Electronic Supplementary Information (ESI) for

Au-Pd alloy nanoparticles supported on layered double hydroxide for heterogeneously catalyzed aerobic oxidative dehydrogenation of cyclohexanols and cyclohexanones to phenols

Xiongjie Jin, Kento Taniguchi, Kazuya Yamaguchi and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp

<u>Experimental</u> Preparation of catalysts

Au/LDH was prepared as follows. First, Mg–Al LDH (2.0 g) was added to 60 mL aqueous solution of HAuCl₄·4H₂O (8.3 mM). Then the resulting slurry was stirred vigorously at room temperature for 5 min, followed by the addition of 30% ammonia solution (0.15 mL). The slurry was further stirred vigorously at room temperature for 14 h. The solid was then filtered off, washed with water (3 L), and dried in vacuo to afford the supported hydroxide precursor. The hydroxide precursor was redispersed in 50 mL water, and reduced with NaBH₄ (70 mg). Then the resulting slurry was stirred vigorously at room temperature for 2 h. The solid was then filtered off, washed with water (2 L), and dried in vacuo overnight, giving Au/LDH as a purple powder (Au content: 0.205 mmol g⁻¹).

Pd/LDH was prepared as follows. First, Mg–Al LDH (2.0 g) was added to 60 mL aqueous solution of PdCl₂ (8.3 mM) and KCl (2 equiv with respect to PdCl₂, 16.6 mM). Then the resulting slurry was stirred vigorously at room temperature for 5 min. The pH of the solution was quickly adjusted to 10 by addition of an aqueous solution of NaOH (1.0 M), and the resulting slurry was further stirred for 20 h. The solid was then filtered off, washed with water (3 L), and dried in vacuo to afford the supported hydroxide precursor. The hydroxide precursor was redispersed in 50 mL water, and reduced with NaBH₄ (70 mg). Then the resulting slurry was stirred vigorously at room temperature for 2 h. The solid was then filtered off, washed with water (2 L), and dried in vacuo

overnight, giving Pd/LDH as a dark grey powder (Pd content: $0.237 \text{ mmol g}^{-1}$).

Au₉Pd₁/Al₂O₃, Au₉Pd₁/TiO₂, Au₉Pd₁/CeO₂, and Au₄Pd₁/Al₂O₃ were prepared according to the literature procedures.¹⁷ⁱ Au₉Pd₁/MgO was prepared via the same method used to prepare Au₉Pd₁/LDH. The average metal nanoparticle sizes and Au and Pd contents are show in Table S1.

Synthesis of cyclohexanone-2,2,6,6-d₄

Cyclohexanone-2,2,6,6- d_4 was prepared according to the literature procedures.^{S1} Into a pyrex grass reactor (volume: ca. 50 mL), cyclohexanone (9.7 mmol, 0.95 g), Na₂CO₃ (4.8 mmol, 0.51 g), D₂O (12 mL), and a Teflon-coated magnetic stir bar were successively placed, and the mixture was vigorouslly stirred at 120 °C for 18 h. After the reaction, the crude mixture was extracted with Et₂O (20 mL) 3 times. The organic phase was gatherd, and dried with N₂SO₄. Then, evaporation of the solvent gave cyclohexanone-2,2,6,6- d_4 as light yellow oil (97% deuterium labeling at the 2- and 6-positions). ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 1.70–1.75 (m, 2H), 1.84–1.86 (m, 4H).

Additional reference

(S1) Gigant, N.; Bäckvall, J.-E. Chem. Eur. J. 2014, 20, 5890.

Spectral data of phenols and N-substituted anilines

(CAS number: 108-95-2)

phenol: MS (EI): *m*/*z* (%) : 94 (100) [*M*⁺], 66 (17), 65 (13), 55 (4).

(CAS number: 95-48-7)

2-methylphenol: MS (EI): *m/z* (%) : 108 (100) [*M*⁺], 107 (80), 90 (19), 89 (11), 80 (12), 79 (26), 77

(23).

OH Ph

(CAS number: 90-43-7)

2-phenylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 5.26 (s, 1H), 6.97–7.01 (m, 2H),
7.23–7.28 (m, 2H), 7.37–7.41 (m, 1H), 7.45–7.50 (m, 4H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 115.94, 120.96, 128.00, 128.24, 129.22, 129.28, 129.39, 130.37, 137.19, 152.53. MS (EI): *m/z* (%) : 170 (100) [*M*⁺], 169 (66), 142 (13), 141 (36), 139 (12), 115 (30), 89 (8), 77 (4), 63 (6), 51 (4).

(CAS number: 108-39-4)

3-methylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 2.31 (s, 3H), 4.87 (s, 1H), 6.62–6.66 (m, 2H), 6.74–6.76 (m, 1H), 7.11–7.14 (m, 1H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 21.49, 112.40, 116.13, 121.73, 129.56, 139.97, 155.57. MS (EI): *m/z* (%) : 108 (100) [*M*⁺], 107 (87), 90 (10), 80 (10), 79 (25), 77 (21).

(CAS number: 106-44-5)

4-methylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 2.27 (s, 3H), 4.92 (brs, 1H), 6.72–6.74 (m, 2H), 7.02–7.03 (m, 2H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 20.60, 115.22, 130.08, 130.19, 153.38. MS (EI): *m/z* (%) : 108 (90) [*M*⁺], 107 (100), 80 (10), 79 (21), 77 (27), 53 (11), 51 (12).

(CAS number: 123-07-9)

4-ethylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 1.20 (t, *J* = 7.7 Hz, 3H), 2.57 (q, *J* = 7.6 Hz, 2H), 5.00 (brs, 1H), 6.74–6.77 (m, 2H), 7.05–7.07 (m, 2H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 16.01, 28.10, 115.26, 129.03, 136.68, 153.49. MS (EI): *m/z* (%) : 122 (40) [*M*⁺], 107 (100), 77 (14).

(CAS number: 98-54-4)

4-*t***-buthylphenol:** ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 1.28–1.29 (m, 9H), 4.89 (brs, 1H), 6.75–6.78 (m, 2H), 7.24–7.28 (m, 2H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 31.67, 34.21, 114.90, 126.58, 143.68, 153.24. MS (EI): *m/z* (%) : 150 (22) [*M*⁺], 136 (10), 135 (100), 107 (38), 95 (13), 91 (9), 77 (9), 65 (6), 51 (3).

(CAS number: 95-87-4)

2,5-dimethylphenol: MS (EI): *m/z* (%) : 122 (100) [*M*⁺], 121 (36), 107 (90), 91 (16), 79 (15), 77 (22).

(CAS number: 95-65-8)

3,4-dimethylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 2.18 (s, 3H), 2.21 (s, 3H), 4.75 (brs, 1H), 6.57–6.58 (m, 1H), 6.64 (s, 1H), 6.98 (d, *J* = 8.4 Hz, 1H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 18.91, 20.01, 112.44, 116.70, 128.76, 130.61, 138.11, 153.57. MS (EI): *m/z* (%) : 122 (86) [*M*⁺], 121 (42), 107 (100), 91 (12), 77 (18).

(CAS number: 54840-15-2)

4-(*N-t***-butoxycarbonylamino)phenol:** MS (EI): m/z (%) : 209 (20) [M^+], 153 (98), 135 (11), 109

(100), 108 (11), 80 (13), 59 (17), 57 (59).

(CAS number: 103-90-2)

4-acetamidophenol: MS (EI): m/z (%) : 151 (31) [M^+], 109 (100), 108 (14), 81 (19), 80 (28), 53

(17), 52 (12).

(CAS number: 92-69-3)

4-phenylphenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 4.96 (brs, 1H), 6.89–6.92 (m, 2H), 7.29–7.32 (m, 1H), 7.39–7.43 (m, 2H), 7.47–7.49 (m, 2H), 7.53–7.55 (m, 2H). ¹³C{¹H} NMR

(124.5 MHz, CDCl₃, TMS): δ 115.78, 126.86, 128.54, 128.87, 134.16, 140.89, 155.20. MS (EI): *m/z* (%) : 171 (13), 170 (100) [*M*⁺], 141 (25), 115 (18).

(CAS number: 92-88-6)

4,4'-dihydroxybiphenyl: MS (EI): *m/z* (%) : 187 (13), 186 (100) [*M*⁺], 157 (12), 128 (6), 93 (8).

(CAS number: 142256-87-9)

4-(1,4-dioxaspiro[4.5]dec-8-yl)phenol: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 1.66–1.87 (m, 8H), 2.47–2.53 (m, 1H), 3.99 (s, 4H), 5.38 (s, 1H), 6.74–6.77 (m, 2H), 7.08–7.10 (m, 2H). ¹³C {¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 31.84, 35.21, 42.49, 64.35, 64.42, 108.86, 115.25, 128.01, 138.78, 154.01. MS (EI): *m/z* (%) : 234 (11) [*M*⁺], 133 (2), 120 (18), 107 (3), 100 (6), 99 (100), 91 (2), 87 (9), 86 (7), 77 (1), 55 (5).

(CAS number: 120-47-8)

4-(ethoxycarbonyl)phenol: MS (EI): *m/z* (%) : 166 (24) [*M*⁺], 138 (26), 122 (11), 121 (100), 93 (14), 65 (8).

(CAS number: 622-62-8)

4-ethoxyphenol: MS (EI): *m/z* (%) : 138 (59) [*M*⁺], 110 (100), 109 (13), 82 (10), 81 (12).

(CAS number: 56423-47-3)

2-methyl-5-(1-methylethenyl)phenol: MS (EI): *m/z* (%) : 149 (11), 148 (100) [*M*⁺], 147 (15), 133

(43), 108 (29), 107 (14), 105 (22), 91 (10), 77 (13).

(CAS number: 18977-67-8)

4-methyl-N-octylaniline: MS (EI): m/z (%) : 219 (13) [M⁺], 121 (9), 120 (100), 91 (9), 77 (4), 65

(4).

(CAS number: 10386-93-3)

N-cyclohexyl-4-methylaniline: MS (EI): m/z (%) : 189 (39) [M^+], 147 (14), 146 (100), 133 (16),

132 (14), 131 (18), 120 (9), 118 (9), 107 (11), 106 (18), 91 (16), 77 (10), 65 (9), 55 (13).

(CAS number: 5405-15-2)

4-methyl- *N***-benzylaniline:** MS (EI): *m*/*z* (%) : 197 (35) [*M*⁺], 196 (12), 120 (13), 91 (100), 77 (19), 65 (34), 51 (10).

H n-Oct (CAS number: 3007-71-4)

N-octylaniline: ¹H NMR (495.1 MHz, CDCl₃, TMS): δ 0.87–0.89 (m, 3H), 1.27–1.30 (m, 8H), 1.37–1.40 (m, 2H), 1.58–1.63 (m, 2H), 3.07–3.11 (m, 2H), 3.58 (brs, 1H), 6.59–6.60 (m, 2H), 6.59–6.69 (m, 1H), 7.15–7.18 (m, 2H). ¹³C{¹H} NMR (124.5 MHz, CDCl₃, TMS): δ 14.26, 22.80, 27.33, 29.41, 29.56, 29.72, 31.97, 44.13, 112.81, 117.18, 129.34, 148.67. MS (EI): *m/z* (%) : 205 (8) [*M*⁺], 106 (100), 93 (4), 77 (13), 65 (4), 55 (4), 51 (4).

(CAS number: 57154-23-1)

3-methyl-*N***-octylaniline:** MS (EI): *m*/*z* (%) : 219 (10) [*M*⁺], 120 (100), 91 (15), 77 (6), 65 (8), 55

(3).

Ph N-Oct

(CAS number: 1013913-33-1)

N-octyl-(1,1'-biphenyl)-4-amine: MS (EI): m/z (%) : 281 (35) [M^+], 183 (16), 182 (100), 169 (4),

152 (13), 115 (4), 77 (3), 55 (5)

catalyst	Au content	Pd content	average size (nm)	standard deviation (nm)
	$(mmol \cdot g^{-1})$	$(mmol \cdot g^{-1})$		
Au ₉ Pd ₁ /LDH	0.148	0.024	3.2	0.8
Au ₄ Pd ₁ /LDH	0.134	0.051	2.6	0.6
Au ₁ Pd ₁ /LDH	0.091	0.122	2.8	0.7
Au ₁ Pd ₄ /LDH	0.044	0.192	2.8	0.7
Au/LDH	0.205	_	5.3	1.4
Pd/LDH	_	0.237	2.9	0.7
Au_9Pd_1/Al_2O_3	0.180	0.023	4.6	1.6
Au_4Pd_1/Al_2O_3	0.137	0.042	1.7	0.4
Au_9Pd_1/TiO_2	0.159	0.026	3.4	0.8
Au ₉ Pd ₁ /MgO	0.076	0.020	3.4	1.1
Au ₉ Pd ₁ /CeO ₂	0.205	0.022	3.9	1.2

Table S1 Metal contents and average particle sizes of various supported metal nanoparticle catalysts

 $(N = 200. For Au_9Pd_1/LDH, N = 400)$

Table S2 Solvent effect on oxidative dehydrogenation of 4-

methylcyclohexanol (1a) to 4-methylphenol $(2a)^a$

	OH Au ₉ Pd ₁ /LDH slovent (2 mL), 13 air (1 atm), 2.5	0 °C	—ОН +	
			yield (%)	
entry	solvent	conv. (%)	2a	3 a
1	DMA	94	91	2
2	DMF	51	29	15
3	NMP	85	22	23
4	DMSO	<1	nd	nd
5	monochlorobenzene	68	nd	12
6	mesitylene	>99	33	27
aReact	tion conditions: 1a (0.5 mmol),	Au ₉ Pd ₁ /	LDH (total
amoui	nt of metals: 3.6 mol%), solvent (2	mL), 13	0 °C, air (1
atm),	2.5 h. Conversion and	l yields were	e determi	ned by GC
analys	sis. DMF = <i>N</i> , <i>N</i> -dir	nethylforma	mide. N	MP = N-
methy	lpyrrolidone. DMSO =	dimethylsul	foxide.	

 $\label{eq:solution} \textbf{Table S3} \ Dehydrogenative aromatization of 4-methylcyclohexanone$

(3a) to 4-methylphenol (2a) with various catalysts^a

\square	⊂ catalyst	→¯	—он	
38	_/ DMA (2 mL), 130 °C a air (1 atm), 2 h	; 🔽 2a		
entry	catalyst	conv. (%)	yield (%)	Au/Pd ^b
1	Au/LDH	10	2	3.6/0
2	Au ₉ Pd ₁ /LDH	>99	94	3.1/0.5
3	Au ₄ Pd ₁ /LDH	>99	88	2.6/1.0
4	Au ₁ Pd ₁ /LDH	36	13	1.5/2.1
5	Au ₁ Pd ₄ /LDH	23	nd	0.7/2.9
6	Pd/LDH	20	nd	0/3.6
7	Au_9Pd_1/Al_2O_3	7	nd	3.2/0.4
8	Au ₉ Pd ₁ /TiO ₂	37	nd	3.1/0.5
9	Au ₉ Pd ₁ /CeO ₂	24	2	3.2/0.4
10	Au ₉ Pd ₁ /MgO	12	3	2.9/0.7
11	Au_4Pd_1/Al_2O_3	24	4	2.8/0.8
12 ^c	$Au_4Pd_1/Al_2O_3+K_2CO_3$	82	63	2.8/0.8
13 ^d	Au_4Pd_1/Al_2O_3+LDH	37	15	2.8/0.8
14^e	Au/LDH + Pd/LDH	11	nd	3.1/0.5
15^d	$Au_9Pd_1/TiO_2 + LDH$	52	13	3.1/0.5
16 ^f	Au_9Pd_1/LDH	<1	nd	3.1/0.5
17	none	23	nd	_

^{*a*}Reaction conditions: **1a** (0.5 mmol), catalyst (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, air (1 atm), 2 h. Conversion and yields were determined by GC analysis. ^{*b*}Amount of metals (mol%). ^{*c*}K₂CO₃ (0.5 mmol). ^{*d*}LDH (100 mg). ^{*e*}A physical mixture of Au/LDH (3.1 mol%) and Pd/LDH (0.5 mol%). ^{*f*}Ar (1 atm).

Table S4 Effects of TEMPO on dehydrogenative aromatization of cyclohexanone (**3b**) to phenol (**2b**)^{*a*}

0		OH +	0		
3b		26	40		(0/)
entry	catalyst	additive	conv. (%)	yleid	(%)
				2b	4b
1	Au/LDH	_	20	nd	2
2	Au/LDH	TEMPO	32	1	4
3	Au ₉ Pd ₁ /LDH	-	62	49	1
4	Au ₉ Pd ₁ /LDH	TEMPO	>99	92	nd
5	Pd/LDH	_	32	12	3
6	Pd/LDH	TEMPO	35	10	4
7	-	TEMPO	10	nd	nd
8^b	_	TEMPO	4	nd	nd

^{*a*}Reaction conditions: **3b** (0.5 mmol), catalyst (total amount of metals: 3.6 mol%), TEMPO (1 equiv), DMA (2 mL), 130 °C, air (1 atm), 30 min. Conversion and yields were determined by GC analysis. ^{*b*}LDH (105 mg).

Table S5 Effects of TEMPO on disproportionation of 2cyclohexen-1-one $(4b)^a$

010 ter 7	antolitict	odditiyo	00001 IV/V			
entry	catalyst	additive	conv. (%)	2b	3b	
1	Au/LDH	_	27	7	nd	
2	Au/LDH	TEMPO	71	41	nd	
3	Au_9Pd_1/LDH	_	99	62	19	
4	Au_9Pd_1/LDH	TEMPO	99	89	1	
5	Pd/LDH	_	99	42	41	
6	Pd/LDH	TEMPO	>99	67	16	

^{*a*}Reaction conditions: **4b** (0.5 mmol), catalyst (total amount of metals: 3.6 mol%), TEMPO (1 equiv), DMA (2 mL), 130 °C, air (1 atm), 15 min. Conversion and yields were determined by GC analysis.

Fig. S1 XRD patterns of (a) Au/LDH, (b) Au₉Pd₁/LDH, (c) Au₄Pd₁/LDH, (d) Au₁Pd₁/LDH, (e) Au₁Pd₄/LDH, (f) Pd/LDH, and (g) LDH.

Fig. S2 UV-Vis spectra of (a) Au/LDH, (b) Au₉Pd₁/LDH, (c) Au₄Pd₁/LDH, (d) Au₁Pd₁/LDH, (e) Au₁Pd₄/LDH, (f) Pd/LDH, (g) LDH, (h) Au₉Pd₁/Al₂O₃, (i) Au₉Pd₁/TiO₂, (j) Au₉Pd₁/MgO, and (k) Au₉Pd₁/CeO₂.

Fig. S3 XRD patterns of (a) fresh Au₉Pd₁/LDH, and (b) Au₉Pd₁/LDH after 10th reuse experiment.

Fig. S4 TEM images and Au–Pd alloy nanoparticle size distributions of (a) fresh Au₉Pd₁/LDH (average: 3.2 nm, σ : 0.8 nm) and (b) Au₉Pd₁/LDH after the 10th reuse experiment (average: 3.3 nm, σ : 1.2 nm). The size distributions were determined using 400 particles.

Fig. S5 UV-Vis spectra of (a) fresh Au_9Pd_1/LDH , (b) Au_9Pd_1/LDH after 10th reuse experiment, and (c) the difference spectrum between (a) and (b).

Fig. S6 Dehydrogenative aromatization of **3b** with Pd/LDH or Au/LDH. Reaction conditions: **3b** (0.5 mmol), catalyst (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, air (1 atm). GC yields are shown here.

Fig. S7 Disproportionation of **4b** with Pd/LDH or Au/LDH. Reaction conditions: **3b** (0.5 mmol), catalyst (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, air (1 atm). GC yields are shown here.

Fig. S8 Reaction profiles for dehydrogenative aromatization of **3b**. Reaction conditions: (a) **3b** (22.9–478.9 mM), Au₉Pd₁/LDH (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, air (1 atm); (b) **3b** (250 mM), Au₉Pd₁/LDH (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, O₂ (0.1–1 atm). GC yields are shown here.

Scheme S1 Oxidative dehydrogenative aromatization of cyclohexanone-2,2,6,6- d_4 . Reaction conditions: substrate (0.5 mmol), Au₉Pd₁/LDH (total amount of metals: 3.6 mol%), DMA (2 mL), 130 °C, air (1 atm), 60 min. Conversion and yields were determined by GC analysis.