Supporting Information

Well-structured Bimetallic Surface Capable of Molecular Recognition for Chemoselective Nitroarene Hydrogenation

Shinya Furukawa,* Katsuya Takahashi, and Takayuki Komatsu*

Department of Chemistry, Tokyo Institute of Technology, 2-12-1-E1-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Corresponding authors

Shinya Furukawa

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E1-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan E-mail: *furukawa.s.af@m.titech.ac.jp*, Tel: +81-3-5734-2602, Fax: +81-3-5734-2758

Takayuki Komatsu

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E1-

10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

E-mail: komatsu.t.ad@m.titech.ac.jp, Tel: +81-3-5734-3532, Fax: +81-3-5734-2758

compound	space group	plane	γ / Nm ⁻²	$N_{\rm Rh}^{\rm surf}$	selected
RhZn	Pm3m	(100)	2.36(14)	0	
		(110)	1.49	2	1
		(111)	2.17(08)	0	
RhGa	Pm3m	(100)	2.25(69)	0	
		(110)	1.11	2	1
		(111)	1.72(40)	0	
RhIn	Pm3m	(100)	2.15(36)	0	
		(110)	0.92	2	1
		(111)	1.82(24)	0	
RhSn	<i>P</i> 2 ₁ 3	(210)	1.27	2	
		(012)	0.98	3	1
		(211)	1.17	3	
RhPb	P6/mmm	(002)	1.12(14)	4	1
		(201)	0.74	2	
		(211)	0.83	1	
RhBi	P6 ₃ /mmc	(100)	2.94(42)	0	
		(102)	0.80	0	
		(110)	0.75	2	\checkmark
RhPb ₂	I4/mcm	(100)	0.84(03)	2	1
		(001)	0.98(02)	0	
		(211)	0.49	1	

Table S1. Surface energy (γ) and surface Rh–Rh coordination number in the first coordination sphere ($N_{\rm Rh}^{\rm surf}$) for various low index Miller Planes of Rh-based alloys.^{*a*}

^{*a*} Low-index Miller planes with low γ and high $N_{\rm Rh}^{\rm surf}$ were selected as surfaces that were expected to be exposed and active for hydrogenation reactions and CO adsorption. ^{*b*} The number with parenthesis indicates the center value and the range (half width) of γ .

				Vibrational frequency of adsorbed CO /cm ⁻¹			
site	surface		geometry	theoretical <i>a</i>	experimental	experimental	
				(this study)	(this study)	(literature)	
atop	Rh	(111)	(3×3)	2019		20151	
			(2×2)	2032			
			$(\sqrt{3}\times\sqrt{3})R30^{\circ}$	2046		20411	
			c(4×2)-2CO	2053	2057		
			(2×2)-3CO	2066		2070^{1}	
	RhIn	(100)	(2×2)	2010			
		(110)	(2×2)	2006	2002		
		(111)	(2×2)	1994			
	RhZn	(100)	(2×2)	1992			
		(110)	(2×2)	2007	2012		
		(111)	(2×2)	1981			
	RhBi	(100)	(2×2)	1964			
		(102)	(2×2)	1962, 1948			
		(110)	(2×2)	1973	1976		
	RhPb	(002)	(2×2)	1981	1984		
		(201)	(2×1)	1931			
		(211)	(2×1)	1956, 1939			
	RhPb ₂	(100)	(2×2)	1982	1977		
		(001)	(2×1)	1993			
		(211)	(2×1)	1935			
bridge	Rh	(111)	(2×2)	1909	n. d.	1931 ¹	
	RhIn	(110)	(2×2)	1864	n. d.		
fcc hollow	Rh	(111)	(2×2)-3CO	1891	1880	18611	
gas phase				2143		2143 ²	

Table S2. Theoretical and experimental frequencies of CO adsorbed on various Rh-based planes.

a As-calculated values scaled by 1.0386 are reported as theoretical values. The scaling factor was determined as the ratio of the experimental and as-calculated values for gas phase CO.

Figure S1. FT-IR spectra of CO adsorbed on Rh-based catalysts at 25°C. Vertical lines indicate the peak positions for linearly adsorbed CO. Spectra of which peak intensities are lower than 30% of those for saturation coverage are shown.

Figure S2. Reusability of RhIn/SiO₂ catalyst in NS hydrogenation at 75°C. To evaluate validly the change in catalytic performance, the reaction time was set to 1.5 h so that NS conversion at the first run did not saturate.

Figure S3. Dependences of reaction rate on (a) NS concentration and (b) H₂ pressure.

Figure S4. Arrhenius-type plot for NS hydrogenation over RhIn/SiO₂ under 1 atm H₂. The reaction condition was identical to that for Table 1.

 H_2 consumption = 1 × EN + 3 × AS + 4 × EA

Figure S5. H₂ consumption at 0.5 h in NS hydrogenation over various Rh-based catalysts.

Figure S6. Time courses of ST and NB conversion when these substrates were used alone or together over RhZn/SiO₂. The reaction condition was identical to that for Table 1.

Figure S7. Optimized structures of NS adsorbed on Rh and RhIn with monodentate and bidentate ligation of the nitro group. The corresponding adsorption energies (E_{ad}) are also shown.

Figure S8. Optimized structures of NS adsorbed on varisou Rh-based materials.

Figure S9. Bulk-terminated and optimized structures of several Rh-based planes.

Figure S10. (a) XRD patterns of RhIn/SiO₂ with various crystallite sizes. (b) Conversion-selectivity curves obtained in NS hydrogenation using these RhIn/SiO₂ catalysts. The reaction condition is identical to that in the caption of Figure 3. RhIn(4.6) was obtained by annealing of RhIn(3.9) under He flow at 900°C for 1 h. RhIn(11.4) and RhIn(15.6) were prepared using parent Rh/SiO₂ with 6 and 9 nm of crystallite sizes, respectively. These Rh/SiO₂ were prepared without calcination and with reduction at 400°C and 600°C, respectively.

References

- R. Linke, D. Curulla, M. J. P. Hopstaken and J. W. Niemantsverdriet, J. Chem. Phys., 2001, 115, 8209-8216.
- 2. D. Scarano, S. Bordiga, C. Lamberti, G. Spoto, G. Ricchiardi, A. Zecchina and C. O. Arean, *Surf. Sci.*, 1998, **411**, 272-285.