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I. HELLER’S ADIABATIC GAUSSIAN WAVEPACKET DYNAMICS FROM PATH

INTEGRAL APPROACH

Here we re-derive the Thawed Gaussian approximation, originally derived by Heller, [1] based on

a time slicing procedure. This will provide the foundation from which we will extend the derivation

to multiple coupled potential energy surfaces. The wavefunction of the system at time t is given

by the time dependent Schrödinger Equation and the initial wavefunction:

Ψ(x, t) = e−iεH(x)e−iεH(x)...e−iεH(x)e−iεH(x)Ψ(x, 0) . (1)

Here we have defined ε ≡ t
M~ , where M is a large number. For a single time step, we expand to

first order in ε:

Ψ(x, t) = ...
{

1− iεK(x)− iεV (x)
}

Ψ(x, 0) = (2)

...
{

1− iε
(∑

i

−~2

2mi

∂2

∂xi2
+ V (x)

)}
Ψ(x, 0)

≈ ...Ψ(x, ~ε) .

Using similar notation to Heller the initial wavepacket is given by:[1]

Ψ(x, 0) = exp[
i

~
{ γ0 + pT0 (x− x0) + (x− x0)

T α̂0(x− x0)
}

] . (3)

For Equation 2 we have a second derivative term:

∑
i

−~2

2mi

∂2

∂xi2
Ψ(x, 0) =

∑
i

−i~
2mi

∂

∂xi

{
[p0]i + [ α̂0(x− x0)]i + [(x− x0)

T α̂0]i
}

Ψ(x, 0) (4)

=
{
− i~Tr[α̂0m̂

−1] +
1

2
pT0 m̂

−1p0 + pT0 m̂
−1α̂0(x− x0)+

(x− x0)
T α̂0m̂

−1p0 + 2 (x− x0)
T α̂0m̂

−1α̂0(x− x0)
}

Ψ(x, 0) ,
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and terms from the potential expanded to the quadratic term around x0 (as in Ref. 1):

V (x) ≈ V (x0) + V′(x0)
T (x− x0) +

1

2
(x− x0)

T V̂ ′′(x0)(x− x0) . (5)

All terms in Eqs. 4 and 5 are of order ε~. Thus they can be collected and returned to the

exponential form (accurate up to order ε):

Ψ(x, ε~) ≈ exp
[ i
~

{
γ0 + ε~(i~Tr[α̂0m̂

−1] +
1

2
p0m̂

−1p0 − V (x0)) (6)

+
{
p0 − ε~V′(x0)

}T
(x− x0 − ε~m̂−1p0)

+(x− x0 − ε~m̂−1p0)
T
{
α̂0 − ε~

(
2α̂0m̂

−1α̂0 +
V̂ ′′

2

)}
(x− x0 − ε~m̂−1p0)

}
+O(ε2)

]
.

By defining updated Gaussian variables we now have equations of motion which are accurate up

to first order in the time step dt = ε~:

ẋ0 = m̂−1p0 , (7)

ṗ0 = −V′(x0) , (8)

˙̂α0 = −2α̂0m̂
−1α̂0 −

V̂ ′′

2
, (9)

γ̇0 = i~Tr[α̂0m̂
−1] +

1

2
p0m̂

−1p0 − V (x0) . (10)

This result is exactly that of Heller’s multidimensional thawed Gaussian wavepacket dynamics.[1]

II. GENERALIZATION TO MULTI-STATE SYSTEM

We again begin with the time dependent Schrödinger Equation. This time our wavefuncton is

a vector, and the Hamiltonain is a matrix, in electronic state space (defined for a specific geometry

x):

|Ψ(x, t)〉 = e−iεĤ(x)e−iεĤ(x)...e−iεĤ(x)e−iεĤ(x)|Ψ(x, 0)〉 . (11)

The initial wavefunction can undergo a Born-Oppenheimer expansion, where for each x the wave-

function is expanded in a basis of eigenstates of V̂ (x):

|Ψ(x, 0)〉 =
∑
n

|n[x]〉〈n[x]|Ψ(x, 0)〉 . (12)

However, here we will take a different approach. For all x we will expand in the eigenstates of

V̂ (x) at x = x0, where x0 is the center of the Gaussian wavepacket 〈n[x]|Ψ(x, 0)〉:

|Ψ(x, 0)〉 =
∑
n

|n[x0]〉〈n[x0]|Ψ(x, 0)〉 . (13)
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While this choice if formally legal,
∑

n |n[x0]〉〈n[x0]| = 1, it may seem a strange choice. However,

it is fully consistent with the trajectory based branching scheme that will ultimately be used to

solve this system of equations, and gives the correct receipt for “hopping” trajectories’ boundary

conditions. We will consider the wavepacket at time ~ε on state m, which is projected onto the

basis of eigenstates of V̂ (x1), where x1 is the center of the wavepacket at time ~ε. Taking only the

first ε step in Eq. 11, and expanding the exponential to first order in ε we have:

〈m[x1]|Ψ(x, ~ε)〉 ≈
∑
n

〈m[x1]|
{
Î − iεK̂(x)− iεV̂ (x)

}
|n[x0]〉〈n[x0]|Ψ(x, 0)〉 . (14)

Eq. 14 describes the wavepacket at time ~ε on electronic surface m, which has contributions from

wavepackets at time 0 on all surfaces (n). The eigenstate |m[x1]〉 can be projected in the basis of

|χ[x0]〉 eigenstates (up to the first order in ε):

|m〉 =
∑
l

|l〉〈l|m〉 =
∑
l

{
δl,m + 〈l|∇x1m〉 · (x1 − x0)

}
|l〉+ ... (15)

≈ |m〉+ ε~
∑
l

dl,m · m̂−1p0|l〉+O(ε2) .

We have assumed that the difference x1 − x0 is proportional to ~ε and that we have constant

momentum over that time step. p0 is the momentum of 〈n[x0]|Ψ(x, 0)〉. From this point we

will drop the [x0] label and assume, unless otherwise labeled, that our electronic basis states are

eigenstates of V̂ (x0).

If we insert Eq. 15 into Eq. 14:

〈m[x1]|Ψ(x, ~ε)〉 ≈
∑
n

[
〈m|+ ~ε

∑
l

dl,m · m̂−1p0〈l|
]
× (16)

{
1− iε

(
K̂(x) + V̂ (x)

)}
|n〉〈n|Ψ(x, 0)〉 ,

and separate out the term m = n in the sum, keep only terms up to O(ε), we have:

〈m[x1]|Ψ(x, ~ε)〉 ≈ (17)

〈m|
{
Î − iεK̂(x)− iεV̂ (x)

}
|m〉〈m|Ψ(x, 0)〉

− iε
∑
n6=m

[
i~dn,m · m̂−1p0 + 〈m|

{
K̂(x) + V̂ (x)

}
|n〉
]
〈n|Ψ(x, 0)〉 .

Here we have used the fact that dm,m = 0 and |m/n〉 is an eigenstate in order to reduce terms.

We now expand the potential energy matrix operator around x0:

V̂ (x) ≈ V̂ (x0) + V̂′(x0)
T (x− x0) +

1

2
(x− x0)

T V̂
′′
(x0)(x− x0) (18)

=
∑
α,β

{
Vα,β(x0) + V′α,β(x0)

T (x− x0) +
1

2
(x− x0)

TV′′α,β(x0)(x− x0)
}
|α〉〈β| ,
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where the α/β electronic basis set is x0 independent, e.g the atomic orbital basis set in realistic

calculations, or the diabatic basis set in most model problems. Inserting Eq. 18 into 17 leads to:

〈m[x1]|Ψ(x, ~ε)〉 ≈ (19){
1− iε

[∑
i

−~2

2Mi

∂2

∂xi2
+ Em(x0)− Fm(x0)

T (x− x0) + (x− x0)
T H̃m(x0)(x− x0)

]}
〈m|Ψ(x, 0)〉

− iε
∑
n6=m

[
i~dn,m · m̂−1p0 + V′m,n(x0)

T (x− x0) +
1

2
(x− x0)

TV′′m,n(x0)(x− x0)
}]
〈n|Ψ(x, 0)〉 .

Now we consider the form

〈n|Ψ(x, 0)〉 ≡ exp[
i

~
{ γ0 + pT0 (x− x0) + (x− x0)

T α̂0(x− x0)
}

]×Nn . (20)

The first line (m = n case) of Eq. 19 is nearly identical to Eq. 2 with some minor differences.

First, the real weight of the wavepacket (Nn) arises since the initial state need not be pure. Second

while the first expansion term is the force vector 〈m|V̂′(x0)|m〉 = ∂
∂xEm(x)|x=x0 = −Fm(x0) due

to the Hellman Feynman theorem, the second expansion term is not the true Hessian matrix of

the potential energy surface (H̃m(x0) 6= ∂2

∂x2Em(x)|x=x0), because we first expanded in the basis

which is x0 invariant, then rotated into the eigenbasis of V̂ (x0). Thus we have:∑
α,β

〈m|α〉V′′α,β(x0)〈β|m〉 ≡ H̃m(x0) . (21)

Finally there is an additional zeroth order in (x− x0) term, coming from the Km,m(x0).

Km,m(x0)〈m|Ψ(x, 0)〉 = − ~2

2mi

∂2

∂x2i
〈m|Ψ(x, 0)〉 . (22)

Thus this first line tells us that the diagonal term is just Heller’s Thawed Gaussian wavepacket

dynamics, but with the second derivative matrix given by Eq. 21.

Now we turn our attention to the m 6= n terms V′m,n(x0) and V̂
′′
m,n(x0). The first derivative

term is related to the non-adiabatic coupling vectors through the Hellman-Feynman theorem:

V′m,n(x0) = 〈m[x]|V̂′(x)|n[x]〉
∣∣∣
x=x0

= dTn,m[Em(x0)− En(x0)] . (23)

The second derivative is similar to the diagonal case:

V′′m,n(x0) =
∑
α,β

〈m|α〉V′′α,β(x0)〈β|n〉 . (24)

Collecting all the terms, up to O(ε), and defining Dn,m ≡ dTn,mm̂
−1p0 we have:

〈m[x1]|Ψ(x, ~ε)〉 ≈=...+ ~ε
∑
n6=m

Dn,m

[
1 +

i

~
D−1n,m[En(x0)− Em(x0)]d

T
n,m(x− x0) (25)

− i

~
1

2
(x− x0)

TD−1n,mV̂
′′
m,n(x0)(x− x0)

]
〈n|Ψ(x, 0)〉 .
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We can reduce the expression to :

〈m[x1]|Ψ(x, ~ε)〉 ≈ ≡ ...+ ~ε
∑
n 6=m

Dn,m

[
1 +

i

~
∆PT

m,n(x− x0) +
i

~
(x− x0)

T∆α̂m,n(x− x0)
]
.

(26)

The term inside the bracket can be exponentiated (assuming all terms are small):

exp
{ i
~

∆PT
m,n(x− x0) +

i

~
(x− x0)

T∆α̂m,n(x− x0)
}

(27)

≈
[
1 +

i

~
∆PT

m,n(x− x0) +
i

~
(x− x0)

T∆α̂m,n(x− x0)
]
,

where ∆α̂m,n = −1

2

V̂ ′′m,n(x0)

dTn,mm̂
−1p0

,

and ∆Pm,n =
[En(x0)− Em(x0)]

dTn,mm̂
−1p0

dTn,m .

This condition for the shift in momentum on hop is the same as previously derived. It conserves

energy approximately (exactly in infinitely high momentum limit). To ensure that all trajectories

conserve energy exactly for all momenta, we make the approximate transformation dTn,mm̂
−1p0 =

dTn,mm̂
−1{p0 + p1}/2 + dTn,mm̂

−1{p0 − p1}/2 ≈ dTn,mm̂
−1{p0 + p1}/2 × exp

[
dT
n,m{p0−p1}

dT
n,m{p0+p1}

]
. With

this consideration, and assuming dTn,m{p0−p1} << dTn,m{p0 +p1} our final result for the (m 6= n)

case:

〈m[x1]|Ψ(x, ~ε)〉 ≈ ...+
∑
n6=m

1

2
dTn,mm̂

−1{p0 + p1} × exp
[dTn,m{p0 − p1}
dTn,m{p0 + p1}

]
×Nn (28)

× exp[
i

~
{ γ0 + pT1 (x− x0) + (x− x0)

T α̂1(x− x0)
}

] ,

where p1 = p0 +
[En(x0)− Em(x0)]

dTn,mm̂
−1{p0+p1

2 }
dTn,m ,

and α̂1 = α̂0 +
V̂ ′′m,n

dTn,mm̂
−1{p0 + p1}

.

III. WAVEPACKET RECONSTRUCTION

For Coupled Propagation and GWP Consolidation (See Section IV) we need to calculate overlap

of two normalized Gaussians. We seek to define a single Gaussian which closely approximates two

separate but similar Gaussians:

NGe
iγG |G(xG,pG, α̂G)〉 ≈ N1e

iγ1 |g1(x1,p1, α̂1)〉+N2e
iγ2 |g2(x2,p2, α̂2)〉 ≡ |ψ〉 (29)
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where G, g1 and g2 are normalized unphased complex Gaussians. In the limit that the superposition

|ψ〉 is indeed a Gaussian then the mapping is exact:

NG = |〈ψ|ψ〉|
1
2 , (30)

xG =
〈ψ|x|ψ〉
〈ψ|ψ〉

, (31)

pG = −i〈ψ|∂x|ψ〉
〈ψ|ψ〉

, (32)

Im[α̂G] =
1

4

[〈ψ|(x− xG)2|ψ〉
〈ψ|ψ〉

]−1
, (33)

〈ψ|(−i∂x − pG)2|ψ〉
〈ψ|ψ〉

− Im[α̂G] = Re[α̂G] Im[α̂G]−1Re[α̂G] . (34)

Equation 34 can be solved using the Geometric mean for positive definite matrices Im[α̂G] and

〈ψ|(−i∂x−pG)2|ψ〉
〈ψ|ψ〉 − Im[α̂G]:

Re[α̂G] = Im[α̂G]
1
2

[
Im[α̂G]−

1
2 {〈ψ|(−i∂x − pG)2|ψ〉

〈ψ|ψ〉
− Im[α̂G]}Im[α̂G]−

1
2

] 1
2
Im[α̂G]

1
2 . (35)

These expectation values and overlap of a superposition of multivariate Gaussians can be calculated

analytically. Finally the phase can be found by maximizing the overlap of 〈ψ|NGe
iγG |G(xG,pG, α̂G)〉,

under the constraint of Equation 30:

eiγG =
〈G(xG,pG, α̂G)|ψ〉
|〈ψ|G(xG,pG, α̂G)〉|

. (36)

The expectation values of the superposition are given as a sum over combinations of the Gaussians:

〈ψ|O|ψ〉 =
∑
i,j∈1,2

〈gj |O|gi〉NiNjexp[i{γi − γj}] . (37)

Through Equations 31-32 the dynamics of the Coupled GWP depends strongly on the Thawed

Gaussian Approximation, and the particular value of α̂. As the Coupled GWPs separate and the

approximation of Equations 30-36 become less valid, the dependence of Equations 31-32 on α̂ can

lead to unstable dynamics. This is particularly true when the value of Im[α̂] becomes small (a

very wide wavepacket). One valuable feature of the Thawed Gaussian Approximation is that the

dynamics are fully classical, and independent of the phase and width. In the same spirit, here we

seek to add further approximations to the dynamics which will add stability, with minimal sacrifice

of accuracy. We note that typically we will break coupling when |〈g1|g2〉| is much less than unity.

The quantity 〈g1|g2〉 appears in the evaluation of all Equations 30-36.

〈g1|g2〉 = (Det[
2

π
α̂2])

1
4 (Det[

2

π
α̂1])

1
4

∫
dx exp

[
i{(x− x2)α̂2(x− x2)− (x− x1)α̂

∗
1(x− x1)}

]
(38)

× exp
[
i{p1x1 − p2x2}

]
× exp

[
i{p2 − p1}x

]
.
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To stabilize the dynamics we make approximations when finding xG and pG. For high momentum

and close narrow wavepackets:

(Det[
2

π
α̂2])

1
4 (Det[

2

π
α̂1])

1
4 exp

[
i{(x− x2)α̂2(x− x2)− (x− x1)α̂

∗
1(x− x1)}

]
≈ δ(x− [

x1 + x2

2
]) ,

which leads to:

〈g1|g2〉 ≈ exp
[
i{p2 + p1

2
}{x1 − x2}

]
. (39)

Use of Equation 39 leads to:

〈g1|x|g2〉 = −i∂p2〈g1|g2〉+ 〈g1|x1|g2〉 ≈
x1 + x2

2
exp
[
i{p2 + p1

2
}{x1 − x2}

]
, (40)

−i〈g1|∂x|g2〉 = − i
2

[
〈g1|∂xg2〉 − 〈∂xg1|g2〉

]
=

p1 + p2

2
〈g1|g2〉+ α̂2〈g1|x− x2|g2〉+ α̂∗1〈g1|x− x1|g2〉

≈ p1 + p2

2
exp
[
i{p2 + p1

2
}{x1 − x2}

]
. (41)

Equations 40 and 41 are used to in the calculations shown in the main text. In the calculation

of Equation 41 we discard the terms which are proportional to α̂. This is consistent with the

approximation leading to Equation 39, that momentum is high and wave packets are narrow(p1+p2

2 � 1
2{x1 − x2}{α̂2 − α̂∗1}

)
. For the calculation of α̂G the full set of Equations 30-34 are

used, but with the GWPs following the dynamics guided by Equations 40 and 41. Using Equation

39 in the evaluation of NG and γG (Equations 30 and 36) provides similar results to using the full

〈g1|g2〉 calculation for the models considered in the main text.

IV. SUMMARY OF THE ALGORITHM

Initial Propagation:

Step 1 : Initialize Gaussian wavepacket (GWP) with desired parameters, on state m.

Step 2 : Propogate the GWP forward in time using Eq. 5 from the main text.

Step 3 : If outside region of non-adiabatic coupling (NAC) repeat step 2. If GWP reaches a

region of significant NAC, dTn,m
m̂−1{p0+p1}/2
|m̂−1{p0+p1}/2| > Dmin (a user set threshold), then gen-

erate new wavepacket on state n using Eq. 6 from main text and energy conserving

change in momentum. If energy cannot be conserved, generation is not allowed. Estab-

lish a connection between these GWPs on m and n, and begin Coupled Propogation.
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Coupled Propogation:

Step 4 : Propogate all GWP forward in time using Eq. 5 from main text.

Step 5 : Calculate overlap of normalized GWP with it’s connections normalized “hopped” GWP

(with width and momentum shift described above). If the amplitude of the overlap is

greater than an accuracy controlling threshold, Omin, reconstruct new wavepacket as

described in Section III . If the amplitude of the overlap is lower than Omin, elim-

inate connection between these GWPs. Continue with Step 2 for each wavepacket

independently.

Step 6 : If a GWP leaves the region of significant NAC, dTn,m
m̂−1{p0+p1}/2
|m̂−1{p0+p1}/2| < Dmin, eliminate

connection between these GWPs. Continue with Step 2 for each wavepacket indepen-

dently.

End of Propogation:

Step 7 : Once final (or output) time is reached, the wavefunction is given as a sum over the

weighted complex GWPs. Expectation values can be calculated directly from the wave-

function.

Consolidation and Filtering (Optional Consideration):

Periodically, on some predefined number of time step, one could attempt to condense the

trajectories by using the same reconstruction method as used in coupled propagation. Addi-

tionally after such a consolidation step one could discard trajectories which are insignificant

(by real weight).

Step A: Remove connection between all coupled trajectories.

Step B : Loop through PES,

Step C : Find the largest weight GWP on the PES, this GWP is the initial value of the recon-

structed GWP (GWP-New).

Step D : Loop through all available GWPs on the PES. If the normalized GWP has overlap with

the normalized GWP-New is higher than Omin, then add the GWP to GWP-New (by

reconstruction). Continue to update GWP-New until fully looped through the GWP’s.

Repeat Loop until no new GWPs are added to GWP-New.
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Step E : Repeat Step C, until all GWPs have been added to new GWPs.

Step F : Return to Step C for next PES, continuing until all PES are checked.

Step G : Once all new, consolidated GWPs are generated, calculate average weight of GWPs.

For all GWPs, if the weight is less than a threshold percentage of the average weight (

we have used 3%) then discard the GWP from further propagation.

Step H : Procedure (starting from Step B) can be repeated, until no further change in the GWPs

occurs, to attempt further consolidation.

Step I : For all GWPs on different PES: If the overlap of the normalized GWPs is greater than

a threshold, they are re-connected and undergo Coupled Propagation (Step 4), else if

no “partner” is found then the GWP undergoes independent propagation (Step 2).

Monte-Carlo Sampling of many branch GWPs (Optional Consideration):

If a GWP is the result of many branches one expects its contribution to be small, with many

similar GWPs contributing. Thus for branches of higher order than a defined number Bmax,

one may choose to sample the branching by Monte-Carlo rather than explicitly propagating

both branches.

Step 5/6-a: If connection between GWPs is ended, and the GWPs have branched more than Bmax

times, choose one trajectory to propagate by random number generation (Monte Carlo),

based on the weights of the GWP. The propagated GWP will have new weight which

is equal to the sum of the weights of the two GWPs.

Step 5/6-b: New GWPs generated by the Consolidation and Filtering procedure will be considered

as having branched zero times.

Miscellaneous considerations to limit branches (Optional Considerations):

6-M : (Modified Step 6) If GWP leave the region of significant non-adiabatic coupling (NAC),

dTn,m
m̂−1{p0+p1}/2
|m̂−1{p0+p1}/2| < Dmin, eliminate connection in single direction, allowing GWP

which is still inside NAC region to add to the GWP which has left, but not the reverse.

This can help prevent the generation of many small GWPs as the coupled GWPs leave

the region of NAC at slightly different times.

Step CP-M : (Modification to Coupled Propagation) Only check whether to break connection after

GWPs are connected for a finite time (tmin = 10 a.u.). This helps prevent generation
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of many small wave packets in difficult, highly-chaoitc, regions or near edges of NAC

region.

Step 3-M : (Modification to Step 3) One can define a region of significant NAC where the Massey

parameter[2] for each GWP:

ζ0 = |
dTn,mm̂

−1p0

En − Em
| / ζ1 = |

dTm,nm̂
−1p1

Em − En
| > ζmin . (42)

Wwe use ζmin = 1E − 3. One may also limit the NAC region to areas where

dT
n,m{p0−p1}

dT
n,m{p0+p1} < ∆max (we use ∆max = 1.5). When this ratio is large rapidly oscil-

lating phase differences between generated GWPs is expected to cancel out.

Note: With all the optional considerations, there is a threshold parameter (Omin, Dmin, Bmax,

tmin, ζmin,∆max) which can be used to tune accuracy vs efficiency. Convergence with

the thresholds can be checked to determine if the information loss is acceptable.

V. NON-ORTHOGONALITY OF BASIS

During Coupled Propagation, we must take a superposition of two Gaussians which are in

non-orthogonal basis states. For two coupled GWPs, which generate two “hopped” GWPs we

have:

|Ψ〉 = g1|1[x1]〉+ g1,2|2[x1]〉+ g2,1|1[x2]〉+ g2|2[x2]〉 (43)

≈ G1|1[x1]〉+G2|2[x2]〉 .

Here, g1(2) is the GWP initially on PES 1 (2) which stays on PES 1(2), and g1,2(2,1) is the GWP

which is initially on PES 1 (2) and hops to PES 2(1). The GWPs g1,2 and g2,1 must be rotated

from the electronic states |2[x1]〉 and |1[x2]〉 to |2[x2]〉 and |1[x1]〉 respectively. Projection of |2[x1]〉

onto the orthogonal basis |2[x2]〉+ |1[x2]〉 will result in the wavepacket being “duplicated”:

g1,2|2[x1]〉 = g1,2 cosθ |2[x2]〉+ g1,2 sinθ |1[x2]〉 , (44)

and similarly, we have:

g2,1|1[x2]〉 = g2,1 cosθ |1[x1]〉+ g2,1 sinθ |2[x1]〉 . (45)

where cosθ ≡ 〈1[x2]|1[x1]〉 ≡ 〈2[x2]|2[x1]〉 and sinθ ≡ 〈1[x2]|2[x1]〉 ≡ 〈2[x1]|1[x2]〉. This step can

be repeated, and since by definition |sinθ| < 1 the infinite series of rotations will converge. Thus
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Equation 43 can be re-expressed as:

|Ψ〉 = g1|1[x1]〉+ g1,2|2[x1]〉+ g2,1|1[x2]〉+ g2|2[x2]〉 (46)

=
[
g1 +

1

cosθ
g2,1 +

sinθ

cosθ
g1,2

]
|1[x1]〉+

[
g2 +

1

cosθ
g1,2 +

sinθ

cosθ
g2,1

]
|2[x2]〉

≈ G1|1[x1]〉+G2|2[x2]〉 .

Thus, not only does the “hopped” GWP contribute to the reconstructed GWP on the final

surface, but it also has a contribution to the re-constructed GWP on the same surface. However

this contributions is small for shifts in position x1 − x2 in which the Coupled GWP dynamics

works (cosθ ≈ 1) . That is, GWPs should branch before this non-orthogonal basis effect becomes

relevant. In the calculations presented in the paper, inclusion of this effect does not change results

significantly. We present it here for formal completeness, and for possible future importance.
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