Supporting Information

A covalent organic framework-based route to in-situ encapsulation of metal nanoparticles in N-rich hollow carbon spheres

Liyu Chen,^a Lei Zhang,^a Zhijie Chen,^a Hongli Liu,^a Rafael Luque,^{*b} and Yingwei Li^{*a}

^a Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
^b Departamento de Química Orgánica, Universidad de Córdoba, Edif. Marie Curie, Ctra Nnal IV-A, Km 396, E14014, Córdoba (Spain)
* Corresponding authors. Email: liyw@scut.edu.cn, q62alsor@uco.es

Experimental

1. Catalysts preparation

All chemicals were purchased from commercial sources and used without further treatments.

1.1 Synthesis of LZU1

1,3,5-triformylbenzene (48 mg) and 1,4-diaminobenzene (48 mg) were dissolved in 3 mL of 1,4-dioxane. The mixture was then transferred into a 25 mL tube. After adding 0.6 mL of 3.0 mol/L aqueous acetic acid, the mixture was flash frozen using a liquid-nitrogen bath. The tube was then sealed after degassing for 15 min. Upon warming to room temperature, the tube was heated at 120 °C for 3 days. The produced products were isolated by centrifugation, washed with DMF (30 mL \times 3), THF (30 mL \times 3), and dichloromethane (30 mL \times 3) successively. The obtained solids were dried under vacuum at 100 °C for 10 h.

1.2 Synthesis of Pd^{II}-LUZ1

LZU1 (80 mg) and palladium acetate (3.1 mg) were dispersed in 10 mL dichloromethane in a 25 mL flask. Then the mixture was kept stirring for 24 h at room temperature. The products were collected via centrifugation, washed with dichloromethane (3 x 20 mL). Finally, the sample was dried in air at room temperature for 1 h.

1.3 Synthesis of Pd@NHCS

The prepared Pd^{II}-LUZ1 was carbonized at different temperatures under argon atmosphere (constant flow at 40 mL min⁻¹) in a tubular furnace. The temperature was

first heated to 150 °C at a heating rate of 1 °C min⁻¹ and was held at this temperature for 2 h. The temperature was then raised to a particular value at a rate of 1 °C min⁻¹ and was maintained at the final temperature for 3 h. The prepared catalyst was denoted as Pd@NHCS(X), where X indicated the pyrolysis temperature.

1.4 Synthesis of Pd/N-C(500)

The N-C support was synthesized by direct pyrolysis of ZIF-67, followed by removing the Co component in aqua regia for 24 h. Next, the N-C support was isolated by centrifugation and washed several times with deionized water and absolute ethanol before drying under vacuum at 150 °C overnight. Pd/N-C(500) was obtained by impregnating N-C (100 mg) with palladium acetate (8.4 mg) in dichloromethane (10 mL). The solid was treated at 500 °C under argon atmosphere following the same procedures for the preparation of Pd@NHCS(500).

1.5 Synthesis of Pd/C(500)

Pd/C(500) was obtained following the same procedures as for Pd/N-C(500) except using activated carbon as support.

2. Catalyst characterization and catalytic reactions

2.1 Characterization

The BET surface area measurements were performed with N₂ adsorption isotherms at 77 K on a Micromeritics ASAP 2020M instrument. Before the analysis, the samples were evacuated at 100 °C for 2 h. Powder X-ray diffraction patterns of the samples were recorded on a Rigaku diffractormeter (D/MAX-IIIA, 3 kW) employing Cu K α radiation ($\lambda = 0.1543$ nm) at 40 kV, 40 mA at room temperature. TGA of Pd^{II}- LZU1 was performed on a NETZSCH STA449C under argon atmosphere. X-ray photoelectron spectroscopy (XPS) measurements were performed on on a Kratos Axis Ultra DLD system with a base pressure of 10⁻⁹ Torr. The size and morphology of samples were investigated by using a transmission electron microscope (JEM-2100F) with EDX analysis (XFlash 5030T) operated at 200 kV. The palladium contents of the samples were determined quantitatively by atomic absorption spectroscopy (AAS) on a HITACHI Z-2300 instrument.

2.2 Catalytic reactions

Typical procedures for hydrogenation of nitrobenzene: Nitrobenzene (0.1 mmol) and 1 mol% Pd catalyst (4.4 mg, 5.1 mg and 5.3 mg for Pd@NHCS(500), Pd/C-N(500) and Pd/C(500), respectively) were added to 2 mL of ethanol. The reaction mixture was stirred at room temperature under 1 atm hydrogen atmosphere. Upon reaction completion, the catalyst particles were removed from the solution by filtration and washed with ethanol. The liquid phase was subsequently analyzed by GC/MS (Agilent Technologies 7890B-5977A equipped with a 0.25 mm \times 30 m HP-5MS capillary column).

For the recyclability tests, nitrobenzene (0.1 mmol) and recovered catalyst (4.4 mg) were added to 2 mL of ethanol. The reaction mixture was stirred at room temperature under 1 atm hydrogen atmosphere. Each time, the catalyst was isolated from the reaction solution at the end of the reaction, washed with ethanol, and then dried at 150 °C under vacuum.

Typical procedures for aerobic oxidation of cinnamyl alcohol: cinnamyl alcohol

(0.1 mmol) and 1 mol% Pd catalyst (4.4 mg, 5.1 mg and 5.3 mg for Pd@NHCS(500), Pd/C-N(500) and Pd/C(500), respectively) were added to 2 mL of toluene. The reaction mixture was stirred at 80 °C under air atmosphere. Upon reaction completion, the catalyst particles were removed from the solution by filtration and washed with toluene. The liquid phase was subsequently analyzed by GC/MS (Agilent Technologies 7890B-5977A equipped with a 0.25 mm \times 30 m HP-5MS capillary column).

2.3 In Situ ATR-IR Spectroscopy

ATR-IR spectra were recorded on a Thermo Fisher iS10 equipped with a liquid nitrogen cooled MCT detector. The spectra were obtained by averaging 32 scans at a resolution of 1 cm⁻¹. The thin film of catalyst powder deposited on the ZnSe element for ATR-IR spectroscopic study was prepared as follow. A suspension of ca. 50 mg of catalyst powder in 2 mL of chloroform was placed in an ultrasonic bath for 1 h in order to obtain a uniform suspension. A thin layer of solution was spread onto a ZnSe internal reflection element (IRE) and dried out at room temperature. This procedure was repeated six times, subsequently the sample was dried in a vacuum oven for a complete evaporation of methanol.

Figure S1. FESEM images of Pd^{II}-LUZ1 (a), and Pd@NHCS(500) (b).

Figure S2. XPS spectrum of the Pd 3d region for Pd^{II}-LUZ1.

Figure S3. DFSTEM image of Pd@NHCS(500) (a) and the corresponding size

distribution of Pd NPs (b).

Figue S4. (a) FESEM image of Pd@NHCS(600). (b) TEM image of Pd@NHCS(600) and the corresponding size distribution of Pd NPs (inset).

Figure S5. TEM images of Pd/N-C(500) (a) and Pd/C(500) (b). Insets in (a) and (b) show the particle size distributions of Pd NPs.

Figure S6. XPS spectra of the Pd 3d region for Pd@NHCS(500) and Pd/C(500).

Figure S7. ATR-IR difference spectra of N₂-saturated ethanol solutions on (a) Pd@NHCS(500) (spectrum of the NHCS(500) film was subtracted), and (b) Pd/C(500) (spectrum of the Pd/C(500) film was subtracted).

Figure S8. ATR-IR spectra of Pd@NHCS(500) and Pd/C(500).

Figure S9. TEM image of 3.6% Pd/N-C(500) (a) and 5.0% Pd/N-C(500) (b). Insets in

(a) and (b) show the particle size distributions of Pd NPs.

Figure S10. TEM image of Pd@NHCS(500) after being reused for five times.

0 1	C content ^[a]	H content ^[a]	Pd content ^[b]	N content ^a
Sample	(wt%)	(wt%)	(wt%)	(wt%)
LZU1	81.0	5.0		14.0
Pd@C-N-500	71.8	3.1	2.4	11.0
Pd@C-N-600	69.7	2.7	3.6	8.6

Table S1. Characterization results of the materials.

[a] Measured by elemental analysis.

[b] Measured by AAS.

Table S2. Surface areas and pore volumes of the Pd@NHCS(500) andPd@NHCS(600).

Sample	$S_{BET}\left[m^2 g^{-1}\right]$	$S_{Langmuir} [m^2 g^{-1}]$	$V_{pore} \left[cm^3 g^{-1} \right]$
Pd@NHCS(500)	468	597	0.19
Pd@NHCS(600)	527	669	0.24

	NO ₂ Catalysts Ethanol	_NO + [B C	N	+	H N	+	N
Entry Catalyst	Catalyst	Time	Conversion	Selectivity [%] ^b				
	Catalyst	[min]	$[\%]^b$	А	В	С	D	Е
1	Pd@NHCS(500)	50	>99	0.3	88.0	3.5	8.2	
2	Pd@NHCS(600)	100	>99	1.0	88.0	0.2	10.8	
3	Pd/N-C(500)	120	>99	0.4	88.0	4.1	7.5	
4	Pd/C(500)	120	89	1.8	12.0	6.2	68.6	11.4

Table S3. Results of hydrogenation of nitrobenzene.^a

^{*a*} Reaction condition: nitrobenzene (0.1 mmol), Pd catalyst (1 mol% Pd), ethanol (2 mL), 1 atm H₂, 25 °C. ^{*b*} The conversion and selectivity was determined by GC-MS analysis.

Table S4. Results of oxidation of cinnamyl alcohol.^a

Entry	Catalyst	Time (h)	Yield $(\%)^b$
1	Pd@NHCS(500)	10	>99
2	Pd/C-N(500)	10	60
3	Pd/C(500)	10	24

^a Reaction condition: cinnamyl alcohol (0.1 mmol), Pd catalyst (Pd 1 mol%), toluene

(2 ml), 80 °C, under air. ^b The yield was determined by GC-MS analysis.

Appendix The MS spectra for the products listed in Figure 4 and Tables S3.

