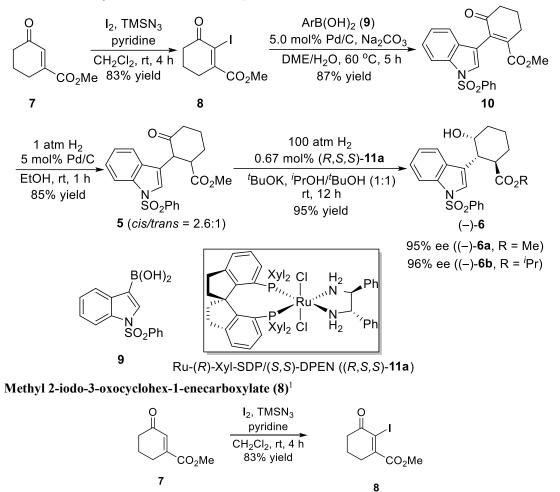
**Supporting information** 

# Divergent Enantioselective Total Synthesis of Hapalindole-Type Alkaloids Using Catalytic Asymmetric Hydrogenation of a Ketone to Construct the Chiral Core Structure

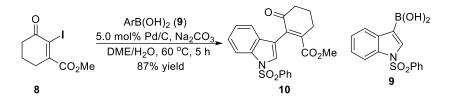
Yang Liu,<sup>a,†</sup> Li-Jie Cheng,<sup>a,†</sup> Hai-Tao Yue,<sup>a</sup> Wen Che,<sup>a</sup> Jian-Hua Xie<sup>\*,a</sup> and Qi-Lin Zhou<sup>a,b</sup>

<sup>a</sup> State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China. <sup>b</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.


#### **Contents:**

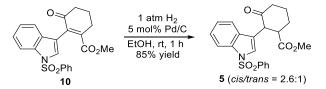
| (A) Asymmetric Synthesis of Chiral Alcohol (-)/(+)-6                                    | S2  |
|-----------------------------------------------------------------------------------------|-----|
| (B) Synthesis of Ketone (-)/(+)-14                                                      |     |
| (C) Synthesis of Ketone (–)/(+)-17                                                      | S8  |
| (D) Total synthesis of (+)-Haplindole Q (1)                                             | S11 |
| (E) Total Synthesis of (-)-12-epi-Hapalindole Q Isonitrile (2) and (-)-Haplindole D (3) | S12 |
| (F) Total synthesis of (+)-12-epi-fischerindole U isothiocyanate (4)                    | S17 |
| (G) NMR Spectra of New Compounds                                                        | S19 |
| (H) HPLC Charts of (-)/(+)-6                                                            | S41 |

**General:** All reactions and manipulations which are sensitive to moisture or air were performed in an argon-filled glove box (VAC DRI-LAB HE 493) or using standard Schlenk techniques. Hydrogen gas (99.999%) was purchased from Boc Gas Inc., Tianjin. Chemical reagents such as Pd/C (10% wt), KO'Bu and CH<sub>3</sub>MgBr were purchased from Alfa Aesar company. Anhydrous THF and benzene was distilled from sodium benzophenone ketyl. Anhydrous DMF, *i*-PrOH, Et<sub>3</sub>N and CH<sub>2</sub>Cl<sub>2</sub> were freshly distilled from calcium hydride. Melting points were measured on a RY-I apparatus and uncorrected. NMR spectra were recorded with a Bruker AV 400 spectrometer at 400 MHz (<sup>1</sup>H NMR) and 100 MHz (<sup>13</sup>C NMR). Chemical shifts were reported in ppm down field from internal Me<sub>4</sub>Si. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. IR spectra were obtained with a Perkin-Elmer spectrometer in KBr disks. High Resolution Mass Spectra (HRMS) were recorded on an Ion Spec FT-ICR mass spectrometer with Electron Spray Ionization (ESI) resource. HPLC analyses were determined using a Hewlett Packard Model HP 1100 Series chromatography.


# (A) Asymmetric Synthesis of Chiral Alcohol (-)/(+)-6

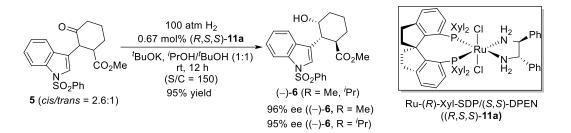
The route for the synthesis of chiral alcohol (-)/(+)-6 is outlined below:




To solution of methyl 3-oxocyclohex-1-enecarboxylate (7, 10.0 g, 66.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was added freshly distilled trimethylsilyl azide (22.3 mL, 165 mmol) at 0 °C. After the mixture was stirred at 0 °C for 2 h, a solution of iodine (42.0 g, 165 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) and pyridine (100 mL) was added slowly at 0 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. The mixture was then diluted with Et<sub>2</sub>O (300 mL) and H<sub>2</sub>O (300 mL). The organic layer was washed successively with water, aqueous HCl (1 M), saturated NaHCO<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, and dried over anhydrous MgSO<sub>4</sub> and concentrated in *vacuo* to yield a residue. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 4:1) to afford iodide **8** as a white solid (15.3 g, 83% yield). R<sub>f</sub> = 0.41 (silica gel, petroleum ether/ethyl acetate = 5:1). mp 68–70 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.87 (s, 3H), 2.67–2.63 (m, 4H), 2.15–2.06 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.7, 167.8, 157.6, 104.6, 52.7, 36.4, 30.3, 22.2. IR (KBr):  $v_{max}$  2949, 1730, 1689, 1431, 1291, 1227, 1179 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>8</sub>H<sub>9</sub>IO<sub>3</sub>Na ([M+Na]<sup>+</sup>): 302.9489, found: 302.9491.

# Methyl 3-oxo-2-(1-(phenylsulfonyl)-1H-indol-3-yl)cyclohex-1-enecarboxylate (10)




To a solution of iodide **8** (14.0 g, 50.0 mmol), arylboronic acid **9** (19.6 g, 65.0 mmol), and Na<sub>2</sub>CO<sub>3</sub> (10.6 g, 100 mmol) in 1,2-dimethoxyethane (140 mL) and H<sub>2</sub>O (140 mL) was added a catalytic amount of Pd/C (10% wt, 2.6 g, 2.5 mmol). The reaction mixture was then heated to 60 °C with vigorous stirring for 5 h. After cooling to room temperature and diluted with water (200 mL), the reaction mixture was extracted with ethyl acetate (3 × 200 mL). The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 3:1) to afford enone **10** as a yellow oil (17.9 g, 87% yield). R<sub>f</sub> = 0.32 (silica gel, petroleum ether/ethyl acetate = 3:1). mp 116–118 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 8.3 Hz, 1H), 7.92–7.86 (m, 2H), 7.54 (s, 1H), 7.49 (d, *J* = 7.3 Hz, 1H), 7.44–7.40 (m, 2H), 7.28 (m, 1H), 7.22–7.14 (m, 2H), 3.25 (s, 3H), 2.78 (t, *J* = 6.0 Hz, 2H), 2.70–2.60 (m, 2H), 2.25–2.14 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  197.0, 168.6, 149.0, 138.0, 134.4, 133.8, 131.2, 130.1, 129.2, 126.7, 126.0, 124.6, 123.3, 120.1, 115.9, 113.5, 51.9, 38.0, 27.8, 22.1. IR (KBr): *v*<sub>max</sub> 2951, 1737, 1682, 1448, 1367, 1275, 1228, 1175, 1125, 728, 596 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>5</sub>SNa ([M+Na]<sup>+</sup>): 432.0876, found: 432.0880.

#### Methyl 3-oxo-2-(1-(phenylsulfonyl)-1H-indol-3-yl)cyclohexanecarboxylate (5)



To a solution of enone **10** (12.0 g, 29.3 mmol) in ethanol (600 mL) was added Pd/C (10% wt, 1.56 g, 1.47 mmol). The mixture was stirred under atmospheric pressure of H<sub>2</sub> for 12 h and was then filtered through a pad of Florisil. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel column (toluene/ethyl acetate = 6:1) to afford ketone **5** as a white solid (10.2 g, 85% yield, *cis/trans*  $\approx$  3:1). R<sub>f</sub> = 0.58 (silica, toluene/ethyl acetate = 4:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.0 Hz, 0.75H), 7.48 (d, *J* = 8.0 Hz, 0.25H), 7.85–7.80 (m, 2H), 7.73 (s, 0.75H), 7.47–7.41 (m, 2H), 7.41–7.33 (m, 2H), 7.31–7.23 (m, 1.25H), 7.20–7.16 (m, 1H), 4.13 (d, *J* = 12.0 Hz, 0.25H), 4.03 (d, *J* = 5.2 Hz, 0.75H), 3.44 (s, 2.25H), 3.37 (q, *J* = 4.8 Hz, 0.75H), 3.33 (s, 0.75H), 3.11 (td, *J* = 11.6, 3.6 Hz, 1H), 2.60–2.52 (m, 1.25H), 2.45–2.35 (m, 0.75H), 2.25–2.15 (m, 2H), 2.14–2.02 (m, 1H), 1.98–1.88 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.1, 205.3, 173.1, 172.8, 137.8, 134.3, 133.6, 130.2, 129.0, 126.5, 126.4, 125.3, 124.6, 124.6, 124.4, 123.1, 123.0, 119.9, 118.9, 116.6, 113.4, 113.4, 51.7, 51.5, 50.0, 49.5, 48.1, 48.0, 41.1, 39.7, 28.8, 26.6, 25.4, 22.9. HRMS (ESI) Calcd for C<sub>22</sub>H<sub>21</sub>NO<sub>5</sub>SNa ([M+Na]<sup>+</sup>): 434.1033, found: 434.1035.

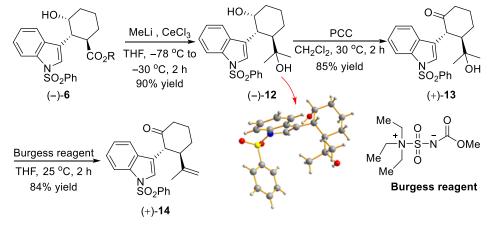
#### Asymmetric Synthesis of (-)/(+)-6



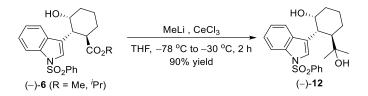
The catalyst [RuCl<sub>2</sub>-(R)-Xyl-SDP/(S,S)-DPEN] (18 mg, 0.018 mmol) was placed in a hydrogenation vessel in a glove box under argon atmosphere. A mixture solvent (20.0 mL, 'PrOH/'BuOH = 1:1) was introduced with a syringe, and the vessel was purged with hydrogen and pressurized to 20 atm for 5 min. After releasing the pressure, a solution of ketone 5 (1.13 g, 2.75 mmol) in the mixture solvent (10.0 mL, <sup>i</sup>PrOH/<sup>i</sup>BuOH = 1:1) and a solution of <sup>i</sup>BuOK (0.2 mmol/mL, 0.8 mmol) also in the mixture solvent (4 mL, 'PrOH/'BuOH = 1:1) were added sequentially into the vessel. The vessel was then purged with hydrogen and pressurized to 100 atm. After stirring at room temperature for 12 h, the reaction was stopped. The reaction mixture was concentrated in vacuo and the residue was purified through a short silica gel column (petroleum ether/ethyl acetate = 4:1) to afford alcohol (-)-6 (1.08 g, 95% vield) as a mixture of methyl ester ((-)-6a, 0.80 g, 70.4% yield) and isopropyl ester ((-)-6b, 0.28 g, 24.6% yield) in a ratio around 3:1. (-)-6a: white solid.  $R_f = 0.52$  (silica, petroleum ether/ethyl acetate = 3:1). 96% ee. mp 60–62 °C.  $[\alpha]_{D}^{20}$  –87.2 (c 1.06, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 8.3 Hz, 1H), 7.86– 7.79 (m, 2H), 7.52–7.49 (m, 3H), 7.42 (t, J = 8.0 Hz, 2H), 7.33 (t, J = 7.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 4.03 (s, 1H), 3.36 (s, 3H), 3.29 (dd, J = 12.0, 1.2 Hz, 1H), 3.14 (td, J = 11.8, 3.5 Hz, 1H), 2.04 (t, J = 13.5 Hz, 2H), 1.90–1.77 (m, 1H), 1.73–1.56 (m, 3H), 1.37 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.6, 135.4, 133.7, 129.9, 129.2, 126.6, 125.2, 123.6, 123.4, 123.0, 119.5, 113.9, 66.9, 51.5, 42.2, 41.2, 31.6, 29.9, 18.7. IR (KBr): v<sub>max</sub> 3473, 2937, 1728, 1447, 1367, 1175, 725, 598 cm<sup>-1</sup>. HRMS (ESI) Calcd for  $C_{22}H_{23}NO_5SNa$  ([M+Na]<sup>+</sup>): 436.1189, found: 436.1191. (-)-6b: white solid.  $R_f = 0.55$  (silica, petroleum ether/ethyl acetate = 3:1). 95% ee. mp 114–116 °C.  $[\alpha]_{D}^{20}$  –74.2 (*c* 1.0, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (d, J = 8.3 Hz, 1H), 7.87–7.81 (m, 2H), 7.55–7.47 (m, 3H), 7.41 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 8.0 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 4.66 (dt, J = 12.5, 6.3 Hz, 1H), 4.02 (s, 1H), 3.28 (dd, J = 12.0, 1.8 Hz, 1H), 3.08 (td, J = 12.0, 3.5 Hz, 1H), 2.10–1.95 (m, 2H), 1.87–1.79 (m, 1H), 1.64 (m, 3H), 1.38 (s, 1H), 0.91 (d, J = 6.3 Hz, 3H), 0.76 (d, J = 6.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.5, 138.1, 135.3, 133.1, 130.1, 129.2, 126.7, 125.1, 123.6, 123.2, 123.0, 119.6, 113.8, 67.3, 67.1, 42.6, 41.2, 31.7, 29.9, 21.4, 21.2, 18.8. IR (KBr): v<sub>max</sub> 3478, 2923, 1704, 1448, 1367, 1177, 598 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>24</sub>H<sub>27</sub>NO<sub>5</sub>SNa ([M+Na]<sup>+</sup>): 464.1502, found: 464.1501.

With the same procedure chiral alcohol (+)-**6** was also obtained as a mixture of methyl ester and isopropyl ester by using [RuCl<sub>2</sub>-(*S*)-Xyl-SDP/(*R*,*R*)-DPEN] as the catalyst. 95% yield. (+)-**6a**: white solid, mp 60–62 °C, 96% ee,  $[\alpha]_{D}^{20}$  +85.5 (*c* 1.0, CHCl<sub>3</sub>). (+)-**6b**: white solid, mp 113–115 °C. 95% ee,  $[\alpha]_{D}^{20}$  -73.4 (*c* 1.0, CHCl<sub>3</sub>).

The experiment data of optimizing the hydrogenation conditions see below.<sup>*a*</sup> **Table S1** Optimizing the hydrogenation conditions


| $\begin{array}{c} \begin{array}{c} O \\ N \\ N \\ SO_2Ph \end{array} \end{array} \begin{array}{c} H_2/\operatorname{Cata}^* \\ \hline H_2/\operatorname{Cata}^* \\ (S/C = 150) \end{array} \begin{array}{c} HO_{III} \\ N \\ SO_2Ph \end{array} \end{array} \begin{array}{c} HO_{III} \\ O \\ SO_2Ph \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ P \\ O \\ SO_2Ph \\ SO_2Ph \\ SO_2Ph \\ \end{array} \end{array} \begin{array}{c} O \\ O \\ SO_2Ph \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ SO_2Ph \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ P \\ O \\ SO_2Ph \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array}  \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array}  \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array}  \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \\ \end{array}  \\ \\ \begin{array}{c} O \\ SO_2Ph \\ \end{array} \\ \\ \end{array}  \\ \\ \begin{array}{c} O \\ SO_2Ph \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array}  \\ \\ \begin{array}{c} O \\ SO_2Ph \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array}  \\ \\ \\ \\ \\ \end{array}  \\ \\ \\ \\ |                                        |                                                          |                        |                                                                             |                                  |                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------|----------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                          |                        | Ru-( <i>R</i> )-SDP/(-<br>(( <i>R</i> , <i>S</i> , <i>S</i> )- <b>11b</b> , |                                  |                |  |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Catalyst                               | Solvent                                                  | Conv. (%) <sup>b</sup> | Yield $(\%)^c$                                                              | Ee (%) <sup><math>d</math></sup> |                |  |
| Enuy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Catalyst                               | Solvent                                                  |                        |                                                                             | (-) <b>-6a</b>                   | (–) <b>-6b</b> |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup><i>i</i></sup> PrOH                                 | 100                    | 75                                                                          | 87                               | 84             |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11b | <sup><i>i</i></sup> PrOH                                 | 100                    | 55                                                                          | 77                               | 0              |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup>t</sup> BuOH                                        | 60                     | 38                                                                          | 97                               | -              |  |
| 4 <sup><i>e</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup>t</sup> BuOH                                        | 60                     | 34                                                                          | 71                               | _              |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | Toluene                                                  | 15                     | 11                                                                          | 98                               | -              |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | THF                                                      | 70                     | 28                                                                          | 99                               | _              |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup><i>i</i></sup> PrOH/ <sup><i>t</i></sup> BuOH (2:1) | 100                    | 62                                                                          | 95                               | 85             |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup>i</sup> PrOH/ <sup>i</sup> BuOH (1:1)               | 100                    | 56                                                                          | 97                               | 93             |  |
| 9 <sup><i>f</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <i>R</i> , <i>S</i> , <i>S</i> )-11a | <sup><i>i</i></sup> PrOH/ <sup><i>t</i></sup> BuOH (1:1) | 100                    | 95                                                                          | 96                               | 95             |  |

**Notes:** <sup>*a*</sup> Reaction conditions: 0.5 mmol scale, [5] = 0.08 M, [KO'Bu] = 0.02 M, 25-30 °C, 50 atm H<sub>2</sub>, 12 h. <sup>*b*</sup> Determined by <sup>1</sup>H NMR. <sup>*c*</sup> Isolated yield. The ratio of (–)-**6b** from 3:1 to 1:1 determined by <sup>1</sup>H NMR, and the low yield (compare to the conversion) is due to the substrate and the product are prone to hydrolysis by water, which is inevitably coming from the solvents used). <sup>*d*</sup> Determined by HPLC on chiral OD-H column. <sup>*e*</sup> at 60 °C; <sup>*f*</sup> 100 atm H<sub>2</sub>, 4 Å MS.


**HPLC conditions:** For (–)-**6a**: Chiralcel OD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 85:15; temp, rt; flow rate = 1.0 mL/min; 220 nm UV detector;  $t_R$  (1*S*,2*S*,3*S*) = 5.95 min and  $t_R$  (1*R*,2*R*,3*R*) = 12.68 min. For (–)-**6b**: Chiralcel OD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 85:15; temp, rt; flow rate = 1.0 mL/min; 220 nm UV detector;  $t_R$  (1*S*,2*S*,3*S*) = 4.73 min and  $t_R$  (1*R*,2*R*,3*R*) = 10.55 min.

# (B) Synthesis of Ketone (-)/(+)-14

The route for the synthesis of chiral ketone (-)/(+)-14 is outlined below.



Alcohol (-)-12



A suspension of CeCl<sub>3</sub> (26.4 g, 107 mmol) and chiral alcohol (-)-**6** (7.6 g, 17.8 mmol, (-)-**6a**/(-)-**6b** = 3:1) in THF (30 mL) was stirred at room temperature for 2 h. Then the mixture cooled to -78 °C, and a solution of MeLi (1.0 M, 107 mL, 107 mmol) in THF was added. After completion of the addition, the temperature was allowed to -30 °C for 2 h. The mixture was quenched with aqueous HCl (1 M, 200 mL) and extracted with ethyl acetate. The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 2:1) to afford the product (-)-**12** as a white solid (6.6 g, 90% yield). R<sub>f</sub> = 0.43 (silica gel, petroleum ether/ethyl acetate = 2:1). mp 138–140 °C,  $[\alpha]_D^{20}$  -55.1 (*c* 1.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 8.3 Hz, 1H), 7.93–7.87 (m, 2H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.63 (s, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.28 (t, *J* = 8.0Hz, 1H), 3.73 (s, 1H), 2.95 (dd, *J* = 11.6, 2.1 Hz, 1H), 2.37 (td, *J* = 11.8, 3.6 Hz, 1H), 2.11–2.01 (m, 1H), 1.97–1.86 (m, 2H), 1.76–1.54 (m, 3H), 1.18–1.14 (m, 1H), 1.08 (s, 3H), 0.94 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.0, 135.2, 133.8, 130.3, 129.3, 126.6, 125.2, 125.1, 124.4, 123.4, 120.3, 113.9, 73.9, 70.2, 45.4, 41.7, 32.7, 28.8, 28.4, 26.7, 19.5. IR (KBr):  $v_{max}$  3372, 2922, 1447, 1370, 1180, 1098, 725, 600, 553 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>23</sub>H<sub>27</sub>NO<sub>4</sub>SNa ([M+Na]<sup>+</sup>): 436.1553, found: 436.1550.

Crystals of (-)-12 suitable for X-ray analysis were grown from diethyl ether/hexane. Crystallographic data for (-)-12 are given in Table S2.





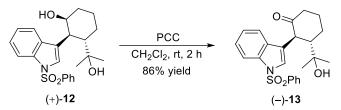
Table S2. Crystallographic data and structure refinement for (-)-12

| Empirical Formula           | C <sub>26</sub> H <sub>33</sub> NO <sub>5</sub> S |
|-----------------------------|---------------------------------------------------|
| Formula weight              | 471.59                                            |
| Temperature                 | 113(2) K                                          |
| Wavelength                  | 0.71073 Å                                         |
| Crystal system, space group | Orthorhombic, $P2(1)2(1)2(1)$                     |
|                             | $a = 7.8163(16) \text{ Å}  \alpha = 90^{\circ}$   |
| Unit cell dimensions        | $b = 11.555(2) \text{ Å}  \beta = 90^{\circ}$     |
|                             | $c = 26.919(5) \text{ Å}  \gamma = 90^{\circ}$    |
| Volume                      | 2431.2(8) Å <sup>3</sup>                          |
| Z, Calculated density       | 4, 1.288 Mg/m <sup>3</sup>                        |
| Absorption coefficient      | 0.170 mm <sup>-1</sup>                            |
| F(000)                      | 1008                                              |
|                             |                                                   |

| Crystal size                      | $0.20 \times 0.18 \times 0.12 \text{ mm}$   |
|-----------------------------------|---------------------------------------------|
| Theta range for data collection   | 1.51 to 24.99 deg                           |
| Limiting indices                  | -9<=h<=9, -13<=k<=13, -31<=l<=31            |
| Reflections collected / unique    | 19854 / 4263 [R(int) = 0.1047]              |
| Completeness to theta $= 24.99$   | 99.9 %                                      |
| Absorption correction             | Semi-empirical from equivalents             |
| Max. and min. transmission        | 0.9799 and 0.9668                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 4263 / 24 / 304                             |
| Goodness-of-fit on F <sup>2</sup> | 1.121                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0842, wR2 = 0.1925                   |
| R indices (all data)              | R1 = 0.1155, wR2 = 0.2088                   |
| Absolute structure parameter      | -0.09 (18)                                  |
| Largest diff. peak and hole       | 0.299 and -0.488 e.Å <sup>-3</sup>          |

Alcohol (+)-12




With the same procedure the chiral alcohol (+)-12 was synthesized from the chiral alcohol (+)-6: 89% yield, white solid. mp 139–141 °C.  $[\alpha]_{D}^{20}$  +57.2 (*c* 1.0, CHCl<sub>3</sub>).

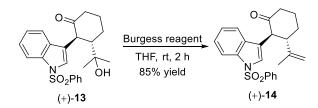
Ketone (+)-13



Pyridinium chlorochromate (10.0 g, 46.5 mmol) was added in small portions to a vigorously stirred solution of alcohol (–)-**12** (6.4 g, 15.5 mmol) in DCM (200 mL). After completing the addition, the mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with ether and filtered through a pad of Florisil. The filtrate was concentrated in *vacuo* and the residue was purified through a short silica gel column (petroleum ether/ethyl acetate = 2:2) to afford compound (+)-**13** as a white solid (5.4 g, 85% yield).  $R_f = 0.37$  (silica gel, petroleum ether/ethyl acetate = 2:1). mp 126–128 °C.  $[\alpha]_{D}^{20}$  +103.2 (*c* 0.5, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 2H), 7.52 (dd, *J* = 14.1, 7.5 Hz, 2H), 7.46 (s, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 3.92 (d, *J* = 6.2 Hz, 1H), 2.55–2.28 (m, 3H), 2.16 (d, *J* = 6.8 Hz, 2H), 1.90 (brs, 1H), 1.76–1.68 (m, 1H), 1.28–1.26 (m, 1H), 1.19 (s, 3H), 1.14 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  209.8, 138.0, 135.2, 133.8, 130.3, 129.2, 126.6, 125.0, 124.0, 123.5, 121.5, 120.7, 113.7, 51.7, 49.6, 39.3, 29.0, 27.2, 25.1, 23.2. IR (KBr): *v*<sub>max</sub> 3449, 2962, 1690, 1639, 1450, 1369, 1175, 750, 595, 570 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>4</sub>SNa ([M+Na]<sup>+</sup>): 434.1397, found: 434.1399.

Ketone (-)-13

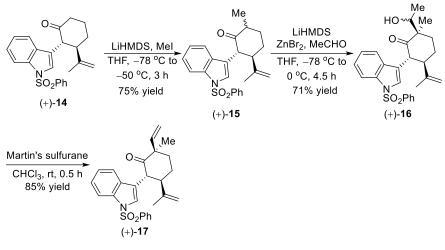



With the same procedure the chiral ketone (-)-13 was synthesized from the chiral alcohol (+)-12: 86% yield. mp 125–127 °C.  $[\alpha]_{\rm p}^{20}$  –98.5 (*c* 1.0, CHCl<sub>3</sub>).

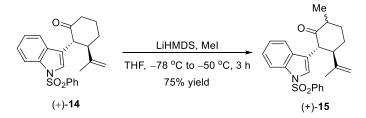
Ketone (+)-15<sup>2</sup>



To a solution of alcohol (+)-**13** (4.6 g, 11.2 mmol) in THF (100 mL) was added Burgess reagent (8.6 g, 33.6 mmol mmol) at room temperature under an argon atmosphere. After stirring at room temperature for 2 h, H<sub>2</sub>O (80 mL) was added to the mixture and the resulting mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 5:1) to afford the ketone (+)-**14** as a light yellow solid (3.7 g, 84% yield). R<sub>f</sub> = 0.71 (silica gel, petroleum ether/ethyl acetate = 3:1). mp 132–134°C. [ $\alpha$ ]<sup>20</sup><sub>D</sub> +45.0 (*c* 1.0, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.3 Hz, 1H), 7.80–7.73 (m, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.32 (s, 1H), 7.28–7.23 (m, 2H), 7.20–7.12 (m, 1H), 4.51 (s, 1H), 4.47–4.42 (m, 1H), 3.78 (d, *J* = 12.1 Hz, 1H), 2.86 (td, *J* = 11.6, 4.0 Hz, 1H), 2.61–2.45 (m, 2H), 2.23–2.14 (m, 1H), 2.00–1.81 (m, 3H), 1.47 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  207.9, 145.4, 138.1, 135.2, 133.5, 130.6, 129.0, 126.5, 125.0, 124.4, 123.1, 120.0, 119.0, 113.8, 112.6, 52.1, 52.1, 41.7, 31.5, 25.9, 18.4. IR (KBr): *v*<sub>max</sub> 2937, 1711, 1448, 1366, 1175, 725, 599 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>23</sub>H<sub>23</sub>NO<sub>3</sub>SNa ([M+Na]<sup>+</sup>): 416.1291, found:416.1294.

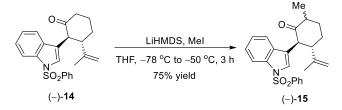

Ketone (-)-14




With the same procedure the ketone (-)-14 was synthesized from the ketone (-)-13: 85% yield. mp 133–134 °C,  $[\alpha]_{p}^{20}$  +46.1 (*c* 1.1, CHCl<sub>3</sub>).

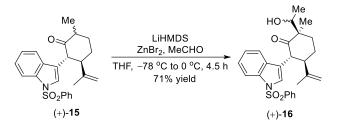
# (C) Synthesis of Ketone (-)/(+)-17

The route for the synthesis of chiral ketone (-)/(+)-17 is outlined below.



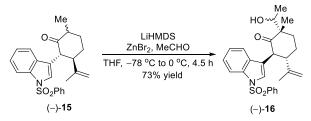

Ketone (+)-15




To a solution of ketone (+)-14 (1.7 g, 4.3 mmol) in THF (10 mL) at -78 °C was slowly added a solution of LiHMDS (1.0 M, 8.6 mL, 8.6 mmol) in THF and the resulting solution was stirred at the same temperature for 1 h. Then iodomethane (0.31 mL, 4.95 mmol) was added to the reaction mixture and the resulting solution was again allowed to warm to -20 °C for 3 h. The mixture was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 × 50 mL). The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 6:1) to afford the ketone (+)-15 as a light semi-oil solid (1.32 g, 75% yield, *dr* = 5:1). R<sub>f</sub> = 0.56 (silica gel, petroleum ether/ethyl acetate = 5:1). [ $\alpha$ ]<sub>D</sub><sup>20</sup> +23.5 (*c* 0.3, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.2 Hz, 1H), 7.84–7.76 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.43–7.36 (m, 4H), 7.32–7.28 (m, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 4.64 (s, 2H), 4.00 (d, *J* = 9.2 Hz, 1H), 2.99–2.93 (m, 1H), 2.75–2.68 (m, 1H), 2.08–1.90 (m, 3H), 1.83–1.78 (m, 1H), 1.59 (s, 3H), 1.23 (d, *J* = 7.2 Hz, 2.5H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  211.8, 145.8, 138.1, 135.2, 133.7, 130.5, 129.1, 129.0, 126.6, 124.7, 124.3, 123.2, 120.2, 119.7, 113.7, 112.7, 50.1, 48.8, 43.3, 31.1, 25.7, 19.7, 16.3. HRMS (ESI) Calcd for C<sub>24</sub>H<sub>25</sub>NO<sub>3</sub>SNa ([M+Na]<sup>+</sup>): 430.1447, found: 430.1447.

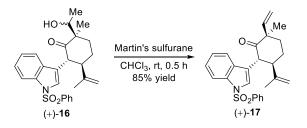
Ketone (–)-15




With the same procedure the ketone (-)-15 was synthesized from the ketone (-)-14. 75% yield.  $[\alpha]_{D}^{20}$  - 24.3 (*c* 0.6, CHCl<sub>3</sub>).

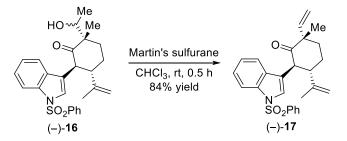
Alcohol (+)-16<sup>3</sup>




To a solution of ketone (+)-15 (2.21 g, 5.4 mmol) in THF (20 mL) was added a solution of LiHMDS (1.0 M, 10.8 mL, 10.8 mmol) in THF at -78 °C. After being stirred at 0 °C for 1 h, the mixture was cooled to -78 °C again, and a solution of ZnBr2 (2.43 g, 10.8 mmol) in THF (12 mL) was added. After the addition, the reaction mixture was slowly warm to 0 °C and stirred at the same temperature for 0.5 h. Then, acetaldehyde (1.21 mL, 21.6 mmol) was added. The mixture continued to stir at 0 °C for 0.5 h, and then aqueous H<sub>2</sub>O<sub>2</sub> (30 wt.%, 12 mL) and aqueous NaOH (3 M, 36 mL) was added dropwise to the reaction. The reaction mixture was extracted with ethyl acetate  $(3 \times 50 \text{ mL})$ . The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 2:1) to afford the alcohol (+)-16 as a white solid (1.72 g, 71% yield, dr = 10:1). R<sub>f</sub> = 0.31 (silica gel, petroleum ether/ethyl acetate = 2:1). mp 78–80 °C.  $[\alpha]_{D}^{20}$  +8.4 (*c* 0.9, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 8.3 Hz, 1H), 7.77 (d, J = 7.7 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.41–7.33 (m, 4H), 7.23 (t, J = 7.7 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 4.70 (s, 1H), 4.61 (s, 1H), 4.57–4.58 (m, 1H), 4.25 (d, J = 12.4 Hz, 1H), 2.93 (td, J = 11.9, 4.3 Hz, 1H), 2.05–2.04 (m, 1H), 2.00 (dt, J = 14.3, 3.6 Hz, 1H), 1.80–1.63 (m, 3H), 1.49 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 0.99 (d, J = 9.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  211.0, 146.0, 138.1, 135.0, 133.5, 131.2, 129.0, 126.5, 125.0, 124.4, 123.2, 120.1, 119.4, 113.6, 112.8, 70.3, 53.3, 51.4, 47.6, 36.0, 27.2, 18.2, 17.9, 16.3. IR (KBr): v<sub>max</sub> 3543, 2975, 2937, 1711, 1447, 1366, 1175, 745, 571 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>26</sub>H<sub>29</sub>NO<sub>4</sub>SNa ([M+Na]<sup>+</sup>): 474.1710, found: 474.1712.

**Alcohol (**-)-16<sup>4</sup>

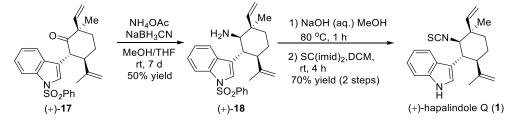



With the same procedure the alcohol (–)-16 was synthesized from the ketone (–)-15: 73% yield.  $[\alpha]_{D}^{20}$  – 10.1 (*c* 0.5, CHCl<sub>3</sub>).

Ketone (+)-17



To a solution of alcohol (+)-**16** (1.6 g, 3.5 mmol) in CHCl<sub>3</sub> (16 mL) was added Martin Sulfurane (9.5 g, 14.2 mmol), and the obtained reaction mixture was stirred at room temperature for 0.5 h. The solvent was removed in *vacuo* and the residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 8:1) to afford ketone (+)-**17** as a white solid (1.3 g, 85% yield). R<sub>f</sub> = 0.67 (silica gel, petroleum ether/ethyl acetate = 6:1). mp 148–150 °C.  $[\alpha]_D^{20}$  +89.8 (*c* 1.0, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.34 (s, 1H), 7.30–7.16 (m, 3H), 6.14 (dd, *J* = 17.7, 10.7 Hz, 1H), 5.36 (d, *J* = 10.7 Hz, 1H), 5.17 (d, *J* = 17.7 Hz, 1H), 4.59 (s, 1H), 4.51 (s, 1H), 4.18 (d, *J* = 12.5 Hz, 1H), 2.96–2.85 (m, 1H), 2.26–2.08 (m, 2H), 1.89–1.77 (m, 2H), 1.47 (s, 3H), 1.22 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  209.0, 145.7, 142.6, 138.2, 135.1, 133.5, 131.0, 129.0, 126.5, 125.2, 124.4, 123.1, 119.6, 119.1, 116.3, 113.8, 112.6, 52.8, 52.2, 48.4, 38.9, 28.2, 24.7, 18.2. IR (KBr):  $v_{max}$  2926, 1709, 1608, 1448, 1365, 1176, 725, 598 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>26</sub>H<sub>27</sub>NO<sub>3</sub>SNa ([M+Na]<sup>+</sup>): 456.1604, found:456.1599.

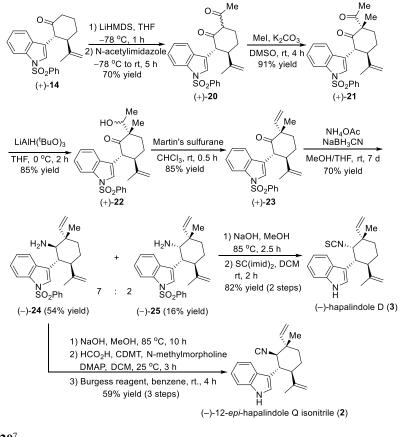

# Ketone (-)-17



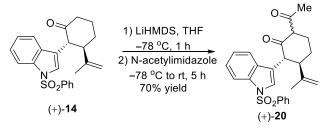
With the same procedure the ketone (–)-17 was synthesized from the alcohol (–)-16: 84% yield.  $[\alpha]_{D}^{20}$  – 85.3 (*c* 0.4, CHCl<sub>3</sub>).

# (D) Total Synthesis of (+)-Hapalindole Q (1)<sup>5</sup>

The route for the synthesis of (+)-Hapalindole Q (1) is outlined below.




To a solution of ammonium acetate (249 mg, 3.23 mmol) and NaBH<sub>3</sub>CN (50 mg, 0.80 mmol) in MeOH (4.0 mL) was added a solution of ketone (+)-**17** (70 mg, 0.16 mmol) in THF (1.0 mL). The reaction mixture was stirred for 7 d at room temperature, and then quenched with aqueous NaHCO<sub>3</sub> (1 M, 3 mL) and extracted with ethyl acetate ( $3 \times 15$  mL). The combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate/methol = 50:25:1) to afford the amine **18** as a white solid (35 mg, 50% yield) and recovered ketone (+)-**17** (32.9 mg, 47%). To a solution of amine (+)-**18** (35 mg, 0.08 mmol) in methol (5 mL) was added aqueous NaOH (3 N, 2.7 mL). The mixture was heated to 80 °C for 1 h, then cooled to room temperature. The solvent was removed in *vacuo* and the residue was diluted by ethyl acetate (15 mL) and H<sub>2</sub>O (10 mL). After extracted with ethyl acetate (3 × 15 mL), the combined organic solutions were washed with brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was removed in *vacuo*.


was then dissolved in DCM (8 mL) and CS(imid)<sub>2</sub> (17.2 mg, 0.167 mmol) added. The solution was allowed to stir at room temperature for 4 h and then concentrated in *vacuo*. The residue was purified by chromatography on silica gel column (hexane/CH<sub>2</sub>Cl<sub>2</sub> = 2:1) to afford (+)-hapalindole Q (**1**) as a colorless oil (18.8 mg, 70% yield).  $R_f = 0.43$  (silica gel, hexane/CH<sub>2</sub>Cl<sub>2</sub> = 2:1).  $[\alpha]_D^{25} + 27.8$  (*c* 1.1, CH<sub>2</sub>Cl<sub>2</sub>) [lit:  $[\alpha]_D^{25} + 24.1$  (*c* 1.1, CH<sub>2</sub>Cl<sub>2</sub>)<sup>6</sup>]. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 2.3 Hz, 1H), 6.24 (dd, *J* = 17.6, 11.1 Hz, 1H), 5.39 (d, *J* = 11.1 Hz, 1H), 5.29 (d, *J* = 17.6 Hz, 1H), 4.52 (s, 1H), 4.46 (s, 1H), 3.88 (s, 1H), 3.14 (s, 1H), 2.78 (s, 1H), 2.04–1.97 (m, 1H), 1.83 (m, 1H), 1.59 (d, *J* = 10.7 Hz, 2H), 1.51 (s, al3H), 1.24 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.8, 138.9, 136.7, 131.1, 123.5, 121.9, 119.3, 116.3, 115.0, 111.8, 111.5, 70.7, 50.0, 42.1, 36.4, 28.3, 27.4, 19.0. HRMS (ESI) calcd for C<sub>21</sub>H<sub>24</sub>N<sub>2</sub>SNa ([M+Na]<sup>+</sup>): 359.1552, found: 359.1549.

# (E) Total Synthesis of (-)-12-epi-Hapalindole Q Isonitrile (2) and (-)-Hapalindole D (3)

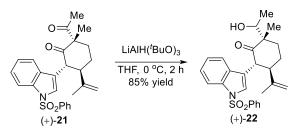
The route for the synthesis of (-)-12-*epi*-Hapalindole Q Isonitrile (2) and (-)-Hapalindole D (3) is outlined below.





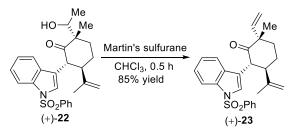


To a stirred solution of (+)-14 (4.0 g, 10.1 mmol) in 15 mL of THF was added a solution of LiHMDS


(1.0 mol/L, 30.3 mL, 30.3 mmol) in THF at -78 °C under nitrogen atmosphere. After the addition, the reaction mixture was stirred at the same temperature for 1 h, and then a solution of N-acetylimidazole (3.34 g, 30.3 mmol) in dry THF (15 mL) was added slowly at -78 °C. The resulting mixture was warmed to room temperature naturally and stirred at room temperature for 5 h. The reaction was quenched with 20 mL saturated NH<sub>4</sub>Cl solution, extracted with ethyl acetate  $(3 \times 20 \text{ mL})$ . The combined organic phases were washed with brine (30 mL) and dried over anhydrous MgSO<sub>4</sub>. After filtration and removal of the solvent in *vacuo*, the residue was purified by flash column chromatography on silica gel with ethyl acetate /petroleum ether (10:1) as a eluent to afford diketone (+)-20 (3.15 g, 70% yield) as colorless semi-oil solid.  $R_{\rm f} = 0.51$  (silica gel, petroleum ether/ethyl acetate = 4:1).  $[\alpha]_{\rm D}^{20}$  +13.2 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 15.95 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.83–7.77 (m, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.43-7.33 (m, 4H), 7.30-7.26 (m, 1H), 7.19 (t, J = 7.4 Hz, 1H), 4.63 (d, J = 1.2 Hz, 1H), 4.46 (s, 1H), 3.82 (d, J = 8.8 Hz, 1H), 2.59 (td, J = 10.0, 2.8 Hz, 1H), 2.50 (t, J = 5.6 Hz, 2H), 2.23 (s, 3H), 1.94–1.86 (m, 1H), 1.78–1.69 (m, 1H), 1.59 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) & 199.2, 180.6, 145.6, 138.1, 135.3, 133.6, 129.9, 129.1, 126.6, 124.9, 124.7, 123.3, 121.8, 119.7, 113.9, 111.9, 107.0, 46.3, 42.8, 26.6, 25.3, 23.4, 19.9. IR (KBr): v<sub>max</sub> 3371, 2927, 1696, 1448, 1369, 1177, 908, 746 cm<sup>-1</sup>. HRMS (ESI) Calcd. for C<sub>25</sub>H<sub>25</sub>NO<sub>4</sub>SNa<sup>+</sup>[M + Na<sup>+</sup>]: 458.1402, found: 458.1403.

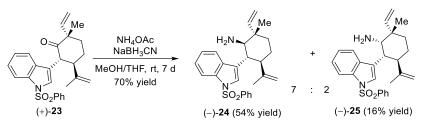
#### **Diketone** (+)-21<sup>8</sup>




To a stirred solution of diketone (+)-**20** (2.96g, 6.8 mmol) in 10 mL of DMSO was added K<sub>2</sub>CO<sub>3</sub> (5.64 g, 40.8 mmol) and MeI (5.80 g, 40.8 mmol) at room temperature. The resulting mixture was stirred at that temperature for 4 h. After quenched with H<sub>2</sub>O (25 mL), the mixture was extracted with Et<sub>2</sub>O (3 × 30 mL). The organic phase was washed with brine and dried over MgSO<sub>4</sub>. After filtration and removal of the solvent in *vacuo*, the residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 20:1) to afford diketone (+)-**21** (2.8 g, 91% yield, *dr* = 10:1) as light orange semi-oil solid. *R*<sub>f</sub> = 0.54 (silica gel, petroleum ether/ethyl acetate = 4:1).  $[\alpha]_D^{20}$  +40.1 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.2 Hz, 1H), 7.83–7.77 (m, 2H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.36 (s, 1H), 7.29 (dd, *J* = 14.4, 6.8 Hz, 2H), 7.20 (d, *J* = 7.2 Hz, 1H), 4.56 (d, *J* = 8.4 Hz, 2H), 4.04 (d, *J* = 11.2 Hz, 1H), 2.97 (td, *J* = 10.8, 5.2 Hz, 1H), 2.50–2.40 (m, 1H), 2.02 (s, 5H), 1.87–1.79 (m, 1H), 1.54 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  208.8, 207.2, 145.2, 138.1, 135.1, 133.7, 130.3, 129.1, 129.0, 126.7, 126.6, 125.3, 124.7, 123.3, 119.9, 118.0, 113.8, 113.0, 61.8, 51.0, 48.8, 32.8, 27.0, 26.3, 20.3, 18.8. IR (KBr): v<sub>max</sub> 3363, 2936, 1707, 1448, 1366, 1264, 898, 746 cm<sup>-1</sup>; HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>27</sub>NO<sub>4</sub>SNa<sup>+</sup>[M + Na<sup>+</sup>]: 472.1558, found: 472.1558.

#### Alcohol (+)-229




To a stirred solution of diketone (+)-21 (2.5 g, 5.56 mmol) in THF (15 mL) was added a solution of LiAlH('BuO)<sub>3</sub> (1.0 M, 8.35 mL, 8.35 mmol) in THF slowly at 0 °C. The resulting reaction mixture was stirred at the same temperature for 2 h. The reaction was then quenched with aqueous HCl (1 M, 5 mL) and extracted with ethyl acetate (3  $\times$  5 mL). The organic phase was washed with saturated NaHCO<sub>3</sub> solution, brine and dried over MgSO<sub>4</sub>. After filtration and removal of the solvent in vacuo, the residue was purified by flash column chromatography on silica gel (ethyl acetate /petroleum ether = 10:1) to afford alcohol (+)-22 (2.15 g, 85%, dr = 6:1) as a colorless solid.  $R_f = 0.27$  (silica gel, petroleum ether/ethyl acetate =1:1).  $\left[\alpha\right]_{D}^{20}$  +39.4 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 8.0 Hz, 2H), 7.32 (s, 1H), 7.29–7.24 (m, 1H), 7.22–7.17 (m, 2H), 4.56 (s, 1H), 4.50 (s, 1H), 4.09 (d, J = 12.6 Hz, 1H), 4.03–3.96 (m, 1H), 3.48 (d, J = 3.2 Hz, 1H), 2.85 (td, J = 12.4, 3.2 Hz, 1H), 2.20–2.07 (m, 1H), 1.88–1.80 (m, 2H), 1.71 (td, J = 13.6, 3.6 Hz, 1H), 1.49 (s, 3H), 1.40 (s, 3H), 1.11 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) 8 215.6, 145.2, 138.2, 135.2, 133.6, 130.5, 129.1, 126.6, 125.4, 124.6, 123.2, 119.6, 118.5, 114.0, 112.9, 71.5, 52.3, 52.2, 48.1, 35.3, 27.2, 18.2, 16.0, 15.9. IR (KBr): v<sub>max</sub> 3366, 2974, 2938, 1638, 1449, 1370, 1269, 1099, 975, 748 cm<sup>-1</sup>. HRMS (ESI) Calcd. for  $C_{26}H_{29}NO_4SNa^+$  [M + Na<sup>+</sup>]: 474.1715, found: 474.1712.

#### Ketone (+)-23<sup>10</sup>



To a solution of alcohol (+)-**22** (1.67 g, 3.64 mmol) in CHCl<sub>3</sub> (16 mL) was added Martin Sulfurane (9.78 g, 14.5 mmol), and the obtained reaction mixture was stirred at room temperature for 0.5 h. The solvent was removed in *vacuo* and the residue was purified by chromatography on silica gel column (petroleum ether/ethyl acetate = 20:1 to 10:1) to afford ketone (+)-**23** (1.34 g, 85%) as a white solid.  $R_f$  = 0.71 (silica gel, petroleum ether/ethyl acetate = 4:1). mp. 148–150 °C. [ $\alpha$ ]<sub>D</sub><sup>20</sup> +32.0 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, *J* = 8.4 Hz, 1H), 7.77 (dt, *J* = 7.2, 1.2 Hz, 2H), 7.52–7.46 (m, 1H), 7.42–7.36 (m, 2H), 7.32 (s, 1H), 7.25 (td, *J* = 6.8, 1.2 Hz, 1H), 7.23–7.20 (m, 1H), 7.18–7.13 (m, 1H), 6.22 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.12 (dd, *J* = 11.2, 0.8 Hz, 1H), 5.06 (dd, *J* = 17.6, 0.8 Hz, 1H), 4.56 (m, 1H), 4.53–4.49 (m, 1H), 4.10 (d, *J* = 12.4 Hz, 1H), 2.88 (td, *J* = 12.0, 4.0 Hz, 1H), 2.15 (m, 1H), 2.07–1.85 (m, 3H), 1.51 (s, 3H), 1.49 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  209. 9, 145.6, 142.5, 138.3, 135.2, 133.5, 130.7, 129.0, 126.6, 125.2, 124.5, 123.1, 119.9, 119.1, 113.8, 112.7, 112.6, 51.9, 50.6, 47.8, 36.6, 27.2, 22.8, 18.5. IR (KBr): v<sub>max</sub> 3366, 2974, 2938, 1639, 1449, 1370, 1268, 749 cm<sup>-1</sup>. HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>27</sub>NO<sub>3</sub>SNa<sup>+</sup> [M + Na<sup>+</sup>]: 456.1609, found: 456.1608.

Amine (-)-24 and (-)-25<sup>11</sup>



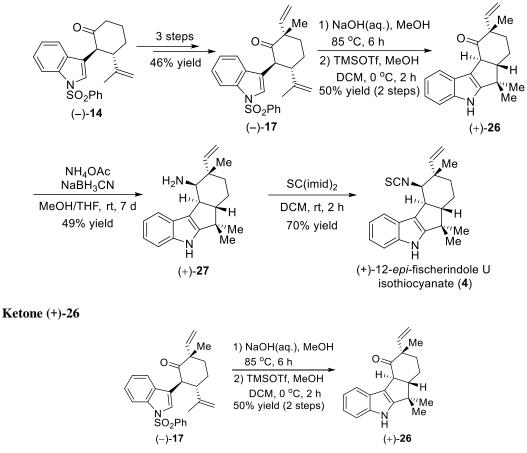
To a solution of ketone (+)-23 (1.10 g, 2.53 mmol) in THF (8 mL) was added to a solution of ammonium acetate (7.80 g, 101 mmol) and NaBH<sub>3</sub>CN (1.52 g, 25.3 mmol) in MeOH (40 mL). The reaction mixture was allowed to stir at room temperature for 7 d and then quenched with saturated NaHCO<sub>3</sub> solution and extracted with diethyl ether  $(3 \times 50 \text{ mL})$ . which were subsequently washed with brine, dried over MgSO<sub>4</sub>. After removed the solvents and the residue was purified by flash column chromatography on silica gel column (petroleum ether/ethyl acetate = 1:2) to afford amine (-)-24 (597 mg, 54%) and (-)-25 (171 mg, 16%) as semi-oil solids. (-)-24.  $R_f = 0.25$  (silica gel, petroleum ether/ethyl acetate = 1:2).  $\left[\alpha\right]_{p}^{20}$  -3.2 (c 0.81, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (brs, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.74 (brs, 0.5H), 7.57 (brs, 0.5H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.7 Hz, 3H), 7.28 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 5.79 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.10 (d, *J* = 17.2 Hz, 1H), 5.06 (d, *J* = 10.8 Hz, 1H), 4.58– 4.14 (m, 2H), 3.19 – 2.40 (m, 3H), 1.78–1.54 (m, 4H), 1.43 (m, 3H), 1.17 (s, 3H), 0.84 (brs, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.3, 147.0, 138.2, 133.5, 129.0, 126.5, 125.6, 124.7, 123.1, 120.8, 119.7, 114.1, 112.6, 111.4, 62.9, 56.7, 51.9, 48.8, 44.0, 41.1, 39.3, 37.8, 27.9, 26.9, 18.5, 14.5. IR (KBr): v<sub>max</sub> 3340, 2974, 2928, 1636, 1447, 1369, 1269,745 cm<sup>-1</sup>; HRMS (ESI) calcd. for C<sub>26</sub>H<sub>31</sub>NO<sub>3</sub>S<sup>+</sup> [M + H<sup>+</sup>]: 435.2106, found: 435.2102. (-)-25:  $R_f = 0.37$ , silica gel, petroleum ether/ethyl acetate = 1:2).  $[\alpha]_p^{20}$  -47.1 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.00 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.38–7.33 (m, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 5.78 (dd, J = 16.8, 11.2 Hz, 1H), 5.22 (d, J = 9.6 Hz, 1H), 5.06 (d, J = 3.6 Hz, 1H), 4.86 (s, 1H), 3.37 (dd, J = 12.0, 3.6 Hz, 1H), 3.07–2.98 (m, 1H), 2.89 (d, J = 2.0 Hz, 1H), 2.17–2.07 (m, 1H), 1.86–1.68 (m, 3H), 1.41 (s, 3H), 1.39–1.33 (m, 2H), 1.29 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.4, 147.5, 137.8, 135.35, 133.5, 133.2, 130.6, 129.3, 129.970, 127.6, 126.6, 125.1, 124.8, 123.4, 123.3, 118.9, 114.2, 112.3, 112.1, 68.0, 55.9, 41.4, 40.4, 36.4, 28.3, 27.6, 23.6, 18.6. IR (KBr): v<sub>max</sub> 3327, 2972, 2932, 1639, 1446, 1369, 1176 cm<sup>-1</sup>. HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>31</sub>NO<sub>3</sub>S<sup>+</sup> [M + H<sup>+</sup>]: 435.2106, found: 435.2105.

# (-)-12-epi-Hapalindole Q isonitrile (2)<sup>4</sup>



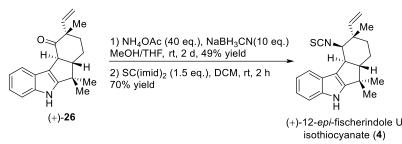
To a solution of amine (–)-**24** (74 mg, 0.17 mmol) in MeOH (15 mL) was added aqueous NaOH (2 M, 2 mL, 4 mmol) at room temperature. Then the mixture was then warmed to 85 °C and kept at the same temperature for 10 h. After removal of the solvent in *vacuo*, the residue was extracted with ethyl acetate ( $3 \times 5$  mL). The organic phase was washed with brine and dried over MgSO<sub>4</sub>. The solvent removed in *vacuo* to give a semi-oil solid. The semi-oil solid was redissoved in DCM (3 mL) and then added to a solution of formic acid (14.9 µL, 0.38 mmol), 2-chloro-4,6-dimethoxy-1,3,5-triazine (66.4 mg, 0.38

mmol), DMAP (1.0 mg, 11.8 µmol), N-methylmorpholine (40.7 µL, 0.38 mmol) in DCM (3 mL). The reaction mixture was stirred for 3 h at room temperature, after which the reaction was diluted with DCM (10 mL) and washed sequentially with aqueous HCl (1 M, 15 mL), saturated NaHCO<sub>3</sub> (15 mL), and brine (5 mL). The organic layer was dried over MgSO<sub>4</sub> and evaporated in *vacuo* and the residue was purified by flash column chromatography on silica gel column (hexane/ethyl acetate = 3:1) to afford an amide (44 mg, 80%) as an oil. Then the oil was redissolved in DCM (2 mL) to the obtained solution was added Et<sub>3</sub>N (132.8 mg, 95 μL, 0.68 mmol) and a solution of triphosgene (40.3 mg, 0.137 mmol) in DCM (2 mL) at 0 °C. The reaction mixture was allowed to stir at 0 °C for 10 min and quenched with saturated aq. NaHCO<sub>3</sub> (5 mL). The resulted mixture was extracted with DCM ( $3 \times 5$  mL), washed with brine (10 mL) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and evaporation of the solvent under vacuum, the residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 6:1) to afford (-)-12-epi-hapalindole Q isonitrile (2, 31 mg, 74%) as a white foam.  $R_{\rm f} = 0.65$  (silica gel, hexane/ethyl acetate = 6:1).  $R_{\rm f} = 0.65$  (silica gel, hexane/ethyl acetate = 6:1).  $[\alpha]_{\rm D}^{20} - 32.3$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.02 \text{ (s, 1H)}, 7.66 \text{ (d, } J = 7.6 \text{ Hz}, 1\text{H}), 7.34 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{H}), 7.17 \text{ (t, } J = 7.2 \text{ Hz}, 10.0 \text{ Hz})$ 1H), 7.09 (t, *J* = 7.2 Hz, 1H), 7.04 (s, 1H), 5.90 (dd, *J* = 17.2, 10.8 Hz, 1H), 5.17 (d, *J* = 18.0 Hz, 1H), 5.13 (d, J = 11.2 Hz, 1H), 4.53 (s, 1H), 4.48 (s, 1H), 3.77 (brs, 1H), 3.14 (brs, 1H), 2.70 (brs, 1H), 1.54 (s, 3H), 1.32 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) & 155.5, 146.6, 145.4, 138.3, 136.6, 130.9, 128.8, 121.7, 119.2, 116.2, 113.2, 111.9, 111.5, 65.6, 49.4, 40.4, 29.7, 27.0, 19.0, 16.5. IR (KBr): v<sub>max</sub> 3428, 2928, 2137, 1454, 1260, 1099, 749 cm<sup>-1</sup>. HRMS (ESI) Calcd. for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub><sup>+</sup> [M + H<sup>+</sup>]: 305.2012, found: 305.2011.


#### (-)-Hapalindole D (3)



To a solution of (-)-25 (30 mg, 69 µmol) in MeOH (6 mL) was added aqueous NaOH (3 M, 2 mL, 6.0 mmol) at room temperature. Then the mixture was allowed to be warmed to 85 °C and kept at the same temperature for 2.5 h. After removal of solvents, the residue was extracted with EtOAc ( $3 \times 5$  mL). The organic phase was washed with brine and dried over MgSO<sub>4</sub>. After filtration and removal of the solvent under vacuum yielded a residue. The residue was then redissolved in DCM (3 mL), and to the solution was added CS(imid)<sub>2</sub> (15 mg, 77 µmol). The reaction mixture was allowed to stir at room temperature for 2 h. After removed the solvents and the residue was purified by flash column chromatography with hexane/dichloromethane (1:1) as an eluent to give (-)-hapalindole D (3) as a white foam (19 mg, 82%).  $R_{\rm f} = 0.52$  (silica gel, hexanes/ethyl acetate = 6:1).  $[\alpha]_{\rm D}^{25}$  -224 (c 3.1 CH<sub>2</sub>Cl<sub>2</sub>) [lit. (+)-hapalindole D,  $[\alpha]_{D}^{25}$  +239 (c 3.1 CH<sub>2</sub>Cl<sub>2</sub>)<sup>6</sup>]. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (s, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 5.87 (dd, J = 17.2, 10.8 Hz, 1H), 5.12 (s, 1H), 5.08 (d, J = 6.4 Hz, 1H), 4.83 (s, 1H), 4.67 (s, 1H), 3.83 (s, 1H), 3.58 (d, J = 12.0 Hz, 1H), 2.88–2.78 (m, 1H), 2.04–1.95 (m, 1H), 1.90–1.76 (m, 2H), 1.64–1.52 (m, 2H), 1.54 (s, 3H), 1.35 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) & 147.4, 145.6, 135.7, 126.5, 123.9, 122.0, 119.4, 117.3, 114.0, 113.0, 112.4, 111.5, 67.9, 44.0, 41.2, 36.7, 29.8, 28.0, 22.0, 18.8. IR (KBr): v<sub>max</sub> 3364, 2978, 2917, 1638, 1457, 1375, 742. HRMS (ESI) Calcd. for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub>S<sup>+</sup> [M + H<sup>+</sup>]: 335.1733, found: 335.1735.

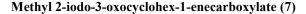

# (F) Total Synthesis of (+)-12-epi-Fischerindole U Isothiocyanate (4).

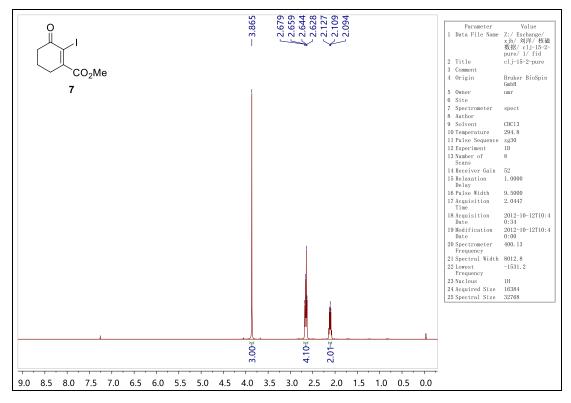
The route for the synthesis of (+)-12-epi-fischerindole U isothiocyanate (4) is outlined below.

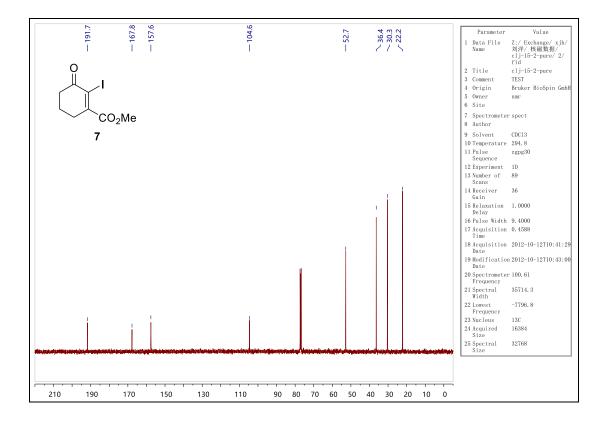


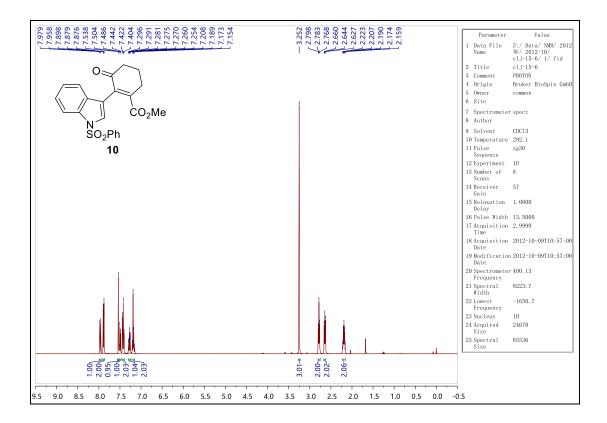
To a solution of (-)-17 (1.0 g, 2.3 mmol) in MeOH (40 mL) was added aqueous NaOH (3 M, 15 mL, 45 mmol) at room temperature. Then the mixture was allowed to be warmed to 85 °C and kept at the same temperature for 6 h. After removal of solvents, the residue was extracted with ethyl acetate ( $3 \times 30$  mL). The organic phase was washed with brine and dried over MgSO<sub>4</sub>. After filtration and removal of the solvent in vacuo the residue was then redissoved in DCM (25 mL), and the solution was cooled to 0  $\,^{\circ}$ C with ice-water bath. After the addition of TMSOTf (3.75 mL, 20.7 mmol) and MeOH (0.1 mL, 2.45 mmol) successively at 0 °C. The obtained reaction mixture was stirred at 0 °C for 2 h. The reaction was then quenched with saturated aqueous NaHCO<sub>3</sub> (100 mL) and diluted with DCM (100 mL). The organic phase was separated and washed with brine and dried over MgSO4. The solvent was removed in vacuo to yield a residue. The residue was purified by flash column chromatography on silica gel column (petroleum ether/ethyl acetate = 6:1) to afford ketone (+)-26 as semi-oil solid (338 mg, 50%).  $R_f = 0.66$ (silica gel, petroleum ether/ethyl acetate = 3:1).  $[\alpha]_{D}^{20}$  +34.1 (*c* 0.58, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (s, 1H), 7.73–7.68 (m, 1H), 7.28–7.24 (m, 2H), 7.10 (m, 2H), 6.06 (dd, J = 17.6, 10.4 Hz, 1H), 5.23 (d, J = 11.6 Hz, 1 H), 5.19 (d, J = 4.4 Hz, 1 H), 4.03 (d, J = 12.0 Hz, 1 H), 2.40–2.27 (m, 2H), 2.03– 1.91 (m, 1H), 1.80 – 1.65 (m, 2H), 1.36 (s, 3H), 1.24 (s, 3H), 1.11 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) 8 210.7, 151.1, 142.9, 139.7, 124.4, 120.9, 120.1, 120.1, 115.1, 113.2, 111.4, 64.6, 52.6, 52.36, 41.2, 40.4, 25.1, 24.1, 22.2, 20.4. IR (KBr): v<sub>max</sub> 3408, 2928, 1705, 1637, 1452, 1296, 920, 744 cm<sup>-1</sup>; HRMS (ESI) Calcd. for  $C_{20}H_{24}NO^+$  [M + H<sup>+</sup>]: 294.1858, found: 294.1857.

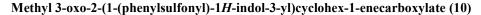
#### (+)-12-epi-Fischerindole U isothiocyanate (4)

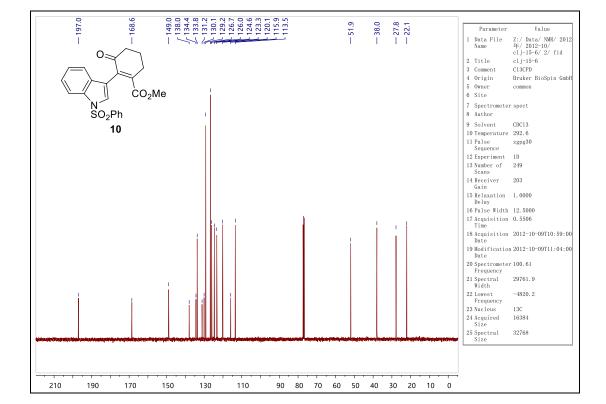


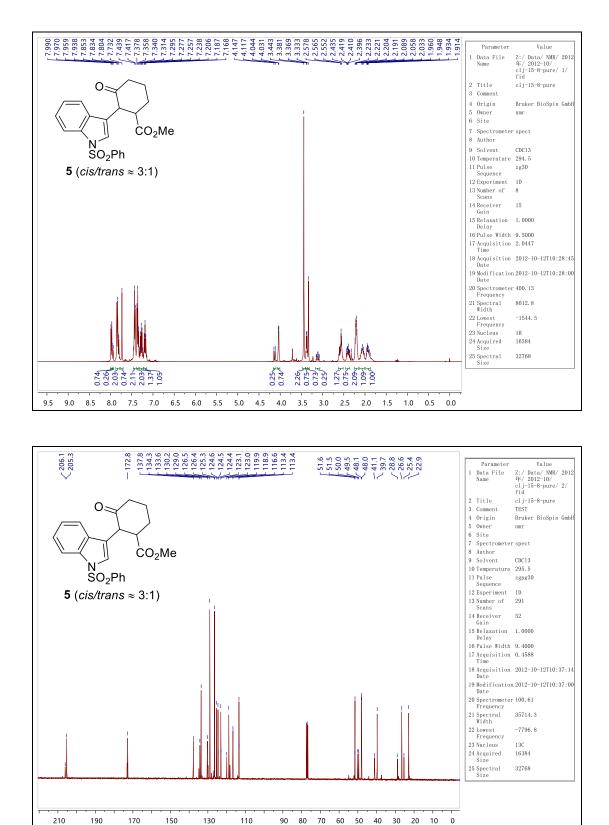


Ketone (+)-26 (100 mg, 0.34 mmol) was added to a solution of ammonium acetate (1.05 g, 13.7 mmol) and NaBH<sub>3</sub>CN (215 mg, 3.4 mmol) in a mixture solvent of MeOH (40 mL) and THF (10 mL). The reaction mixture was allowed to stir at room temperature for 2 d. The reaction mixture was then quenched with aqueous NaHCO<sub>3</sub> and extracted diethyl ether ( $3 \times 20$  mL). The organic layers was washed with brine and dried over MgSO4. After filtration and removal of the solvent in vacuo the residue was purified by flash column chromatography on silica gel column ( $CH_2Cl_2$ /hexane = 40:1) to afford an amine (49 mg, 49%). The amine was then redissolved in DCM (2 mL), and to the solution was added CS(imid)<sub>2</sub>(50 mg, 0.25 mmol). The reaction mixture was allowed to stir at room temperature for 2 h. After removed the solvents and the residue was purified by flash chromatography on silica gel column (hexane/dichloromethane = 1:1) to afford (+)-12-epi-fischerindole U isothiocyanate (4) as a white foam (39 mg, 70%).  $R_f = 0.52$  (silica gel, hexanes/dichloromethane = 1:1).  $[\alpha]_D^{20} + 217$  (c 0.035, CH<sub>2</sub>Cl<sub>2</sub>) [lit:  $[\alpha]_{p}^{20}$  +231 (c 0.035, CH<sub>2</sub>Cl<sub>2</sub>)<sup>12</sup>]. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  8.03 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 6.8 Hz, 1H), 7.12-6.89 (m, 2H), 5.91 (dd, J = 17.6, 11.2 Hz, 1H), 5.22 (d, J = 10.0 Hz, 1H), 5.19 (d, J = 2.4 Hz, 1H), 4.50 (s, 1H), 3.20 (d, J = 10.4 Hz, 1H), 2.23 (t, J = 10.4 Hz, 1H), 2.02–1.89 (m, 1H), 1.71–1.59 (m, 3H), 1.40 (s, 3H), 1.22 (s, 3H), 1.03 (s, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 210.7, 151.1, 142.9, 139.7, 124.4, 120.9, 120.1, 120.1, 115.1, 113.2, 111.4, 64.6, 52.6, 52.4, 41.2, 40.4, 25.1, 24.1, 22.2, 20.4. IR (KBr): v<sub>max</sub> 3389, 2959, 2085, 1638, 1453, 1362, 742 cm<sup>-1</sup>. HRMS (ESI) Calcd. for  $C_{21}H_{25}N_2S^+$  [M + H<sup>+</sup>]: 337.1733, found: 337.1733.


#### **Reference:**


- 1 Sha, C.-K.; Huang, S.-J. Tetrahedron Lett. 1995, 36, 6727.
- 2 Ueda, Y.; Iwahashi, K.; Iguchi, K.; Ito, H. Synthesis 2011, 1532.
- 3 Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498.
- 4 Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498.
- 5 Vaillancourt, V.; Albizati. K. F.; J. Am. Chem. Soc. 1993, 115, 3499.
- Moore, R. E.; Cheuk, C.; Yang, X.-Q. G.; Patterson, G. M. L.; Bonjouklian, R.; Smitka, T. A.; Mynderse, J. S.; Foster, R. S.; Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1987, 52, 1036.
- 7 Tatsuo, K.; Kunio, S.; Seitaro, K. er al J. Med. Chem. 1989, 32, 351.
- 8 Alexander, J. G.; Jon, A. T. J. Am. Chem. Soc. 2011, 133, 14785.
- 9 Robert, K. B.; Jr. Argyrios, A.; Matthew, E. V. J. Am. Chem. Soc. 1989, 111, 2737.
- 10 Phil, S. B.; Jeremy M. R. J. Am. Chem. Soc. 2004, 126, 7450.
- 11 Valerie V.; Kim F. A. J. Am. Chem. Soc. 1993, 115, 3499.
- 12 Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc. 1994, 116, 9935.

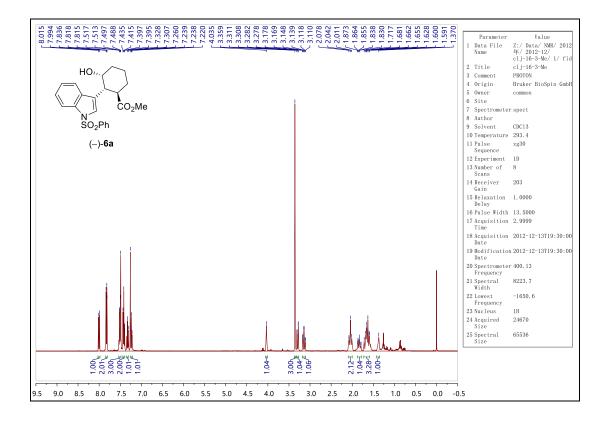

# (G) NMR Spectra of New Compounds

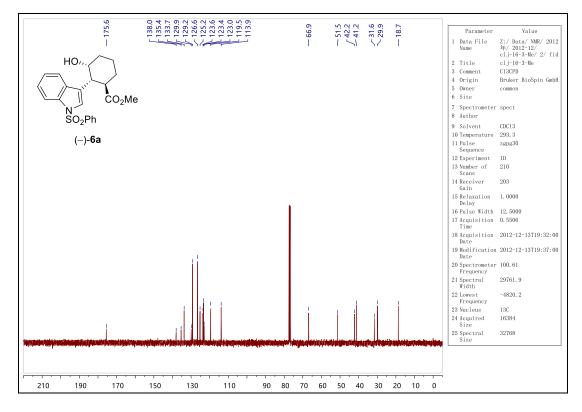


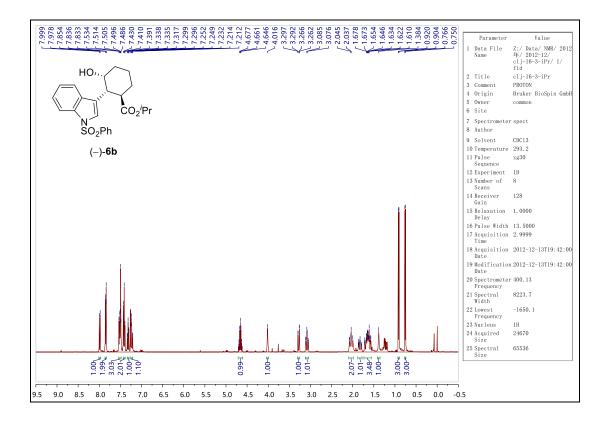


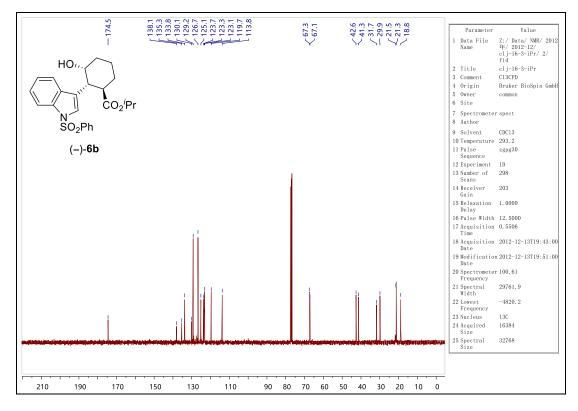


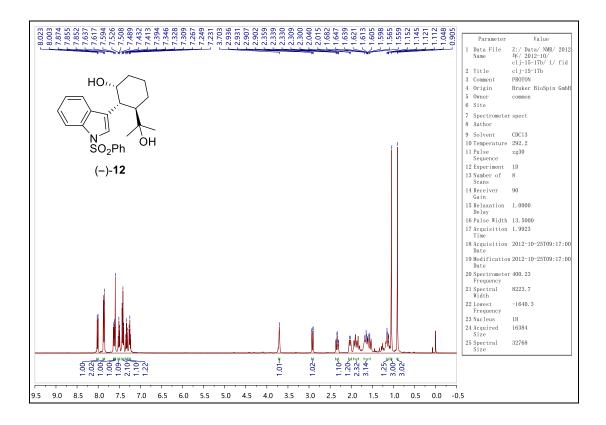



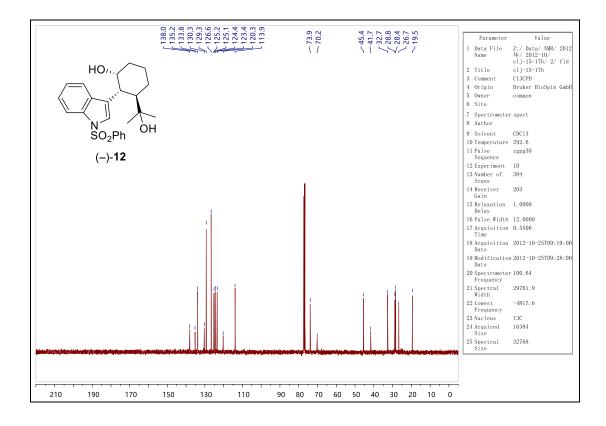




# Methyl 3-oxo-2-(1-(phenylsulfonyl)-1H-indol-3-yl)cyclohexanecarboxylate (5)

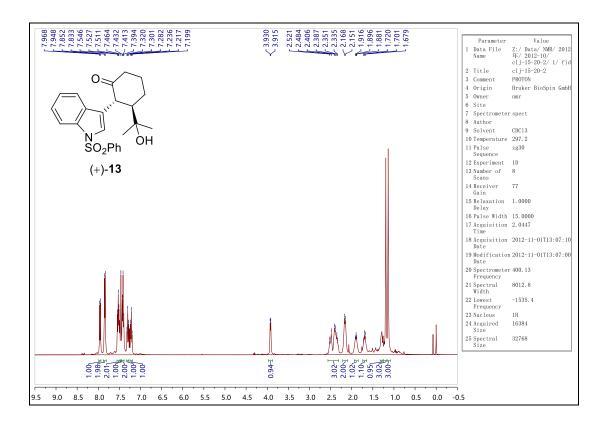

# Alcohol (-)-6a

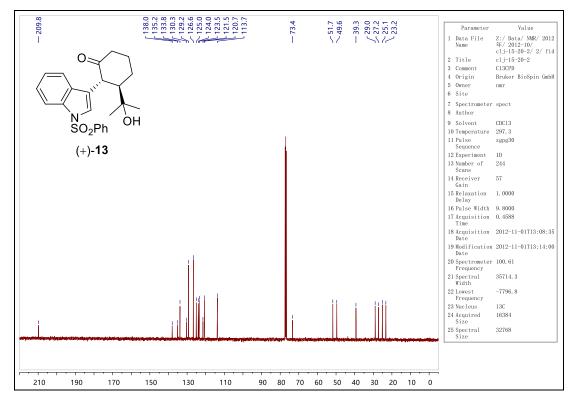




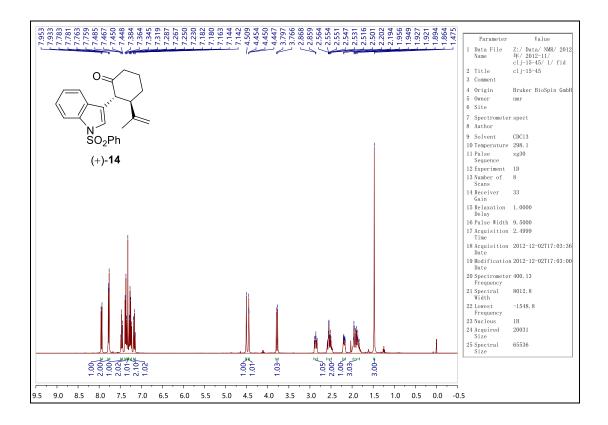


# Alcohol (-)-6b

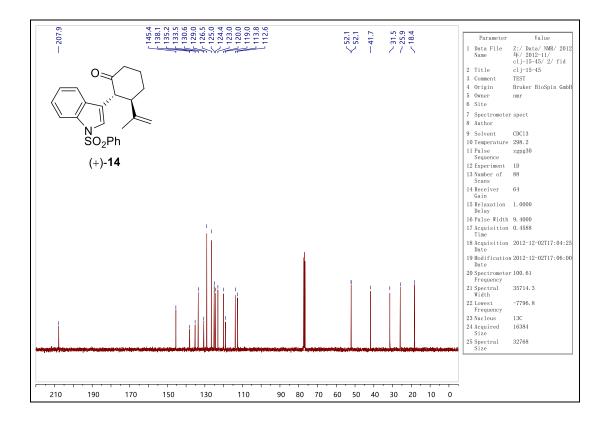




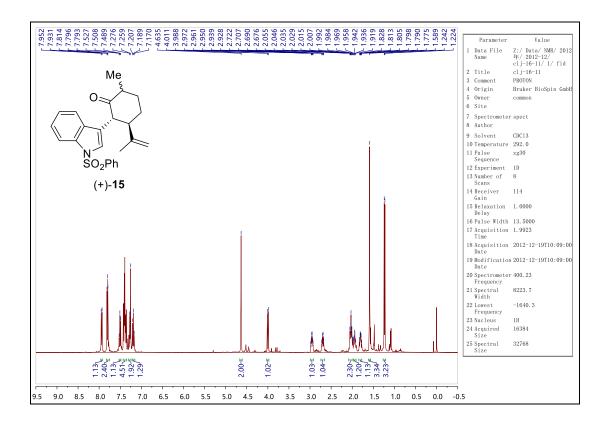


# Alcohol (-)-12

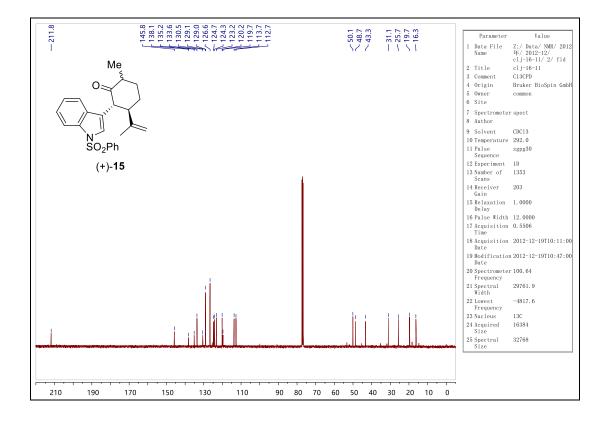




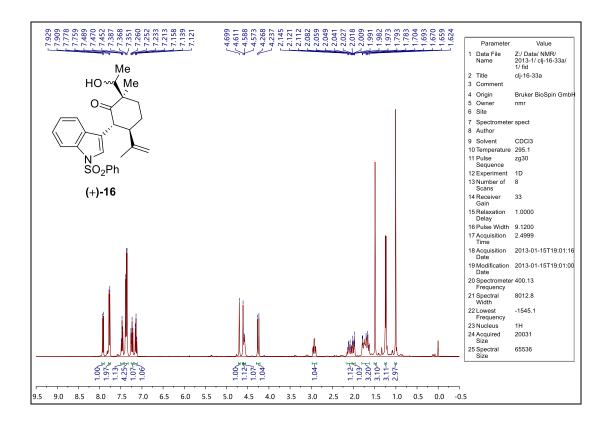


# Ketone (+)-13

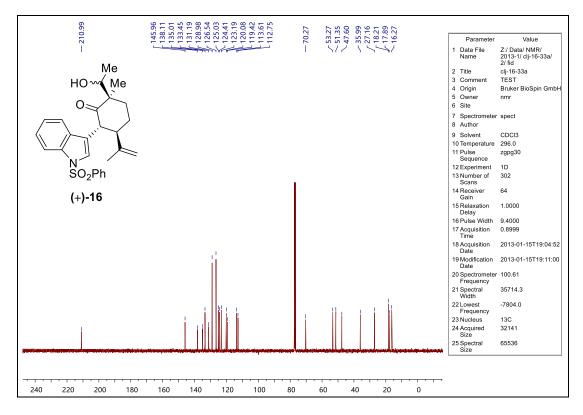




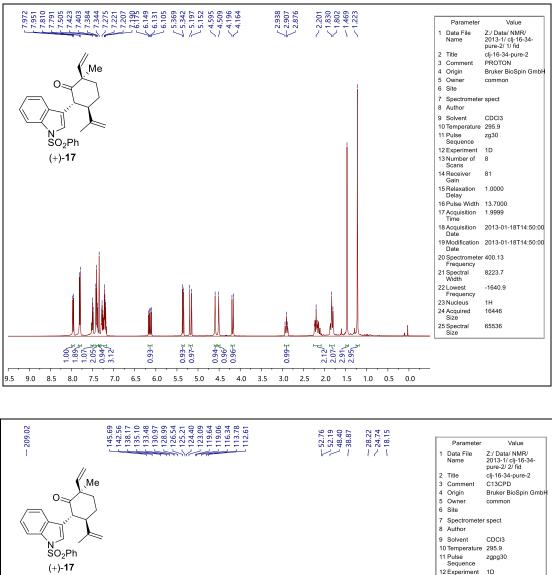


# Ketone (+)-14

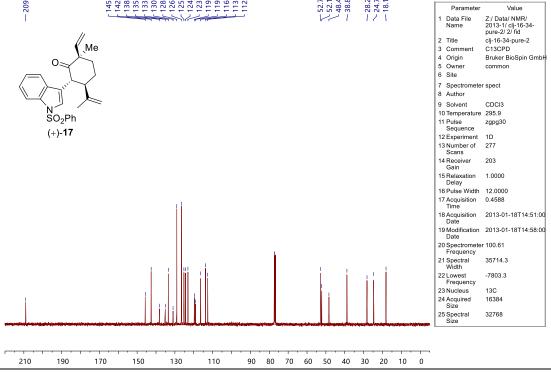




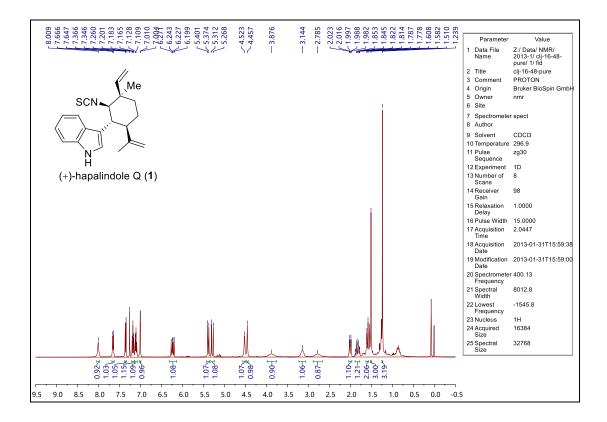


Ketone (+)-15 (containing small isomers)

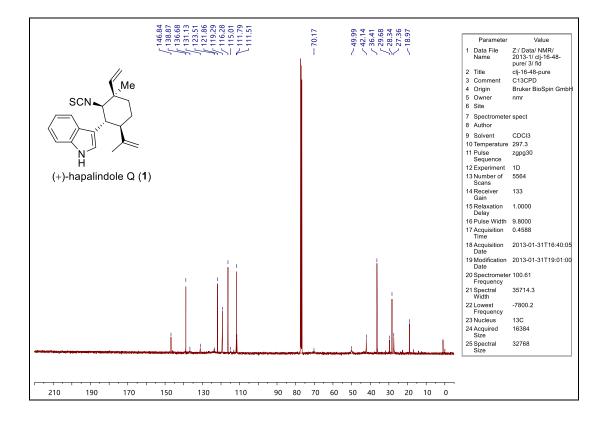




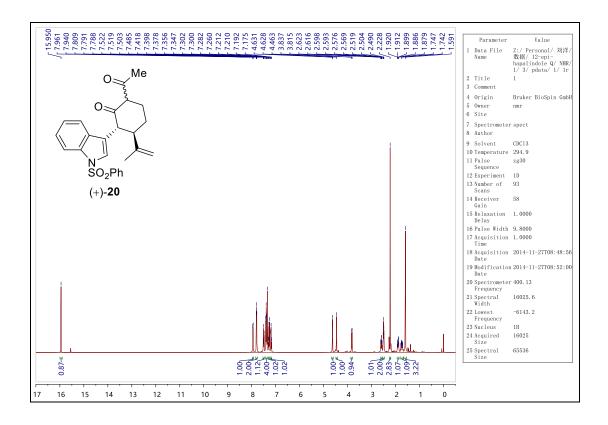


# Alcohol (+)-16

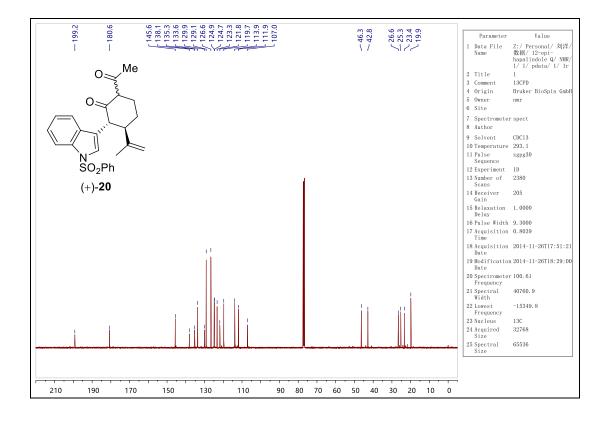




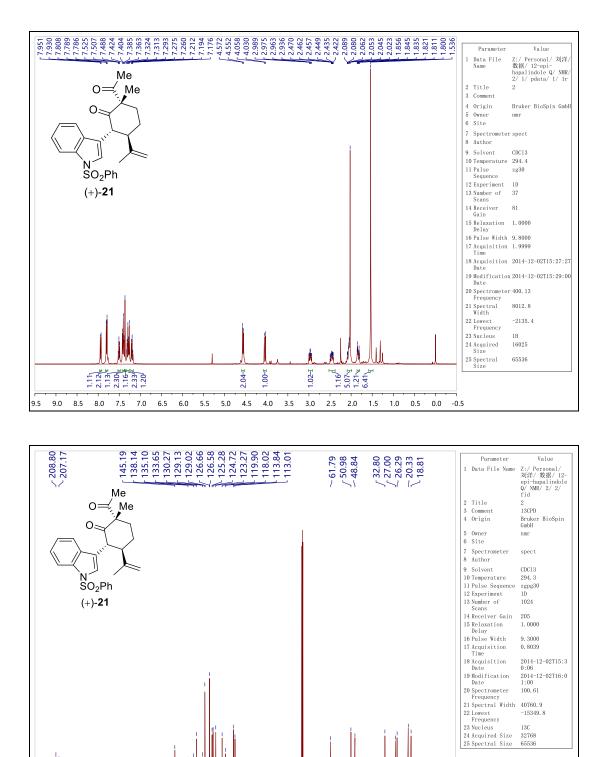


Ketone (+)-17





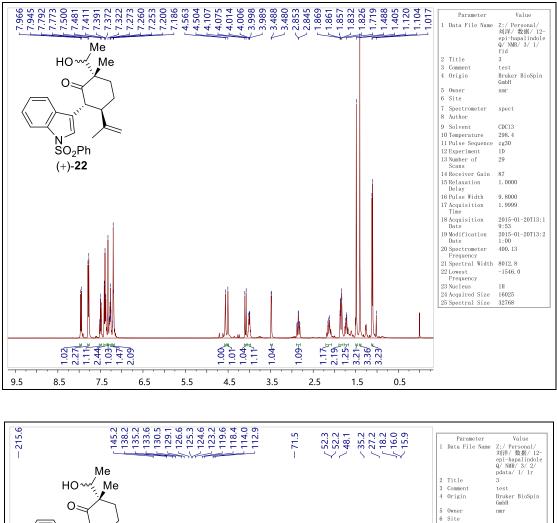


# (+)-Hapalindole Q (1)

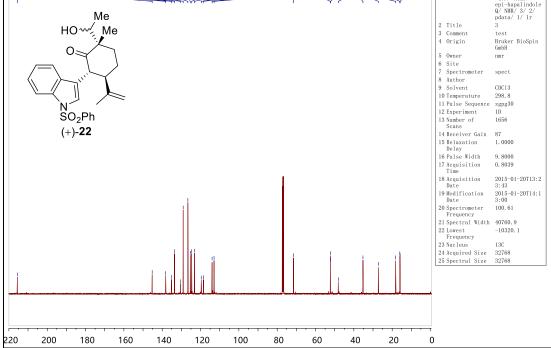




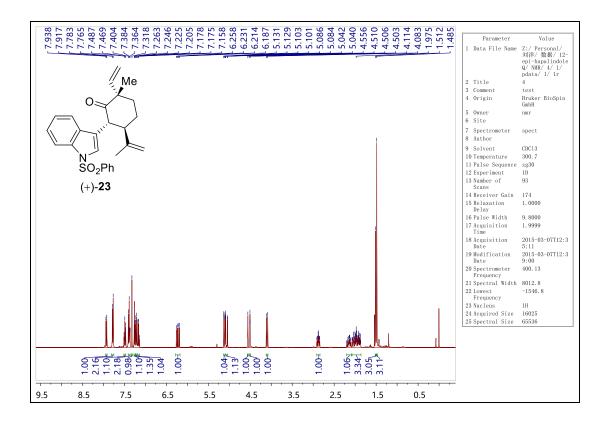

# Diketone (+)-20

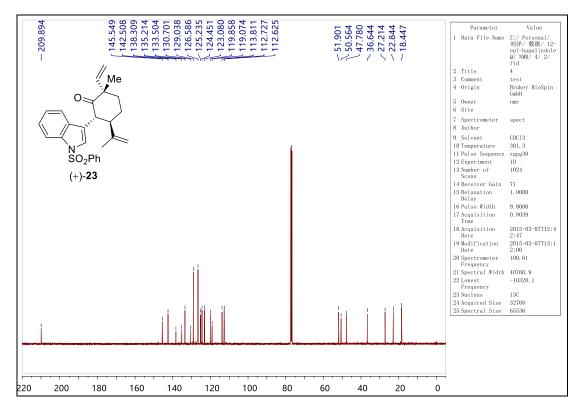




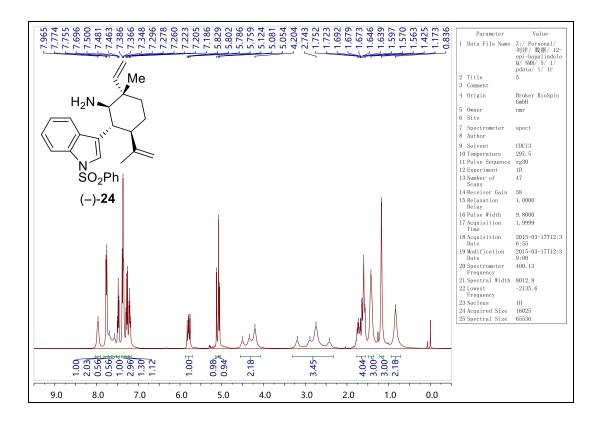


### Diketone (+)-21

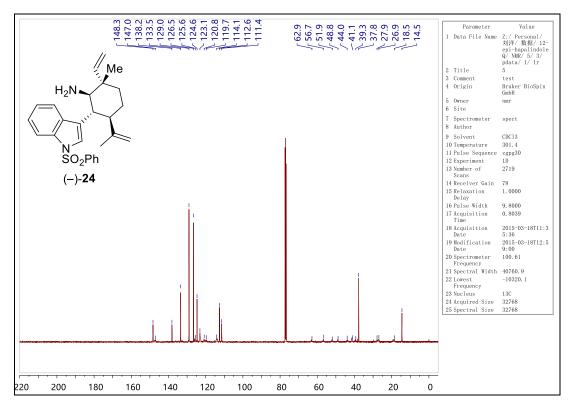



S32

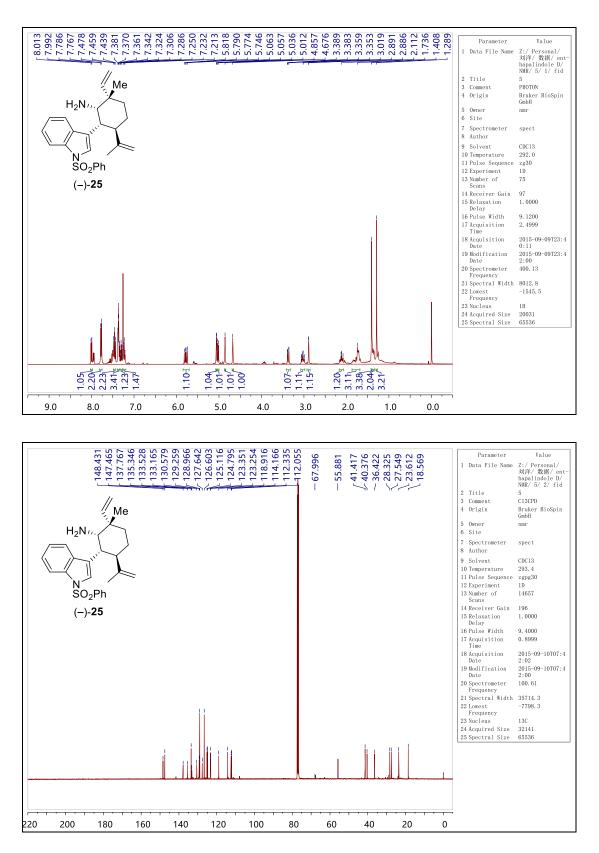

Alcohol (+)-22



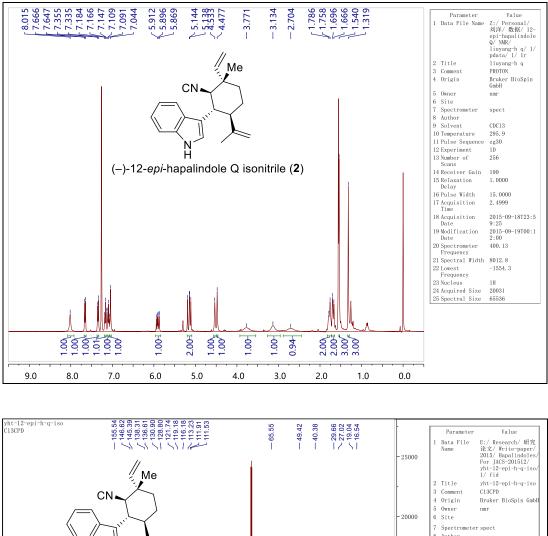


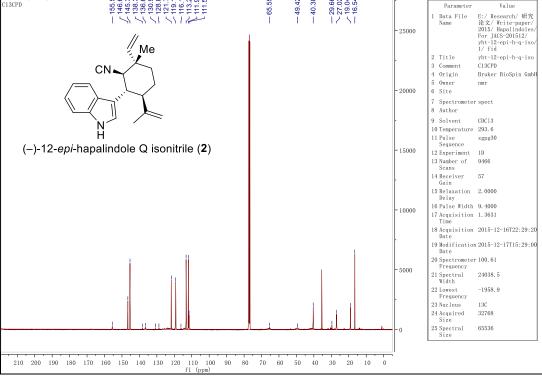


Ketone (+)-23



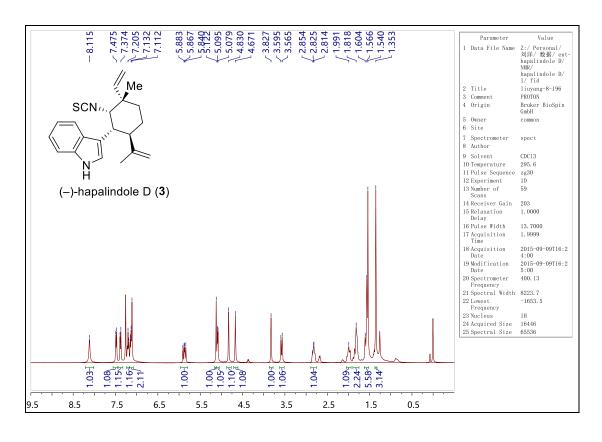


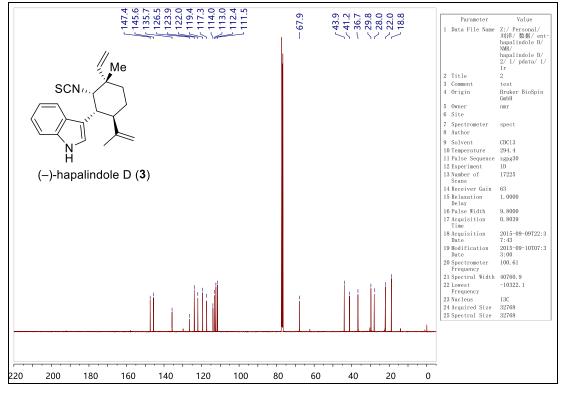


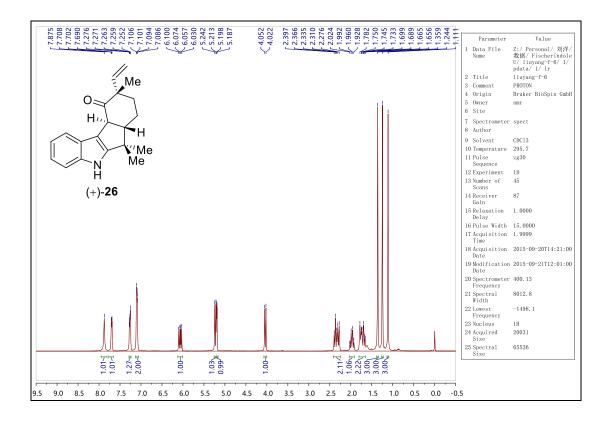



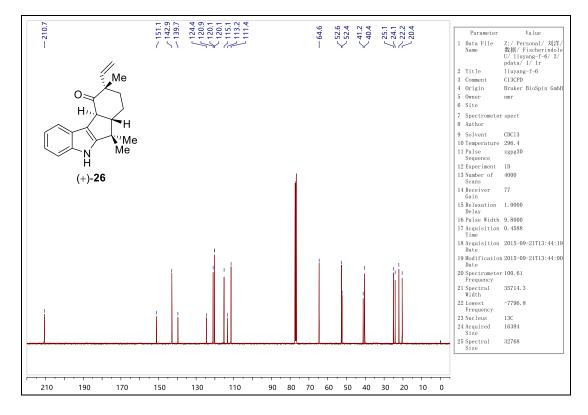

Amine (-)-25



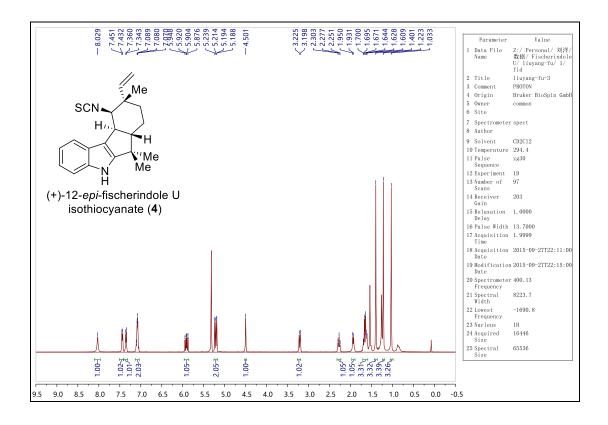


(-)-12-epi-Hapalindole Q isonitrile (2)

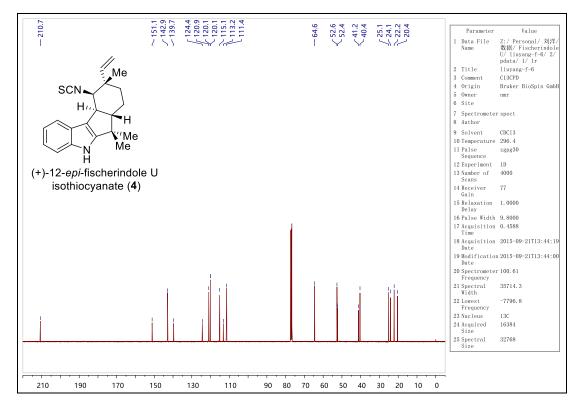






(-)-Hapalindole D (3)

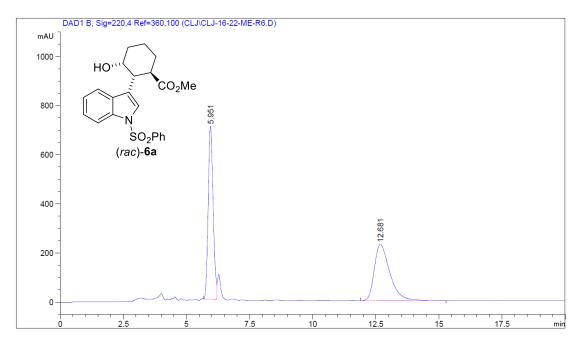


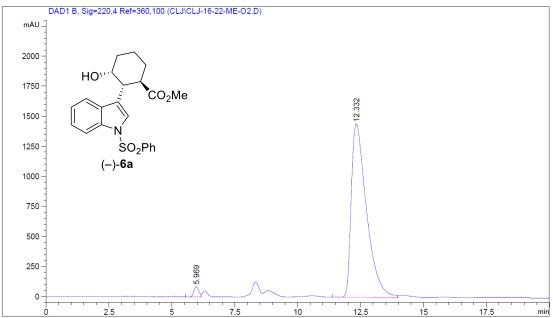




Ketone (+)-26

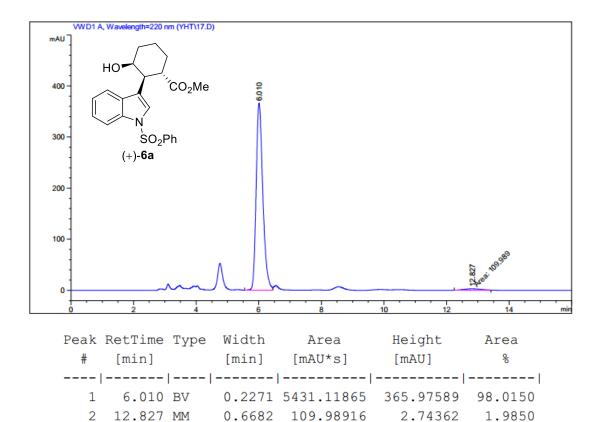




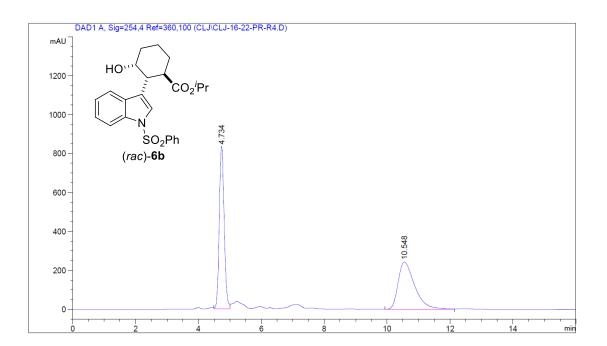

# (+)-12-epi-Fischerindole U isothiocyanate (4)

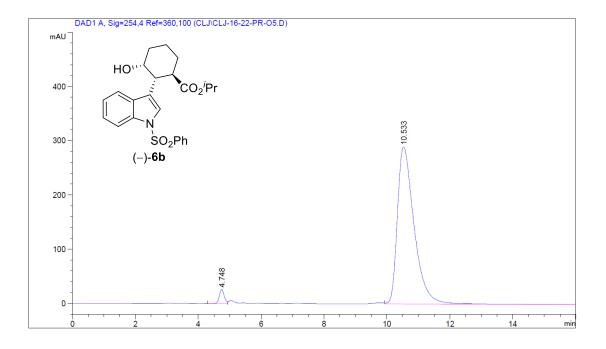




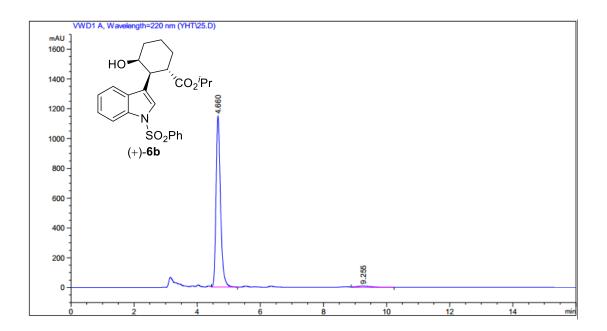


# (H) HPLC Charts of (-)-6

# For (-)- and (+)-6a




| Peak | RetTime | Туре | Width  | Area       | Height     | Area    |
|------|---------|------|--------|------------|------------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]      | 8       |
|      |         |      |        |            |            |         |
| 1    | 5.969   | BV   | 0.2098 | 1150.23303 | 85.04601   | 1.8656  |
| 2    | 12.332  | BV   | 0.6292 | 6.05045e4  | 1442.97424 | 98.1344 |




For (-)- and (+)-6b





| Peak | RetTime | Туре | Width  | Area      | Height    | Area     |
|------|---------|------|--------|-----------|-----------|----------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | <u>0</u> |
|      |         |      |        |           |           |          |
| 1    | 4.748   | BV   | 0.1662 | 279.87994 | 25.87128  | 2.5576   |
| 2    | 10.533  | VBA  | 0.5578 | 1.06633e4 | 289.44092 | 97.4424  |



| Peak | RetTime | Туре | Width  | Area      | Height     | Area    |
|------|---------|------|--------|-----------|------------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]      | 90      |
|      |         |      |        |           |            |         |
| 1    | 4.660   | VB   | 0.1505 | 1.13795e4 | 1149.24915 | 97.5877 |
| 2    | 9.255   | VB   | 0.4624 | 281.29593 | 9.15712    | 2.4123  |