.4, 102.4, 127.7, 127.75, 127.8, 127.88, 127.9, 127.95, 128.0, 128.1, 128.2, 128.4, 128.6, 128.66, 128.7, 130.1, 130.3, 131.4, 136.4, 138.2, 138.6, 139.2, 139.24. Anal. Calcd for C₄₁H₄₂O₆: C, 78.07; H, 6.71; found: C, 78.21; H, 6.89.

16. Glycosylation of donor D7¹¹ with acceptor A3:

The treatment of donor **D7** (0.2 g, 0.31 mmol) with acceptor **A3** (0.05 mL, 0.46 mmol) in presence of 5 mol% of AuCl₃ gave 189 mg (98%, $\alpha/\beta = 2:1$) of cyclohexyl 2,3,4,6-tetra-*O*-benzyl-D-mannopyranoside (**16** α β)¹² as colourless gum. $R_f = 0.40$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.12-1.28 (m, 7.1H), 1.43-1.44 (m, 2H), 1.68-1.73 (m, 6H), 3.37 (t, J = 7.5 Hz, 0.9H), 3.43 (dd, J = 9.0, 2.0 Hz, 0.9H), 3.48-3.50 (m, 0.6H), 3.64-3.66 (m, 2.8H), 3.70-3.78 (m, 3.8H), 3.85-3.92 (m, 1H), 4.34-4.36 (m, 1H), 4.41-4.48 (m, 3.6H), 4.50-4.60 (m, 3.1H), 4.61-4.70 (m, 1.4H), 4.79-4.85 (m, 2.2H), 4.92-4.93 (m, 1.3H), 4.34-4.36 (m, 1H), 7.09-7.42 (m, 30H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 23.7, 23.8, 25.6, 25.7, 31.5, 33.5, 69.9, 71.3, 71.7, 72.1, 72.5, 73.2, 73.4, 73.7, 74.0, 75.0, 75.1, 75.19, 75.2, 75.9, 80.0, 82.6, 97.0, 99.5, 127.3, 127.39, 127.4, 127.5, 127.59, 127.6, 127.66, 127.69, 127.7, 127.8, 128.0, 128.07, 128.2, 128.28, 128.3, 128.4, 138.2, 138.4, 138.6, 138.9.

17. Glycosylation of donor D8¹³ with acceptor A5:

The treatment of donor **D8** (0.1 g, 0.22 mmol) with acceptor **A5** (0.11 g, 0.24 mmol) in presence of 5 mol% of AuCl₃ gave 143 mg (84%) of disaccharide **17** β^{14} as colourless gum. The spectral data and elemental analysis is identical to that of reported data. ¹H NMR (500 MHz, CDCl₃): δ 1.85 (s, 3H, COC*H*₃), 1.89 (s, 3H, COC*H*₃), 1.91 (s, 3H, COC*H*₃), 1.94 (s, 3H, COC*H*₃), 3.25 (s, 3H, OC*H*₃), 3.32 (t, *J* = 9.0 Hz, 1H), 3.43 (d, *J* = 8.0 Hz, 1H), 3.53-3.59 (m, 2H), 3.65-3.67 (m, 1H), 3.86 (t, *J* = 9.0 Hz, 1H), 3.95 (d, *J* = 11.0 Hz, 1H), 4.01 (d, *J*

= 12.0 Hz, 1H), 4.12 (dd, J = 12.0, 4.0 Hz, 1H), 4.41-4.43 (m, 3H), 4.54 (d, J = 12.0 Hz, 1H),
4.67-4.70 (m, 2H), 4.75 (d, J = 11.0 Hz, 1H), 4.87 (d, J = 11.0 Hz, 1H), 4.92-4.99 (m, 2H),
5.07 (t, J = 10.0 Hz, 1H), 7.14-7.26 (m, 15H, Ar-H).

18. Glycosylation of donor D9¹⁵ with acceptor A2:

The treatment of donor **D9** (0.1 g, 0.22 mmol) with acceptor **A2** (0.11 mL, 1.1 mmol) in presence of 5 mol% of AuCl₃ gave 78 mg (81%) of benzyl 2,3,4,6-tetra-*O*-acetyl- β -Dgalactopyranoside (**18** β)¹⁶ as colourless gum. The spectral data and elemental analysis is identical to that of reported data. ¹H NMR (500 MHz, CDCl₃): δ 1.90 (s, 3H, COC*H*₃), 1.94 (s, 3H, COC*H*₃), 1.99 (s, 3H, COC*H*₃), 2.09 (s, 3H, COC*H*₃), 3.81 (t, *J* = 6.5 Hz, 1H, H-5), 4.08 (dd, *J* = 11.0, 7.0 Hz, 1H, H-6_A), 4.14 (dd, *J* = 11.0, 7.0 Hz, 1H, H-6_B), 4.44 (d, *J* = 8.0 Hz, 1H, H-1), 4.56 (d, *J* = 12.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.84 *J* = 12.0 Hz, 1H, 0.5 x OC*H*₂Ph), 4.91 (dd, *J* = 10.0, 3.0 Hz, 1H, H-3), 5.20 (dd, *J* = 10.0, 8.0 Hz, 1H, H-2), 5.32 (d, *J* = 2.0 Hz, 1H, H-4), 7.19-7.28 (m, 5H, Ar-*H*).

19. Glycosylation of donor D9 with acceptor A5:

The treatment of donor **D9** (0.1 g, 0.22 mmol) with acceptor **A5** (0.11 g, 0.24 mmol) in presence of 5 mol% of AuCl₃ gave 139 mg (80%) of disaccharide **19** β^{17} as colourless gum. ¹H NMR (500 MHz, CDCl₃): δ 1.86 (s, 3H, COCH₃), 1.87 (s, 3H, COCH₃), 1.91 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 3.26 (s, 3H, OCH₃), 3.31 (t, *J* = 9.0 Hz, 1H), 3.41 (dd, *J* = 10.0, 3.0 Hz, 1H), 3.56 (dd, *J* = 11.0, 5.0 Hz, 1H), 3.67 (dd, *J* = 10.0, 3.0 Hz, 1H), 3.75 (t, *J* =

7.0 Hz, 1H), 3.87 (t, *J* = 9.0 Hz, 1H), 3.97-4.05 (m, 3H), 4.37 (d, *J* = 8.0 Hz, 1H), 4.43 (d, *J* = 11.0 Hz, 1H), 4.48 (d, *J* = 3.0 Hz, 1H), 4.54 (d, *J* = 12.0 Hz, 1H), 4.67-4.70 (m, 2H), 4.76 (d, *J* = 11.0 Hz, 1H), 4.87-4.89 (m, 2H), 5.14-5.17 (m, 1H), 5.26 (d, *J* = 2.0 Hz, 1H), 7.14-7.25 (m, 15H, Ar-*H*)

20. Glycosylation of donor D10¹⁸ with acceptor A5:

The treatment of donor **D10** (0.2 g, 0.44 mmol) with acceptor **A5** (0.22 g, 0.48 mmol) in presence of 5 mol% of AuCl₃ gave 290 mg (83%) of disaccharide **20** α^{19} as colourless gum. The spectral data and elemental analysis is identical to that of the reported data. ¹H NMR (500 MHz, CDCl₃): δ 1.88 (s, 3H, COCH₃), 1.91 (s, 3H, COCH₃), 1.93 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 3.28 (s, 3H, OCH₃), 3.36 (t, *J* = 9.0 Hz, 1H), 3.45 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.57 (d, *J* = 10.0 Hz, 1H), 3.67-3.69 (m, 2H), 3.84-3.86 (m, 1H), 3.88-3.94 (m, 2H), 4.05 (dd, *J* = 12.0, 5.0 Hz, 1H), 4.50 (d, *J* = 11.0 Hz, 2H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.68-4.71 (m, 2H), 4.77 (s, 1H), 4.85-4.90 (m, 2H), 5.13-5.21 (m, 3H), 7.16-7.28 (m, 15H, Ar-*H*)

21. Glycosylation of donor D3 with acceptor A7:

The treatment of donor **D3** (0.1 g, 0.17 mmol) with acceptor **A7** (0.017 mL, 0.25 mmol) in presence of 3 mol% of AuCl₃ gave 64 mg (73%) of allyl glycoside **21** α and 23 mg (26%) of allyl glycoside **21** β as colourless gum. **21** α : $R_f = 0.36$ (EtOAc-hexane, 1:4, v/v); ¹H NMR

(500 MHz, CDCl₃): δ 1.26 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 3.19 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.56 (d, J = 10.0 Hz, 1H, H-6_A), 3.66-3.76 (m, 4H, H-2, H-4, H-5, H-6_B), 4.01-4.11 (m, 2H, $CH_2CH=CH_2$), 4.15 (t, J = 9.0 Hz, 1H, H-3), 4.38-4.42 (m, 2H, OCH_2Ph), 4.56 (d, 1H, J = 12.0 Hz, 0.5 x OCH₂Ph), 4.85-5.08 (m, 2H, OCH₂Ph), 5.10 (d, 1H, J = 10.0 Hz, 0.5 x $CH_2CH=CH_2$), 5.21 (d, 1H, J = 17.0 Hz, 0.5 x $CH_2CH=CH_2$), 5.82-5.90 (m, 1H, CH₂CH=CH₂), 7.11-7.25 (m, 10H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 18.0, 47.8, 47.9, 68.2, 68.3, 68.4, 70.6, 70.8, 73.4, 74.9, 75.0, 95.8, 99.3, 99.8, 117.9, 127.64, 127.66, 127.8, 127.9, 128.32, 128.34, 128.4, 128.7, 129.3, 134.0, 138.1, 138.5; **21** β : $R_f = 0.38$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.25 (s, 3H, CH₃), 1.28 (s, 3H, CH_3), 3.21 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.42 (dd, J = 10.0, 5.0 Hz, 1H, H-5), 3.52-3.67 (m, 4H, H-2, H-4, H-6_A, H-6_B), 3.81 (t, J = 10.0 Hz, 1H, H-3), 4.07 (dd, J = 13.0, 5.0 Hz, 1H, 1 x CH₂CH=CH₂), 4.30 (dd, J = 13.0, 5.0 Hz, 1H, 1 x CH₂CH=CH₂), 4.43-4.47 (m, 3H, H-1, 1 x OCH₂Ph), 4.53 (d, 1H, J = 12.0 Hz, 0.5 x OCH₂Ph), 4.84 (d, 1H, J = 12.0 Hz, 0.5 x OCH₂Ph), 5.08 (d, 1H, J = 10.0 Hz, 0.5 x CH₂CH=CH₂), 5.25 (d, 1H, J = 17.0 Hz, 0.5 x CH₂CH=CH₂), 5.82-5.87 (m, 1H, CH₂CH=CH₂), 7.14-7.26 (m, 10H, Ar-H); ¹³C NMR (125) MHz, CDCl₃): δ 17.6, 17.8, 47.8, 47.9, 69.0, 69.4, 69.9, 73.4, 73.8, 74.8, 75.5, 99.4, 99.6, 116.8, 127.5, 127.7, 128.0, 128.3, 134.1, 138.30, 138.33. Anal. Calcd for C₂₉H₃₈O₈: C, 67.69; H, 7.44; found: C, 67.80; H, 7.63.

22. Glycosylation of donor D11 with acceptor A5:

The treatment of donor **D11** (0.2 g, 0.44 mmol) with acceptor **A5** (0.22 g, 0.49 mmol) in presence of 5 mol% of AuCl₃ gave 330 mg (94%, α/β = 2.0:1) of disaccharide **22aβ** as colourless gum. R_f = 0.29 (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.15 (t, J

= 7.5 Hz, 0.6H), 3.23-3.26 (m, 2.1H), 3.27-3.28 (m, 4.9H), 3.32-3.34 (m, 1.4H), 3.41-3.46 (m, 2.9H), 3.49-3.53 (m, 2.7H), 3.59-3.63 (m, 3.5H), 3.66-3.69 (m, 3.4H), 3.88-3.96 (m, 4.8H), 3.99-4.00 (m, 2.5H), 4.02-4.03 (m, 1.6H), 4.08-4.17 (m, 3H), 4.20-4.25 (m, 3.7H), 4.47 (d, J = 3.5 Hz, 1H), 4.53-4.59 (m, 3.7H), 4.68-4.75 (m, 3H), 4.80-4.83 (m, 1.4H), 4.88-4.90 (m, 2.4H), 5.01-5.09 (m, 6.2H), 5.13-5.19 (m, 6.3H), 5.78-5.85 (m, 6.1H), 7.18-7.28 (m, 23H, Ar-*H*). Anal. Calcd for C₄₆H₅₈O₁₁: C, 70.21; H, 7.43; found: C, 70.45; H, 7.61.

23. Glycosylation of donor D8 with acceptor A5 using AuBr3:

The treatment of donor **D8** (0.1 g, 0.22 mmol) with acceptor **A5** (0.11 g, 0.24 mmol) in presence of 20 mol% of AuBr₃ gave 130 mg (76%) of disaccharide 17β as a colourless gum.

24. Glycosylation of donor D9 with acceptor A5:

The treatment of donor **D9** (0.1 g, 0.22 mmol) with acceptor **A5** (0.11 g, 0.24 mmol) in presence of 20 mol% of AuBr₃ gave 131 mg (75%) of disaccharide **19** β as colourless gum.

25. Glycosylation of donor D1 with acceptor A8²⁰:

The treatment of donor D1 (0.05 g, 0.077 mmol) with acceptor A8 (0.04 g, 0.10 mmol) in presence of 3 mol% of AuBr₃ gave 52 mg (73%) of disaccharide 23a and 16 mg (22%) of disaccharide 23β as colourless gum. 23a: $R_f = 0.31$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500) MHz, CDCl₃): δ 3.30 (dd, J = 11.0, 2.0 Hz, 1H), 3.38 (s, 3H, OCH₃), 3.40 (d, J = 3.0, Hz, 1H), 3.49-3.53 (m, 2H), 3.57-3.66 (m, 2H), 3.74 (s, 3H, OCH₃), 3.75-3.79 (m, 2H), 3.99-4.06 (m, 3H), 4.19-4.22 (m, 2H), 4.37 (d, J = 11.0, Hz, 1H), 4.44 (d, J = 12.0, Hz, 1H), 4.61-4.67 (m, 2H), 4.71-4.74 (m, 2H), 4.76-4.80 (m, 3H), 4.84 (d, J = 3.0 Hz, 1H), 4.93 (d, J = 11.0 Hz, 1H), 5.44 (s, 1H, benzylidene-*H*), 6.93-7.28 (m, 29H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 55.0, 55.3, 62.3, 68.0, 68.9, 69.9, 73.0, 73.2, 74.32, 74.9, 75.6, 75.7, 77.7, 79.1, 82.1, 82.3, 94.4, 97.2, 101.2, 113.6, 127.2, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 127.98, 128.0, 128.2, 128.28., 128.3, 128.4, 128.7, 137.9, 138.0, 138.4, 138.6; **23** β : $R_f = 0.33$ (EtOAchexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.32-3.35 (m, 1H), 3.36 (s, 3H, OCH₃), 3.43-3.58 (m, 6H), 3.66 (t, J = 10.0 Hz, 1H), 3.73 (s, 3H, OCH₃), 3.77 (dd, J = 10.0, 4.0 Hz, 1H), 3.80-3.82 (m, 1H), 4.01 (t, J = 9.0 Hz, 1H), 4.22 (dd, J = 10.0, 5.0 Hz, 1H), 4.41-4.51(m, 4H), 4.57 (d, J = 11.0, Hz, 1H), 4.67-4.73 (m, 5H), 4.83-4.88 (m, 2H), 4.97 (d, J = 11.0, Hz, 1H), 5.44 (s, 1H), 6.81 (d, J = 8.0 Hz, 2H, Ar-H), 7.07-7.26 (m, 25H, Ar-H), 7.31 (d, J =

8.0 Hz, 2H, Ar-*H*),; ¹³C NMR (125 MHz, CDCl₃): δ 55.3, 55.38, 62.2, 69.0, 69.1, 73.4, 74.5, 74.6, 74.9, 75.6, 77.7, 78.1, 78.5, 81.9, 82.6, 84.7, 100.4, 101.3, 104.3, 113.5, 127.3, 127.36, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.05, 128.09, 128.1, 128.18, 128.3, 128.39, 128.4, 129.9, 138.0, 138.1, 138.15. Anal. Calcd for C₅₆H₆₀O₁₂: C, 72.71; H, 6.54; found: C, 72.88; H, 6.70.

26. Glycosylation of donor D1 with acceptor A9²¹:

The treatment of donor **D1** (0.05 g, 0.077 mmol) with acceptor **A9** (0.04 g, 0.10 mmol) in presence of 3 mol% of AuBr₃ gave 38 mg (55%) of disaccharide **24a** and 24 mg (35%) of disaccharide **24β** as colourless gum. **24a**: $R_f = 0.32$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.33 (s, 3H, OCH₃), 3.39-3.44 (m, 3H), 3.52-3.65 (m, 3H), 3.70 (t, J = 9.0, Hz, 1H), 3.77-3.82 (m, 1H), 3.89 (t, J = 9.0, Hz, 1H), 4.11-4.17 (m, 2H), 4.20-4.36 (m, 4H), 4.46-4.51 (m, 3H), 4.58 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 4.63 (s, 1H), 4.72 (d, J = 11.0 Hz, 2H, 1 x OCH₂Ph), 4.91 (d, J = 11.0 Hz, 1H, 0.5 x OCH₂Ph), 5.38 (s, 1H), 5.51 (s, 1H), 6.85 (d, J = 7.0 Hz, 2H, Ar-*H*), 7.01-7.30 (m, 28H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 55.3, 61.8, 68.1, 69.2, 69.8, 71.1, 72.7, 73.3, 73.4, 74.7, 75.5, 77.5, 78.0, 78.8, 81.6, 82.9, 96.1, 98.5, 102.1, 126.4, 127.3, 127.36, 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 128.2, 128.28, 128.4, 128.46, 128.7, 129.3, 137.0, 137.4, 137.8, 138.0, 138.9; **24β**: $R_f = 0.34$ (EtOAc-hexane, 1:3, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.16-3.18 (m, 1H), 3.27 (s, 3H,

OC*H*₃), 3.42 (t, J = 8.0, Hz, 1H), 3.47-3.49 (m, 2H), 3.50-3.52 (m, 2H), 3.55-3.61 (m, 3H), 3.62-3.67 (m, 1H), 3.72-3.79 (m, 1H), 4.14 (dd, J = 10.0, 5.0 Hz, 1H), 4.28 (t, J = 9.0 Hz, 1H), 4.38-4.41 (m, 3H), 4.44-4.46 (m, 1H), 4.63-4.67 (m, 2H), 4.69-4.72 (m, 2H), 4.81-4.85 (m, 2H, 1 x OC*H*₂Ph), 4.98 (d, J = 11.0 Hz, 1H, 0.5 x OC*H*₂Ph), 5.39 (s, 1H), 7.14-7.27 (m, 30H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 55.3, 62.1, 68.6, 69.0, 73.5, 73.7, 74.7, 74.8, 74.9, 75.5, 75.7, 77.9, 80.3, 80.4, 82.9, 84.9, 98.7, 101.5, 102.4, 126.1, 127.4, 127.5, 127.6, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 12835., 128.8, 137.4, 138.2, 138.4, 138.9. Anal. Calcd for C₅₅H₅₈O₁₁: C, 73.81; H, 6.53; found: C, 74.03; H, 6.35.

27. Glycosylation of donor D1 with acceptor A10²²:

The treatment of donor **D1** (0.05 g, 0.077 mmol) with acceptor **A10** (0.04 g, 0.096 mmol) in presence of 3 mol% of AuBr₃ gave 70 mg (92%, $\alpha/\beta = 1.4$:1) of disaccharide **25\alpha\beta^{23}** as colourless gum. ¹H NMR (500 MHz, CDCl₃): δ 3.28-3.33 (m, 5.9H), 3.40-3.61 (m, 12.1H), 3.74-3.83 (m, 3.7H), 3.96-4.09 (m, 2.4H), 4.19-4.67 (m, 18.2H), 4.67-5.14 (m, 10.1H), 5.60 (s, 0.6H), 5.61 (s, 0.4H), 7.03-7.32 (m, 60H, Ar-*H*);

28. Glycosylation of donor D1 with acceptor A11²⁴:

The treatment of donor **D1** (0.2 g, 0.31 mmol) with acceptor **A11** (0.099 g, 0.37 mmol) in presence of 3 mol% of AuBr₃ gave 136 mg (57%, $\alpha/\beta = 1.4$:1) of pseudodisaccharide **26a** β as colourless gum. $R_f = 0.19$ (EtOAc-hexane, 1:2, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.40-

3.47 (m, 3.1H), 3.49-3.56 (m, 3.4H), 3.58-3.71 (m, 3.1H), 3.73-3.92 (m, 1.6H), 4.04-4.06 (m, 2.5H), 4.26-4.35 (m, 2.3H), 4.40-4.48 (m, 6.7H), 4.55-4.62 (m, 5H), 4.65-4.76 (m, 5H), 4.79-4.92 (m, 1.5H), 5.01-5.03 (m, 1.6H), 7.09-7.23 (m, 42H, Ar-*H*), 7.56 (bs, 2H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 67.2, 68.1, 68.4, 68.5, 69.5, 71.7, 71.76, 71.8, 72.4, 73.1, 73.4, 73.6, 73.7, 73.8, 74.0, 74.6, 74.68, 76.9, 76.8, 79.1, 83.5, 95.5, 101.2, 106.1, 106.13, 124.4, 124.44, 126.5, 126.6, 126.65, 126.7, 126.8, 126.9, 126.94, 126.96, 127.0, 127.2, 127.3, 127.36, 127.4, 127.5, 128.3, 136.0, 137.2. Anal. Calcd for C₄₇H₄₈O₁₁: C, 71.56; H, 6.13; found: C, 71.34; H, 6.30.

29. Glycosylation of donor D12²⁵ with acceptor A5:

The treatment of donor **D12** (0.047 g, 0.074 mmol) with acceptor **A5** (0.038 g, 0.081 mmol) in presence of 5 mol% of AuCl₃ gave 55 mg (75%, $\alpha/\beta = 1.4$:1) of pseudodisaccharide **27** $\alpha\beta^{26}$ as colourless gum. $R_f = 0.4$ (EtOAc-hexane, 1:4, v/v); ¹H NMR (500 MHz, CDCl₃): δ 3.25 (s, 2H), 3.27 (s, 3H), 3.32-3.39 (m, 2H), 3.41-3.49 (m, 5H), 3.51-3.59 (m, 6H), 3.61-3.65 (m, 2H), 3.68-3.78 (m, 4H), 3.88-3.91 (m, 3H), 4.09-4.12 (m, 1H), 4.26-4.28 (m, 1H), 4.34-4.42 (m, 4H), 4.46-4.50 (m, 5H), 4.52-4.62 (m, 5H), 4.64-4.70 (m, 5H), 4.71-4.75 (m, 5H), 4.82-4.89 (m, 6H), 7.05-7.25 (m, 60H, Ar-*H*).

D) Structural assignment of pseudo-disaccharide 26:

A solution of pseudo-disaccharide $28\alpha\beta$ (0.02 g, 0.025 mmol) in anhydrous pyridine (2 mL) was cooled to 0 °C and to this solution acetic anhydride (0.014 mL, 0.126 mmol) was added drop-wise. Then catalytic amount of DMAP (1 mg) was added and the reaction mixture was stirred at room temperature for 2 h. When TLC showed complete conversion of the starting material, the reaction mixture was cooled to 0 °C and quenched by adding ice. The reaction mixture was extracted with ethyl acetate (2 x 10 mL) and washed with water (2 x 10 mL) followed by brine. The combined organic layer was dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography to afford 28α (11.6 mg, 53%) and 28β (8.3 mg, 38%) as colourless gum. **28a**: $R_f = 0.33$ (EtOAc-hexane, 1:2, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.96 (s, 3H, COCH₃), 2.00 (s, 3H, COCH₃), 3.51-3.61 (m, 4H, H-2', H-4', H-5', H-6_A'), 3.88 (bs, 1H, H-5), 3.99 (d, J = 9.0, Hz, 1H, H-6_B'), 4.04 (t, J = 9.0, Hz, 1H, H-3'), 4.35 (d, J = 11.0, Hz, 1H, 0.5 x OCH₂Ph), 4.39 (d, J = 11.0, Hz, 1H, 0.5 x OCH₂Ph), 4.48-4.50 (m, 2H, 0.5 x OCH₂Ph), 4.55-4.57 (m, 2H, H-1, H-3), 4.61 (bs, 1H, H-2), 4.73-4.77 (m, 3H, 1.5 x OCH₂Ph), 4.89 (d, J = 11.0, Hz, 1H, 0.5 x OCH₂Ph), 4.94 (d, J = 3.0, Hz, 1H, H-1'), 5.48 (bs, 1H, H-4/6), 5.55 (bs, 1H, H-4/6), 7.06 (d, J = 7.0, Hz, 1H, Ar-H), 7.26-7.30 (m, 21H, Ar-H), 7.58 (d, J = 8.0, Hz, 1H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 20.6 (COCH₃), 20.7 (COCH₃), 66.7, 66.9, 68.0, 68.6, 70.2, 70.8, 71.4, 73.1, 73.4, 74.8, 75.6, 77.6, 80.3, 81.6, 97.2, 107.9, 125.4, 127.6, 127.7, 127.8, 127.85, 127.9, 128.0, 128.3, 128.36, 128.4, 129.6, 137.8, 138.3, 138.8, 169.0 (*C*O), 169.1 (*C*O); **28** β : *R_f* = 0.35 (EtOAc-hexane, 1:2, v/v); ¹H NMR (500 MHz, CDCl₃): δ 1.90 (s, 3H, COC*H*₃), 1.95 (s, 3H, COC*H*₃), 3.46-3.48 (m, 2H, H-5', H-6_A'), 3.51 (t, *J* = 8.0, Hz, 1H, H-2'), 3.55-3.63 (m, 3H, H-3', H-4', H-6_B'), 4.13 (bs, 1H, H-5), 4.44-4.53 (m, 4H, 2 x OC*H*₂Ph), 4.59-4.67 (m, 4H, H-1, H-2, H-3, H-1'), 4.71-4.77 (m, 2H, 1 x OC*H*₂Ph), 4.89 (d, *J* = 11.0, Hz, 1H, 0.5 x OC*H*₂Ph), 4.97 (d, *J* = 11.0, Hz, 1H, 0.5 x OC*H*₂Ph), 5.55 (bs, 2H, H-4, H-6), 7.10-7.22 (m, 23H, Ar-*H*), 7.58 (d, *J* = 8.0, Hz, 1H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 20.6 (COCH₃), 20.68 (COCH₃), 66.3, 67.0, 68.0, 68.08, 69.1, 69.9, 72.0, 73.4, 74.8, 75.0, 75.07, 75.7, 77.7, 81.7, 84.5, 102.4, 108.0, 125.4, 127.6, 127.7, 127.8, 127.9, 128.3, 129.6, 138.0, 138.09, 138.1, 169.1 (*C*O), 169.2 (*C*O); Anal. Calcd for C₅₁H₅₂O₁₃: C, 70.17; H, 6.00; found: C, 70.33; H, 6.28.

E) Hydrolysis of thioglycosides:

Table S1. Hydrolys:	is of thioglycosid	es by catalytic an	nount of gold (III)	chloride trihydrate.
---------------------	--------------------	--------------------	---------------------	----------------------

	PG	AuCl ₃ .3H ₂ O, DCM, rt,	PG	_~ ОН	
	Donor	89-96%	Hemiace	tal	
Entry	Donor	Hemiacetal	Time (min)	Yield (%) ^[a]	α/β Ratio ^[b]
1	BnO BnO BnO D1 OBn	$BnO = 0 \\ BnO = 0 \\ BnO = 0 \\ 29\alpha\beta OBn \\ OB$	60	93	1:1
2	EtO EtO EtO D2 OEt	EtO = O = O = O = O = O = O = O = O = O =	30	90	1:1
3	BnO BnO OMe D3	$ \begin{array}{c} \text{BnO} & \text{OMe} \\ \text{BnO} & \text{OMe} \\ \text{OMe} & \text{31}\alpha\beta \end{array} $	30	92	1:0.6
4	BnO OBn BnO OBn STol D6 OBn	$BnO OBn OBn OH 32\alpha\beta OBn OH$	30	92	1:0.6
5	BnO BnO BnO D7 STol	$BnO OBn \\ BnO OBn \\ BnO 33\alpha\beta OH$	90	92	1:0.14

[a] Isolated by chromatography. [b] Calculated based on ¹H NMR.

F) Synthesis of donor D14:

A mixture of penta-acetate **40** (5 g, 12.82 mmol) and hexadecanethiol (4.3 mL, 14.10 mmol) in anhydrous dichloromethane (30 mL) was cooled to 0 °C under nitrogen atmosphere. To this cooled solution, BF₃.Et₂O (4.0 mL, 32.05 mmol) was added drop-wise over 20 min. The reaction mixture was stirred at room temperature for 12 h (solution turned violet brown). After completion of the reaction (TLC), the mixture was cooled to 0 °C and quenched with saturated aqueous sodium bicarbonate solution. The reaction mixture was then diluted with dichloromethane (50 mL), partitioned and separated. The aqueous layer was further extracted

with dichloromethane (30 mL) and the combined organic layer was washed with water and brine. The organic layer was dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure. The thick residue thus obtained was purified by flash column chromatography by using 25% ethyl acetate in n-hexane as eluent to get pure hexadecyl thioglycoside **D14** (7.1 g, 94%) as white solid. MP: 85-87 °C; ¹H NMR (CDCl3, 500 MHz): δ 0.81 (t, *J* = 7 Hz, 3H, Alkyl-C*H*₃), 1.18-1.20 (m, 21H, Alkyl-C*H*₂), 1.28-1.29 (m, 2H, Alkyl-C*H*₂), 1.50-1.52 (m, 5H, Alkyl-C*H*₂), 1.93 (s, 3H, COC*H*₃), 1.95 (s, 3H, COC*H*₃), 1.98 (s, 3H, COC*H*₃), 2.01 (s, 3H, COC*H*₃), 2.56-2.62 (m, 2H, SC*H*₂), 3.61-3.65 (m, 1H, H-5), 4.06 (dd, *J* = 12 and 7 Hz, 1H, H-6_A), 4.17 (dd, *J* = 12 and 5 Hz, 1H, H-6_B), 4.40 (d, *J* = 10 Hz, 1H, H-1), 4.96 (t, *J* = 10 Hz, 1H, H-2), 5.01 (t, *J* = 10 Hz, 1H, H-4), 5.15 (t, *J* = 9 Hz, 1H, H-3); ¹³C NMR (CDCl₃, 125 MHz): δ 14.0, 20.5, 20.59, 20.7, 22.6, 28.8, 29.1, 29.3, 29.5, 29.59, 29.6, 29.68, 30.0, 31.9, 62.2, 68.3, 69.4, 73.9, 75.8, 83.6, 169.3, 169.4, 170.2, 170.6, Anal. Calcd for C₃₀H₅₂O₉S: C, 61.20; H, 8.90; found: C, 61.10; H, 8.93.

G) Synthesis of donor D15:

To a solution of thioglycoside **41**²⁷ (0.5 g, 1.08 mmol) in wet DCM (5 mL) was added a solution of trifluoracetic acid in DCM (1.5 mL; 1/20, v/v). The reaction mixture was stirred at room temperature. When the TLC showed complete consumption of starting material, the reaction was neutralised with triethylamine (0.7 mL) and concentrated under reduced pressure. The residue thus obtained was co-evaporated with toluene (2 x 5 mL) and was dissolved in pyridine (2 mL). Acetic anhydride (0.46 mL, 4.9 mmol) followed by DMAP (0.036 g, 0.29 mmol) were added and the reaction mixture was stirred for 5 hours at room temperature. At completion (TLC), the reaction mixture was concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (EtOAc-hexane, 1:4, v/v) to afford **D15** (0.5 g, 93%) as a white solid. $R_f = 0.3$ (EtOAc-hexane, 1:4, v/v); Mp : 99-103 °C; ¹H NMR (500 MHz, CDCl₃): δ 1.81 (s, 3H, COCH₃), 1.93 (s, 3H, COCH₃), 2.01

(s, 3H, COCH₃), 2.28 (s, 3H, CH₃), 3.44 (t, J = 9.45 Hz, 1H, H-2), 3.58-3.61 (m, 1H, H-5), 4.06 (dd, J = 2.0 and 12.0 Hz, 1H, H-6'), 4.17 (dd, J = 5.0 and 12.0 Hz, 1H, H-6), 4.49 (d, J = 11.0 Hz, 1H, 0.5 x CH₂Ph), 4.55 (d, J = 10.0 Hz, 1H, H-1), 4.8 (d, J = 11.0 Hz, 1H, 0.5 x CH₂Ph), 4.89 (t, J = 10.0 Hz, 1H, H-4), 5.13 (t, J = 9.0 Hz, 1H, H-3), 7.05 (d, J = 8.0 Hz, 2H, Ar-*H*), 7.21-7.23 (m, 3H, Ar-*H*), 7.26-7.29 (m, 2H, Ar-*H*), 7.39 (d, J = 8.0 Hz, 2H, Ar-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 20.64, 20.69, 20.75, 21.16, 62.4, 68.6, 75.1, 75.5, 75.6, 78.3, 87.8, 127.9, 128.1, 128.5, 128.8, 129.8, 133.2, 137.6, 138.4, 169.8, 170.0, 170.6. Anal. Calcd for C₂₆H₃₀O₈S: C, 62.14; H, 6.02; found C, 61.98; H, 5.73.

H) Synthesis of donor D16:

Scheme S2. a) 2,3-butanedione, CH(OCH₃)₃, CSA, MeOH, reflux, 3 h, 43 %; b) BnBr, NaH, DMF, 0 °C-rt, 1h, 95 %; c) i. HOAc/H₂O/(HOCH₂)₂, 14/6/3, v/v/v, reflux, 1.5 h; ii. Ac₂O, Pyr/DMAP, rt, 2 h, 88 % (after 2 steps).

a) Synthesis of diol 42.

To a solution of tetraol 1^1 (1 g, 3.5 mmol) in anhydrous MeOH (20 mL), trimethyl orthoformate (1.4 mL, 12.8 mmol), 2,3-butanedione (0.33 mL, 3.7 mmol) and camphorsulfonic acid (0.09 g, 0.39 mmol) were added and the reaction mixture was refluxed for 5 h. When TLC showed complete conversion of the starting material, the reaction mixture

was cooled to room temperature and quenched by adding triethylamine (0.5 mL). The reaction mixture was concentrated under reduced pressure. The crude oil thus obtained was diluted with ethyl acetate (20 mL) and washed with water (2 x 20 mL) followed by brine. The organic layer was collected and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (EtOAc-hexane, 2:3, v/v) to afford the diol **42** (0.51 g, 1.5 mmol, 43 %) as a white foam. R_f = 0.31 (EtOAc-hexane, 1:3, v/v). ¹H NMR (500 MHz, CDCl₃): δ 1.21 (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.16 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.38 (t, *J* = 9.0 Hz, 1H, H-2), 3.47-3.52 (m, 1H, H-5), 3.54-3.56 (m, 1H, H-4), 3.62-3.70 (m, 2H, H-5 and H-6'), 3.78-3.84 (m, 1H, H-6), 4.43 (d, *J* = 9.0 Hz, 1H, H-1), 7.05 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.34 (d, *J* = 8.0 Hz, 2H, Ar-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 17.6, 17.7, 21.18, 29.26, 48.0, 61.4, 65.5, 69.2, 73.3, 78.02, 88.3, 99.6, 99.8, 126.9, 129.9, 133.9, 138.95. Anal. Calcd for C₁₉H₂₈O₇S: C, 56.98; H, 7.05; found C, 56.81; H, 7.05.

b) *p*-Tolyl 2,6-di-*O*-benzyl-3,4-di-*O*-(2',3'-dimethoxybutane-2',3'-diyl)-1-thio-β-D-glucopyranoside (43).

A solution of diol **42** (0.5 g, 1.25 mmol) in anhydrous DMF (10 mL) was cooled to 0 °C and sodium hydride (60%, 0.175 g, 4.4 mmol) was added in one portion. The reaction mixture was stirred at room temperature for 15 min. Benzyl bromide (0.34 mL, 2.9 mmol) was then added slowly and stirring was continued at room temperature for 2 h. When TLC showed complete consumption of starting material, the reaction mixture was cooled to 0 °C and the excess of sodium hydride was quenched by addition of MeOH (1 mL). The reaction mixture was diluted with EtOAc (25 mL) and H₂O (10 mL). The layers were collected separately and the DMF/H₂O mixture was extracted with EtOAc (4 x 10 mL). The combined organic layer was washed with water (2 x 10 mL), followed by brine and dried over anhydrous Na₂SO₄. The resulting solution was concentrated under reduced pressure. The residue thus obtained

was purified by column chromatography (EtOAc/hexane, 1:9, v/v) to afford compound **43** as a white solid (0.69 g, 1.19 mmol, 95 %); $R_f = 0.45$ (EtOAc-hexane, 1:9, v/v); Mp : 95-97 °C; ¹H NMR (500 MHz, CDCl₃): δ 1.21 (s, 3H, *CH*₃), 1.26 (s, 3H, *CH*₃), 2.22 (s, 3H, *CH*₃), 3.12 (s, 3H, OC*H*₃), 3.19 (s, 3H, OC*H*₃), 3.37 (t, *J* = 9.0 Hz, 1H, H-2), 3.53-3.56 (m, 1H, H-6'), 3.63-3.69 (m, 2H, H-4 and H-5), 3.73 (dd, *J* = 1.5 and 11.0 Hz, 1H, H-6), 3.79 (t, *J* = 9.5 Hz, 1H, H-3), 4.47-4.50 (m, 2H, 0.5 x *CH*₂Ph and H-1), 4.54 (d, *J* = 11.0 Hz, 1H, 0.5 x *CH*₂Ph), 4.65 (d, *J* = 11.0 Hz, 1H, 0.5 x *CH*₂Ph), 4.74 (d, *J* = 11.0 Hz, 1H, 0.5 x *CH*₂Ph), 6.92 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.21-7.23 (m, 3H, Ar-*H*), 7.27-7.29 (m, 5H, Ar-*H*), 7.37-7.40 (m, 4H, Ar-*H*), . ¹³C NMR (125 MHz, CDCl₃): δ 17.7, 17.9, 21.1, 47.9, 48.1, 65.7, 68.4, 73.4, 74.9, 75.4, 77.7, 87.2, 99.6, 99.7, 127.4, 127.7, 128.17, 128.25, 128.32, 128.7, 129.6, 133.6, 137.9, 138.47, 138.5 Anal. Calcd for C₃₃H₄₀O₇S: C, 68.25; H, 6.94; found C, 68.03; H, 7.15.

c) Synthesis of donor D16.

Compound **43** (0.6 g, 1.03 mmol) was refluxed in a mixture of acetic acid/H₂O/ethylene glycol (15 mL, 14/6/3, v/v/v) for 2 h. When TLC showed complete consumption of the starting material, the reaction mixture was cooled to 0 °C and quenched with aqueous NaHCO₃ solution (10 %, 40 mL). The resulting suspension was extracted with EtOAc (3 x 25 mL). The combined organic layer was washed with water (2 x 10 mL), followed by brine, dried over anhydrous NaSO₄ and concentrated under reduced pressure. The crude product thus obtained was dissolved in a mixture of acetic anhydride (0.3 mL, 3.2 mmol), pyridine (3 mL), DMAP (0.025 g, 0.2 mmol) and stirred for 16 hrs at room temperature. When TLC showed complete disappearance of the starting material, the mixture was quenched with ice and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (EtOAc/hexane, 1:9, v/v) to afford donor **D16** as a white solid (0.5 g, 88 % for 2 steps). $R_f = 0.4$ (EtOAc-hexane, 1:4, v/v); Mp : 100-103 °C; ¹H NMR (500 MHz, CDCl₃): δ 1.81 (s, 3H, COCH₃), 1.84 (s, 3H, COCH₃), 2.24 (s, 3H, CH₃), 3.44 (t, J = 9.5 Hz,

1H, H-2), 3.47-3.55 (m, 2H, H-6 and H-6'), 3.56-3.58 (m, 1H, H-5), 4.41 (d, J = 12.0 Hz, 1H, 0.5 x CH₂Ph), 4.47 (d, J = 12.0 Hz, 1H, 0.5 x CH₂Ph), 4.48 (d, J = 11.0 Hz, 1H, 0.5 x CH₂Ph), 4.58 (d, J = 10.0 Hz, 1H, H-1), 4.79 (d, J = 11.0 Hz, 1H, 0.5 x CH₂Ph), 4.91 (t, J = 10.0 Hz, 1H, H-4), 5.13 (t, J = 9.0 Hz, 1H, H-3), 6.98 (d, J = 8.0 Hz, 2H, Ar-H), 7.28-7.21 (m, 10H, Ar-H), 7.39 (d, J = 8.0 Hz, 2H, Ar-H). ¹³C NMR (125 MHz, CDCl₃): δ 20.67, 20.73, 21.13, 69.0, 69.33, 73.5, 75.1, 75.9, 78.4, 87.7, 127.7, 127.8, 127.9, 128.1, 128.3, 128.4, 129.1, 129.8, 132.9, 137.7, 137.9, 138.1, 169.9, 170.1. Anal. Calcd for C₃₁H₃₄O₇S: C, 67.62; H, 6.22; found C, 67.73; H, 6.04.

I) General procedure for hydrolysis:

To a solution of thioglycosides (50/100 mg) in wet dichloromethane (5 mL), gold (III) chloride trihydrate (3-10 mol%) was added at room temperature. The resulting pale yellow solution was continued to stir at room temperature until completion of the starting material (monitored by TLC, Table S1). After completion of the reaction, the reaction mixture was quenched with saturated sodium bicarbonate solution until it becomes neutral as indicated by a pH paper. The reaction mixture was extracted with dichloromethane (2 x 10 mL) and washed with water followed by brine. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography, using ethyl acetate and petroleum ether as eluents. All the new products were fully characterized by spectroscopic techniques and elemental analysis.

1. Hydrolysis of donor D1.

The donor **D1** (0.05 g, 0.08 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (1 mg) in wet DCM (5 mL) gave 39 mg (93 %) of the hydrolyzed product **29** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.²⁸

2. Hydrolysis of donor D2.

The donor **D2** (0.1 g, 0.25 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (3 mg) in wet DCM (10 mL) gave 66 mg (90 %) of the hydrolyzed product **30** α β as a white foam. $R_f = 0.35$ (EtOAc-hexane, 1:2, v/v). ¹H NMR (500 MHz, CDCl₃): δ 1.17-1.09 (m, 24H, CH₂CH_{3($\alpha\beta$)), 2.97 (dd, J = 8.0 and 9.0 Hz, 1H, H-2 $_{\beta}$), 3.12 (t, J = 9.0 Hz, 1H), 3.17-3.21 (m, 1H), 3.22-3.24 (m, 2H), 3.26 (bs, 1H, OH $_{\alpha}$), 3.29-3.33 (m, 1H), 3.38-3.43 (m, 1H), 3.43-3.46 (m, 1H), 3.47-3.49 (m, 1H), 3.49-3.50 (m, 1H), 3.50-3.52 (m, 2H), 3.52-3.56 (m, 4H), 3.56-3.57 (m, 0.5H), 3.57-3.59 (m, 1H), 3.69-3.62 (m, 1H), 3.64-3.72 (m, 1H), 3.64-3.66 (m, 1H), 3.66-3.71 (m, 2H), 3.71-3.75 (m, 2H), 3.75-3.77 (m, 1H), 3.77-3.78 (m, 1H), 3.78-3.81 (m, 2H), 3.81-3.87 (m, 2H), 3.88-4.00 (s, 1H, OH $_{\beta}$), 4.51 (d, J = 7.5 Hz, 1H, H-1 $_{\beta}$), 5.21 (d, J = 3.0 Hz, 1H, H-1 $_{\alpha}$). ¹³C NMR (125 MHz, CDCl₃): δ 15.0, 15.03, 15.65, 15.74, 15.76, 15.9, 66.8, 66.9, 68.2, 68.7, 69.2, 70.3, 74.7, 77.7, 78.1, 80.4, 81.4, 83.1, 84.6, 91.4, 97.2. Anal. Calcd for C₁₄H₂₈O₆: C, 57.51; H, 9.65; found C, 57.65; H, 9.74.}

3. Hydrolysis of donor D3.

The donor **D3** (0.1 g, 0.17 mmol) on treatment with 3 mol % AuCl₃.3H₂O (2 mg) in wet DCM (10 mL) gave 75 mg (95 %) of the hydrolyzed product **31***a***β** as a white foam. $R_f = 0.31$ (EtOAc-hexane, 1:4, v/v). ¹H NMR (500 MHz, CDCl₃): δ 1.15-1.30 (m, 12H, CH₃ (of α and β isomers)), 3.14 (bs, 1H, OH_{α}), 3.17-3.26 (m, 12H, OCH₃ (of α and β isomers)), 3.41-3.51 (m, 2H, H-2_{β} and H-5_{β}), 3.54-3.59 (m, 3H, H-4_{β}, H-6_{β} and H-6'_{β}), 3.61-3.67 (m, 3H, H-4_{α}, H-6_{α} and H-6'_{α}), 3.73 (dd, 1H, *J* = 3.0 and 10.0 Hz, 1H, H-2_{α}), 3.80 (t, 1H, *J* = 10.0 Hz, H-3_{β}), 3.93- 3.98 (m, 1H, H-5_{α}), 4.17 (t, *J* = 10.0 Hz, H-3_{α}), 4.39-4.44 (m, 4H, 2 x 0.5 x CH₂Ph (of α isomer) and 2 x 0.5 x CH₂Ph (of β isomer)), 4.50-4.54 (m, 2H, 0.5 x CH₂Ph (of α isomer) and 0.5 x CH₂Ph (of β isomer)), 4.70 (s, 1H, H-1_{β}), 4.83 (d, *J* = 11.0 Hz, 1H, 0.5 x CH₂Ph), 4,84 (d, *J* = 11.0 Hz, 1H, 0.5 x CH₂Ph), 5.18 (s, 1H, H-1_{α}), 7.13-7.14 (m, 4H, Ar-H), 7.18-7.24 (m, 16H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 17.5, 17.6, 17.8, 17.9, 47.8, 47.9, 47.99, 68.5, 68.6, 68.9, 70.05, 70.6, 71.05, 73.4, 73.49, 73.5, 74.7, 74.8, 75.0, 75.5, 91.3, 94.6, 99.4, 99.5, 99.9, 127.6, 127.65, 127.7, 127.9, 127.92, 127.99, 128.3, 128.35, 137.9, 138.04, 138.2, 138.5. Anal. Calcd for C₂₆H₃₄O₈: C, 65.81; H, 7.22; found C, 65.92; H, 7.49.

4. Hydrolysis of donor D6.

The donor **D6** (0.1 g, 0.15 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (2 mg) in wet DCM (10 mL) gave 77 mg (92 %) of the hydrolyzed product **32\alpha\beta**. The spectral data for the product was similar to that of previously reported data.²⁹

5. Hydrolysis of donor D7.

The donor **D7** (0.1 g, 0.16 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (2 mg) in wet DCM (10 mL) gave 77 mg (92 %) of the hydrolyzed product **33** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.³⁰

6. Hydrolysis of donor D8.

The donor **D8** (0.1 g, 0.22 mmol) on treatment with 10 mol% of AuCl₃.3H₂O (8 mg) in wet DCM (10 mL) gave 73 mg (95 %) of the hydrolyzed product **34\alpha\beta**. The spectral data for the product was similar to that of previously reported data.³¹

7. Hydrolysis of donor D9.

The donor **D9** (0.1 g, 0.22 mmol) on treatment with 10 mol% of AuCl₃.3H₂O (8 mg) in wet DCM (10 mL) gave 69 mg (90 %) of the hydrolyzed product **35\alpha\beta**. The spectral data for the product was similar to that of previously reported data.³¹

8. Hydrolysis of donor D10.

The donor **D10** (0.1 g, 0.22 mmol) on treatment with 10 mol% of AuCl₃.3H₂O (8 mg) in wet DCM (10 mL) gave 68 mg (89 %) of the hydrolyzed product **36\alpha\beta**. The spectral data for the product was similar to that of previously reported data.³¹

9. Hydrolysis of donor D11.

The donor **D11** (0.05 g, 0.11 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (1 mg) in wet DCM (5 mL) gave 34 mg (89 %) of the hydrolyzed product **37** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.³²

10. Hydrolysis of donor D13.

The donor **D13**³³ (0.1 g, 0.26 mmol) on treatment with 10 mol% of AuCl₃.3H₂O (9 mg) in wet DCM (10 mL) gave 85 mg (96 %) of the hydrolyzed product **34** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.³¹

11. Hydrolysis of donor D14.

The donor **D14** (0.1 g, 0.17 mmol) on treatment with 10 mol% of AuCl₃.3H₂O (7 mg) in wet DCM (10 mL) gave 54 mg (91 %) of the hydrolyzed product **34\alpha\beta**. The spectral data for the product was similar to that of previously reported data.³¹

12. Hydrolysis of donor D15.

The donor **D15** (0.1 g, 0.19 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (2 mg) in wet DCM (10 mL) gave 75 mg (95 %) of the hydrolyzed product **38** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.³⁴

13. Hydrolysis of donor D16.

The donor **D16** (0.1 g, 0.18 mmol) on treatment with 3 mol% of AuCl₃.3H₂O (2 mg) in wet DCM (10 mL) gave 74 mg (92 %) the hydrolyzed product **39** $\alpha\beta$. The spectral data for the product was similar to that of previously reported data.³⁵

J) <u>References:</u>

- S. K. Veleti, J. J. Lindenberger, S. Thanna, D. R. Ronning, S. J. Sucheck, *J. Org. Chem.* 2014, 79, 9444.
- (2) (a) R. R. France, N. V. Rees, J. D. Wadhawan, A. J. Fairbanks, R. G. Compton, *Org. Biomol. Chem.* 2004, 2, 2188. (b) A. P. Dieskau, B. Plietker, *Org. Lett.* 2011, 13, 5544.
- (3) T. Nokami, A. Shibuya, H. Tsuyama, S. Suga, A. A. Bowers, D. Crich, J. –i. Yoshida, J. Am. Chem. Soc. 2007, 129, 10922.
- (4) S. Buda, M. Nawoj, P. Golebiowska, K. Dyduch, A. Michalak, J. Mlynarski, J. Org. Chem. 2015, 80, 770.

- (5) Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt, Angew. Chem. 2013, 125, 10273; Angew. Chem. Int. Ed. 2013, 52, 10089.
- (6) T. K. Pradhan, C. C. Lin, K. -K. T. Mong, Org. Lett. 2014, 16, 1474.
- (7) (a) P. L. Garegg, J. -L. Maloisel, S. Oscarson, *Synthesis* 1995, 409. (b) S. Malik, K. P. R. Kartha, *Synlett* 2009, 9, 1809.
- (8) D. Crich, A. U. Vinod, J. Org. Chem. 2005, 70, 1291.
- (9) S. Hsieh, M. Jan, L. N. Patkar, C. Chen, C. Lin, Carbohydr. Res. 2005, 340, 49.
- (10) A. L. Mattson, A. K. Michel, M. J. Cloninger, Carbohydr. Res. 2012, 347, 142.
- (11) X. -S. Ye, C. -H. Wong, J. Org. Chem. 2000, 65, 2410.
- (12) K. Toshima, H. Nagai, K. -i. Kasumi, K. Kawahara, S. Matsumura, *Tetrahedron* 2004, 60, 5331.
- (13) S. S. Weng, Y. D. Lin, C. T. Chen, Org. Lett. 2006, 8, 5633.
- (14) A. P. Dieskau, B. Plietker, Org. Lett. 2011, 13, 5544.
- (15) C. Chao, M. Chen, S. Lin, K. T. Mong, Carbohydr. Res. 2008, 343, 957.
- (16) Z. Pakulski, Synthesis 2003, 13, 2074.
- (17) H. Kondo, S. Aoki, Y. Ichikawa, R. L. Halcomb, H. Ritzen, C. -H. Wong, J. Org. Chem. 1994, 59, 864.
- (18) Z. Zhang, I. R. Ollman, X. -S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, **121**, 734.
- (19) S. Manabe, Y. Ito, J. Org. Chem. 2013, 78, 4568.
- (20) A. M. Riley, D. J. Jenkins, B. V. L. Potter, J. Am. Chem. Soc. 1995, 117, 3300.
- (21) V. M. Dhurandhare, G. P. Mishra, S. Lama, C. –C. Wang, Org. Biomol. Chem. 2015, 13, 9457.
- (22) M. P. DeNinno, J. B. Etienne, K. C. Duplantier, Tetrahedron Lett. 1995, 36, 669.
- (23) S. Hosono, W. -S. Kim, H. Sasai, M. Shibasaki, J. Org. Chem. 1995, 60, 4.
- (24) G. Bhosekar, C. Murali, R. G. Gonnade, M. S. Shashidhar, M. M. Bhadbhade, *Cryst. Growth Des.* 2005, 5, 1977.

- (25) I. Damager, C. E. Olsen, B. L. Moeller, M. S. Motawia, *Carbohydr. Res.* 1999, **320**, 19.
- (26) A-H. A. Chu, A. Minciunescu, V. Montanari, K. Kumar and C. S. Bennett, *Org. Lett.* 2014, **16**, 1780.
- (27) C. C. Wang, S. S. Kulkarni, J. -C Lee, S. Y. Luo, S. -C. Hung, Nat. Protoc. 2008, 3, 97.
- (28) S. R. Koppolu, R. Niddana, R. Balamurugan. Org. Biomol. Chem., 2015, 13, 5094.
- (29) P. C. B. Page, Y. Chan, J. Liddle, M. R. J. Elsegood, Tetrahedron 2014, 70, 7283.
- (30) M. Matwiejuk, J. Thiem, Eur. J. Org. Chem. 2011, 5860.
- (31) S. M. Andersen, M. Heuckendorff, H. H. Jensen, Org. Lett. 2015, 17, 944.
- (32) P. Wei, D. Zhang, Z. Gao, W. Cai, W. Xu, L. Tang, G. Zhao, Synth. Commun. 2015, 45, 1457.
- (33) B. Mukhopadhyay, K. P. R. Kartha, D. A. Russell, R. A. Field. J. Org. Chem. 2004, 69, 7758.
- (34) N. J. Davis, S. L. Flitsch, J. Chem. Soc. Perkin Trans. I, 1994, 359.
- (35) R. D. Marwood, D. J. Jenkins, V. Correa, C. W. Taylor, B. V. L. Potter, *J. Med. Chem.* 2000, 43, 4278.

A Versatile Glycosylation Strategy via Au(III) Catalyzed Activation of Thioglycoside Donors

Amol M. Vibhute, Arun Dhaka, Vignesh Athiyarath and Kana M. Sureshan*

School of Chemistry, Indian Institute of Science Education and Research

Thiruvananthapuram, KERALA-695016, India, E-mail: <u>kms@iisertvm.ac.in</u>.

1. NMR data of D2	S3-S7	21.NMR data of 11β	S88-S92
2. NMR data of D3	S8-S12	22.NMR data of 12α	S93-S97
3. NMR data of D5	S13-S15	23.NMR data of 12β	S98-S102
4. NMR data of D11	S16-S20	24.NMR data of 13α	S103-S107
5. NMR data of 2	S21-S25	25.NMR data of $14\alpha\beta$	S108-S111
6. NMR data of 3α	S26-S27	26.NMR data of 15αβ	S112-S115
7. NMR data of 3β	S28-S29	27.NMR data of 16αβ	S116-S121
8. NMR data of $4\alpha\beta$	S30-S31	28.NMR data of 17β	S122-S123
9. NMR data of $5\alpha\beta$	S32-S33	29.NMR data of 18β	S124
10.NMR data of 6α	S34-S38	30.NMR data of 19β	S125
11.NMR data of 6β	S39-S43	31.NMR data of 20 α	S126-S127
12.NMR data of 7α	S44-S48	32.NMR data of 21a	S128-S133
13.NMR data of 7β	S49-S53	33.NMR data of 21β	S134-S138
14.NMR data of 8α	S54-S59	34.NMR data of 22αβ	S139-S144
15.NMR data of 8β	S60-S64	35.NMR data of 23 α	S145-S149
16.NMR data of 9α	S65-S69	36.NMR data of 23β	S150-S154
17.NMR data of 9β	S70-S74	37.NMR data of 24α	S155-S159
18.NMR data of 10 $\alpha\beta$ (α major)	S75-S80	38.NMR data of 24β	S160-S164
19.NMR data of 10αβ (β major)	S81-S82	39.NMR data of 25αβ	S165-S166
20.NMR data of 11α	S83-S87	40.NMR data of 26αβ	S167-S172

INDEX

41.NMR data of D12	S173-S175	53.NMR data of $32\alpha\beta$	S214
42.NMR data of $27\alpha\beta$	S176-S177	54.NMR data of 33αβ	S215
43.NMR data of 28α	S178-S183	55.NMR data of $34\alpha\beta$	S216
44.NMR data of 28β	S184-S189	56.NMR data of 35αβ	S217
45.NMR data of D14	S190-S194	57.NMR data of 36αβ	S218
46.NMR data of D15	S195-S197	58.NMR data of $37\alpha\beta$	S219
47.NMR data of 42	S198-S200	59.NMR data of 38αβ	S220
48.NMR data of 43	S201-S203	60.NMR data of 39αβ	S221
49.NMR data of D16	S204-S206	61.NMR data of PhSSPh	S222
50.NMR data of 29αβ	S207	62.NMR data of PhSH	S223
51.NMR data of $30\alpha\beta$	S208-S210	63.NMR data of TolSSTol	S224
52.NMR data of $31\alpha\beta$	S211-S213	64.NMR data of <i>p</i> -TolSH	S225

¹H NMR of D2 in CDCl₃

¹³C NMR of D2 in CDCl₃

DEPT NMR of D2 in CDCl3

HMQC NMR of D2 in CDCl₃

¹H NMR of D3 in CDCl₃

COSY NMR of D3 in CDCl₃

¹³C NMR of D3 in CDCl₃

HMBC NMR of D3 in CDCl₃

HMQC NMR of D3 in CDCl₃

¹H NMR of D5 in CDCl₃

¹³C NMR of D5 in CDCl₃

¹H NMR of D11 in CDCl₃

COSY NMR of D11 in CDCl₃

¹³C NMR of D11 in CDCl₃

HMQC NMR of D11 in CDCl₃

¹H NMR of 2 in CDCl₃

COSY NMR of 2 in CDCl₃

¹³C NMR of 2 in CDCl₃

HMBC NMR of 2 in CDCl₃

HMQC NMR of 2 in CDCl₃

¹H NMR of 3a in CDCl₃

COSY of 3a in CDCl₃

¹H NMR of 3β in CDCl₃

S28

COSY of 3β in CDCl₃

¹H NMR of 4αβ in CDCl₃

COSY of 4ab in CDCl₃

¹H NMR of 5αβ in CDCl₃

COSY of 5ab in CDCl₃

¹H NMR of 6a in CDCl₃

COSY of 6a in CDCl₃

¹³C NMR of 6a in CDCl₃

DEPT NMR of 6a in CDCl₃

HMQC NMR of 6a in CDCl₃

¹H NMR of 6β in CDCl₃

COSY NMR of 6β in CDCl₃

¹³C NMR of 6β in CDCl₃

DEPT NMR of 6β in CDCl₃

HMQC NMR of 6β in CDCl₃

¹H NMR of 7a in CDCl₃

COSY NMR of 7a in CDCl₃

¹³C NMR of 7a in CDCl₃

HMBC NMR of 7α in CDCl₃

HMQC NMR of 7a in CDCl₃

¹H NMR of 7β in CDCl₃

COSY NMR of 7β in CDCl₃

¹³C NMR of 7β in CDCl₃

DEPT NMR of 7β in CDCl₃

HMQC NMR of 7β in CDCl₃

¹H NMR of 8a in CDCl₃

COSY NMR of 8a in CDCl₃

¹³C NMR of 8a in CDCl₃

DEPT NMR of 8a in CDCl₃

HMBC NMR of 8α in CDCl₃

HMQC NMR of 8a in CDCl₃

¹H NMR of 8β in CDCl₃

COSY NMR of 8β in CDCl₃

¹³C NMR of 8β in CDCl₃

DEPT NMR of 8β in CDCl₃

HMQC NMR of 8β in CDCl₃

¹H NMR of 9a in CDCl₃

COSY NMR of 9a in CDCl₃

¹³C NMR of 9a in CDCl₃

DEPT NMR of 9a in CDCl3

HMQC NMR of 9a in CDCl₃

¹H NMR of 9β in CDCl₃

COSY NMR of 9β in CDCl₃

¹³C NMR of 9β in CDCl₃

DEPT NMR of 9β in CDCl₃

HMQC NMR of 9β in CDCl₃

¹H NMR of 10αβ (α major) in CDCl₃

COSY NMR of 10αβ (α major) in CDCl₃

¹³C NMR of 10αβ (α major) in CDCl₃

DEPT NMR of 10aß (a major) in CDCl3

HMBC NMR of 10αβ (α major) in CDCl₃

¹H NMR of 10αβ (β major) in CDCl₃

COSY NMR of 10αβ (β major) in CDCl₃

¹H NMR of 11a in CDCl₃

COSY NMR of 11a in CDCl₃

S84

¹³C NMR of 11a in CDCl₃

DEPT NMR of 11a in CDCl₃

HMQC NMR of 11a in CDCl₃

¹H NMR of 11β in CDCl₃

¹COSY NMR of 11β in CDCl₃

¹³C NMR of 11β in CDCl₃

DEPT NMR of 11β in CDCl₃

HMQC NMR of 11β in CDCl₃

¹H NMR of 12α in CDCl₃

COSY NMR of 12a in CDCl₃

¹³C NMR of 12a in CDCl₃

DEPT NMR of 12a in CDCl₃

HMQC NMR of 12a in CDCl₃

¹H NMR of 12β in CDCl₃

COSY NMR of 12β in CDCl₃

¹³C NMR of 12β in CDCl₃

DEPT NMR of 12β in CDCl₃

HMQC NMR of 12β in CDCl₃

¹H NMR of 13α in CDCl₃

COSY NMR of 13a in CDCl₃

¹³C NMR of 13a in CDCl₃

HMBC NMR of 13α in CDCl₃

HMQC NMR of 13a in CDCl₃

¹H NMR of 14αβ in DMSO-d₆

COSY NMR of 14αβ in DMSO-d₆

¹³C NMR of 14αβ in DMSO-d₆

HMQC NMR of 14αβ in DMSO-d₆

¹H NMR of 15αβ in DMSO-d₆

COSY NMR of 15αβ in DMSO-d₆

¹³C NMR of 15αβ in DMSO-d₆

DEPT NMR of 15αβ in DMSO-d₆

¹H NMR of 16αβ in CDCl₃

COSY NMR of 16αβ in CDCl₃

¹³C NMR of 16αβ in CDCl₃

DEPT NMR of 16aß in CDCl₃

HMBC NMR of 16αβ in CDCl₃

HMQC NMR of 16αβ in CDCl₃

¹H NMR of 17β in CDCl₃

COSY NMR of 17β in CDCl₃

¹H NMR of 18β in CDCl₃

¹H NMR of 19β in CDCl₃

¹H NMR of 20a in CDCl₃

COSY NMR of 20a in CDCl₃

¹H NMR of 21α in CDCl₃

COSY NMR of 21a in CDCl₃

¹³C NMR of 21a in CDCl₃

DEPT NMR of 21a in CDCl₃

HMBC NMR of 21a in CDCl₃

HMQC NMR of 21a in CDCl₃

¹H NMR of 21β in CDCl₃

COSY NMR of 21β in CDCl₃

¹³C NMR of 21β in CDCl₃

DEPT NMR of 21β in CDCl₃

HMQC NMR of 21β in CDCl₃

¹H NMR of 22αβ in CDCl₃

COSY NMR of 22ab in CDCl3

¹³C NMR of 22αβ in CDCl₃

DEPT NMR of 22αβ in CDCl₃

HMBC NMR of 22αβ in CDCl₃

S143

HMQC NMR of 22αβ in CDCl₃

¹H NMR of 23α in CDCl₃

COSY NMR of 23a in CDCl₃

¹³C NMR of 23a in CDCl₃

DEPT NMR of 23a in CDCl₃

HMQC NMR of 23a in CDCl₃

¹H NMR of 23β in CDCl₃

COSY NMR of 23β in CDCl₃

¹³C NMR of 23β in CDCl₃

DEPT NMR of 23β in CDCl₃

HMQC NMR of 23β in CDCl₃

¹H NMR of 24α in CDCl₃

COSY NMR of 24a in CDCl₃

¹³C NMR of 24a in CDCl₃

DEPT NMR of 24a in CDCl₃

HMQC NMR of 24a in CDCl₃

¹H NMR of 24β in CDCl₃

COSY NMR of 24β in CDCl₃

¹³C NMR of 24β in CDCl₃

DEPT NMR of 24β in CDCl₃

HMQC NMR of 24β in CDCl₃

¹H NMR of 25αβ in CDCl₃

COSY NMR of 25ab in CDCl3

¹H NMR of 26αβ in CDCl₃

COSY NMR of 26aß in CDCl₃

26αβ

¹³C NMR of 26aβ in CDCl₃

DEPT NMR of 26αβ in CDCl₃

S170

HMBC NMR of 26αβ in CDCl₃

26αβ

HMQC NMR of 26αβ in CDCl₃

26αβ

¹H NMR of D12 in CDCl₃

¹H NMR of D12 in CDCl₃ (zoom)

Cosy NMR of D12 in CDCl₃

¹H NMR of 27αβ in CDCl₃

¹H NMR of 28α in CDCl₃

COSY NMR of 28a in CDCl₃

¹³C NMR of 28a in CDCl₃

DEPT NMR of 28a in CDCl3

HMBC NMR of 28α in CDCl₃

HMQC NMR of 28a in CDCl₃

¹H NMR of 28β in CDCl₃

COSY NMR of 28β in CDCl₃

¹³C NMR of 28β in CDCl₃

DEPT NMR of 28β in CDCl₃

HMBC NMR of 28β in CDCl₃

HMQC NMR of 28β in CDCl₃

¹H NMR of D14 in CDCl₃

COSY NMR of D14 in CDCl₃

¹³C NMR of D14 in CDCl₃

DEPT NMR of D14 in CDCl3

HMQC NMR of D14 in CDCl₃

¹H NMR of D15 in CDCl₃

¹H NMR of D15 in CDCl₃ (ZOOM)

¹³C NMR of D15 in CDCl₃

¹H NMR of 42 in CDCl₃

¹H NMR of 42 in CDCl₃ (ZOOM)

¹³C NMR of 42 in CDCl₃

¹H NMR of 43 in CDCl₃

¹H NMR of 43 in CDCl₃ (ZOOM)

¹³C NMR of 43 in CDCl₃

¹H NMR of D16 in CDCl₃

¹H NMR of D16 in CDCl₃ (ZOOM)

¹³C NMR of D16 in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR of 29αβ in CDCl₃

¹H NMR of 30αβ in CDCl₃

¹H NMR of 30αβ in CDCl₃ (ZOOM)

¹H NMR of 31αβ in CDCl₃

¹H NMR of 31αβ in CDCl₃ (ZOOM)

¹³C NMR of 31a_β in CDCl₃

¹H NMR of 32αβ in CDCl₃

¹H NMR of 33αβ in CDCl₃

¹H NMR of 34αβ in CDCl₃

¹H NMR of 35αβ in CDCl₃

¹H NMR of 36αβ in CDCl₃

¹H NMR of 37αβ in CDCl₃

¹H NMR of 38αβ in CDCl₃

¹H NMR of 39αβ in CDCl₃

¹H NMR of diphenyl disulfide in CDCl₃

¹H NMR of thiophenol in CDCl₃

¹H NMR of 4-methylthiophenol in CDCl₃

