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Fig. S1 ESI-mass spectrum (positive ion mode in CH3CN) of [(Tp"»M¢)Fe!(BF)] (1). The bars
indicate the simulated isotope distribution pattern of the complex.
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Fig. S2 Time-dependent '"H NMR (500 MHz, CD;CN, 295 K) spectra during the reaction of 1
with dioxygen. Top: "H NMR spectrum of [(Tp*»M¢)Fel[(OBz)] (2).
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Fig. S3 Time-dependent '"H NMR (500 MHz in CDCl; at 295 K) spectra of the organic products
formed in the reaction of 1 with dioxygen. The peak marked with asterisk (*) is from residual
solvent.
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Fig. S4 '"H NMR spectrum (500 MHz, CDCls, 295 K) of thioanisole-derived products obtained
in the reaction of 1 with O, in the presence of thioanisole (10 equiv) in acetonitrile. The peak
marked with asterisk (*) is from residual solvent.
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Fig. S5 '"H NMR (500 MHz, D,0, 295 K) spectrum of dimethyl sulfoxide formed in the reaction
of 1 with O, in the presence of dimethyl sulfide (10 equiv) in acetonitrile. Peaks marked with (p)
are from tris(1,10-phenanthroline)iron(Il) complex and the peak marked with asterisk (*) is from
residual solvent.
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Fig. S6 'H NMR (500 MHz, D,0, 295 K) spectrum of dimethyl sulfone formed in the reaction of
1 with O, in the presence of dimethyl sulfoxide (10 equiv) in acetonitrile. Peaks marked with (p)
are from tris(1,10-phenanthroline)iron(Il) complex and the peak marked with asterisk (*) is from
residual solvent.
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Fig. S7 GC-mass spectrum of cis-2-heptene oxide formed in the reaction of 1 with cis-2-heptene.
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Fig. S8 GC-mass spectrum of 2-cyclohexenone oxide formed in the reaction of 1 with 2-
cyclohexenone in acetonitrile.
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Fig. S9 GC-mass spectrum of 1-epoxyoctane formed in the reaction of 1 with 1-octene.
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Fig. S10 GC-mass spectrum of cyclooctene oxide formed in the reaction between 1 and
cyclooctene.
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Fig. S11 GC-mass spectrum of cyclohexene oxide formed in the reaction of 1 with cyclohexene.
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Fig. S12 GC-mass spectrum showing the formation of fluorenone in the reaction between 1 and
fluorene in acetonitrile.
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Fig. S13 GC-mass spectrum of anthracene formed in the reaction of 1 with 9,10-
dihydroanthracene in acetonitrile.
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Fig. S14 GC-mass spectra of (a) acetophenone and (b) 1-phenylethanol formed in the reaction of
1 with ethylbenzene (100 equiv) in benzene.
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Fig. S15 GC-mass spectra of (a) 2-adamantanol and (b) 1-adamantanol formed in the reaction of
1 with adamantane (10 equiv) in benzene.
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Fig. S16 Eyring plot for the reaction of 1 with O, in acetonitrile.
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Fig. S17 GC-mass spectra of thioanisole oxide formed in the reaction of 1 with thioanisole in the
presence of (a) 1°0,, (b) 180,, and (¢) '°0, and H,'3O.
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Fig. S18 Percentage of labeled oxygen into styrene oxide obtained in the oxidation of styrene by
complex 1 and O, as a function of the concentration of H,'#0.
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Fig. S19 'H NMR spectrum (500 MHz, CDCls, 295 K) of organic products derived from the
reaction of 1 with phenylacetate (5 equiv) in acetonitrile.
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Fig. S20 GC-mass spectra of the (ester of) mandelic acid formed in the reaction of 1 with
phenylacetic acid in acetonitrile in the presence of (a) °O,, (b) '80,, and (¢) '°O, and H,'#0.
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Fig. S21 'H NMR spectrum (500 MHz, CDCl;, 295 K) of organic products derived from the
reaction of 1 with phenoxyacetic acid (5 equiv) in acetonitrile.
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Fig. S22 GC-mass spectrum of phenol formed in the reaction of 1 with phenoxyacetic acid in
acetonitrile.
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Fig. S23 'H NMR spectrum (500 MHz, CDCls, 295 K) of organic products from the reaction of
1 with 2,4 dichlorophenoxyacetic acid (5 equiv) in acetonitrile.
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Fig. S24 GC-mass spectrum of 2,4-dichlorophenol formed in the reaction between 1 and 2,4-
dichlorophenoxyacetic acid in acetonitrile.
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Fig. S25 GC-mass spectrum of benzaldehyde formed in the reaction between 1 and benzyl
alcohol.
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Fig. S26 'H NMR (500 MHz, CDCls, 295 K) spectrum of 4-nitrobenzaldehyde formed in the
reaction of 1 with O, in the presence of 4-nitrobenzyl alcohol (10 equiv) in acetonitrile. Peaks
marked with (is) are derived from 2,4-di-fert-butylphenol used as an internal standard and the
peak with asterisk (*) is from residual solvent.
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Fig. S27 '"H NMR spectrum (500 MHz, CDCl;, 295 K) of 4-hydroxybenzaldehyde formed in the
reaction of 1 with O, in the presence of 4-hydroxybenzyl alcohol (10 equiv) in acetonitrile. Peaks
marked with (is) are derived from 2,4-di-fert-butylphenol used as an internal standard.
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Fig. S28 'H NMR (500 MHz, CDCl;, 295 K) spectrum of 3-methoxybenzaldehyde formed in the
reaction of 1 with O, in the presence of 3-methoxybenzyl alcohol (10 equiv) in acetonitrile.
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Fig. S29 GC-mass spectrum of phenylacetaldehyde formed in the reaction of 1 with phenethyl
alcohol (20 equiv).
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Fig. S30 '"H NMR (500 MHz, CDCl;, 295 K) spectrum of 1-octanal formed in the reaction of 1
with O, in the presence of n-octanol (10 equiv).
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Fig. S31 GC-mass spectrum of cylohexanone formed in the reaction between 1 and O, in the
presence of cyclohexanol (20 equiv).

—P
HPHO ym

H
HP HC v
HP He
0
[::I%LOH H o
H2 H"
Hr H'

r

m
8 7 6 5 4 3 2 1
5, ppm

Fig. S32 'H NMR (500 MHz, CDCl;, 295 K) spectrum of acetophenone formed in the reaction
of 1 with 10 equiv of 1-phenyl ethanol in acetonitrile.
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Fig. S33 'H NMR (500 MHz, CDCl;, 295 K) spectrum of cinnamaldehyde formed in the
reaction of 1 with O, in the presence of cinnamyl alcohol (10 equiv) in acetonitrile. Peaks
marked with (is) originate from 2,4-di-fert-butylphenol used as an internal standard.
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Fig. S34 GC-mass spectrum of cylobutanone formed in the reaction of 1 with cyclobutanol in
acetonitrile.
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Fig. S35 GC-mass spectrum of 4-nitrobenzaldehyde formed in the reaction of 1 with 80, in the
presence of 4-nitrobenzyl alcohol.
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Fig. S36 Optical spectral changes during the reaction of 1 (1 mM) and benzyl alcohol (10 equiv)
(a) with no added BF, (b) with 1 equiv of HBF+TEA (TEA = triethylamine), (¢) with two equiv
of HBF+TEA, and (d) with three equiv of HBF+TEA in acetonitrile.
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Fig. S37 Dependence of TON on the amount of HBF+TEA (1:1). Reaction conditions: 0.02
mmol catalyst (complex 1) and 1 mmol (50 equiv) para-nitrobenzyl alcohol in acetonitrile for 8
h at 25 °C. TON for the formation of p-nitrobenzaldehyde from p-nitrobenzyl alcohol (black)
and TON for the formation of benzoic acid from benzoylformate (red).
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Fig. S38 Dependence of TON on the amount of HBF+TEA. Reaction conditions: 0.02 mmol
catalyst (complex 1) and 1 mmol (50 equiv) para-methyl thioanisole in acetonitrile for 8 h at 25
°C. TON for the formation of p-methyl thioanisole oxide from p-methyl thioanisole (red) and
TON for the formation of benzoic acid from benzoylformate (black).
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Fig. S39 ESI-mass spectrum (positive ion mode in CH;CN-CH,Cl,) of the oxidized solution of 1
after catalytic reaction.
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Scheme S1 Synthesis of iron(II)-benzoate complex 2.
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Scheme S2 Reaction of 1 with different hydrocarbons.

Table S1 Selected bond lengths (A) and bond angles (°) for [(TpPMe)Fel(BF)] (1) and
[(Tp™?)Fe!(BF)].

[(Tp*Me)Fel(BF)] | [(Tp®*?)Fe'(BF)]

Fel-N2 [N4] 2.083 (2) 2.068(5)
Fel-N4 [N2] 2.209 (2) 2.188(5)
Fel-N6 [N6] 2.065 (2) 2.086(5)
Fel-02 [O1] 1.957(2) 1.968(4)
Fel-03 [02] 2.262(2) 2.206(5)
[N4] N2-Fel-02 [O1] 124.95(8) 132.6(2)
[N6] N6—Fel-N2 [N4] 92.41(8) 91.1(2)
[N2] N4-Fel-03 [02] 172.98(7) 171.7(2)
[N2] N4-Fel-02 [O1] 109.26(7) 110.1(2)
[N6] N6—Fel-N4 [N2] 86.13(7) 89.0(2)
[N2] N4-Fel-N2 [N4] 89.50(7) 86.4(2)
[N4] N2-Fel-03 [02] 92.32(7) 85.7(2)
[01] 02—Fel-03 [02] 75.13(6) 77.3(2)
[N6] N6-Fel-02 [O1] 138.42(9) 131.5(2)
[N6] N6-Fel-03 [02] 87.02(6) 88.5(2)

The atoms in the parentheses indicate the numbering of the atoms in [(Tp*"?)Fe(BF)] (M. P.
Mehn, K. Fujisawa, E. L. Hegg and L. Que, Jr., J. Am. Chem. Soc., 2003, 125, 7828-7842) with
the same geometry as 1.
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Table S2 Selected bond lengths (A) and bond angles (°) for [(Tp"™Me)Fell(OBz)] (2P7H).

Fel-N2 2.1412(13) Fel-O1 2.0047(12)
Fel-N4 2.1179 (13) Fel-N8 2.1430(13)
Fel-N6 2.1788 (13) C1-01 1.243(2)
C1-C2 1.522(2) C1-02 1.2554(19)

N4—Fel-O1 109.31(5) N8—Fel-N6 168.97 (5)

N4—Fel-N2 94.42(5) N8—Fel-Ol 97.90(5)

N4—Fel-N6 89.19(5) N8—Fel-N2 89.58(5)

N4—Fel-N8 96.22(5) N6-Fel-Ol 89.30(5)

N2-Fel-O1 154.04(5) N6-Fel-N2 80.41(5)
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