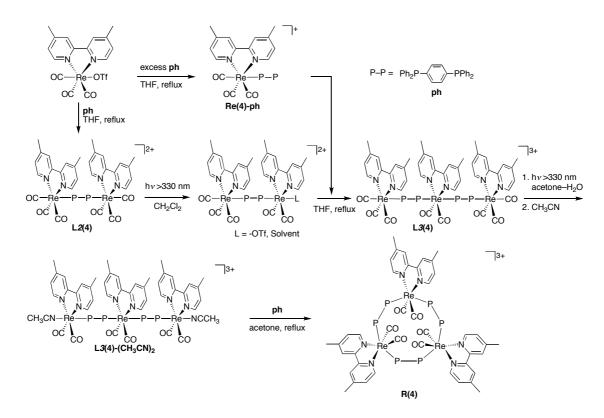
Supporting Information

Rhenium(I) Trinuclear Rings as Highly Efficient Redox Photosensitizers for Photocatalytic CO₂ Reduction


Jana Rohacova and Osamu Ishitani*

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-NE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

*Corresponding author: ishitani@chem.titech.ac.jp

Table of Contents

- 1. Supporting Scheme (S1)
- 2. Supporting Equations (S1-S2)
- 3. Supporting Tables (S1–S5)
- 4. Supporting Figures (S1–S19)
- 5. Supporting References

Scheme S1. Multistep synthetic approach of R(4) using photochemical ligand-substitution reaction.

Franck-Condon Analysis

The nonvibrational, room temperature emission spectra of $\mathbf{R}(\mathbf{X})$ were analysed by single-mode Franck–Condon analysis (eqn (S1)).^{S1,S2} The photon numbers of the emission spectrum were corrected in a wavenumber scale using the equation $I(v) = I(\lambda) \times \lambda^2$, *i.e.*, I(v) is the emission intensity at the energy in wavenumber (cm⁻¹) relative to that of the emitted intensity at the maximum (0 \rightarrow 0 transition). E_0 is the energy gap between the zeroth vibrational levels in the ground and excited states, $\Delta v_{1/2}$ is the full width at half-maximum (fwhm) for an individual vibronic line and $S_{\rm M}$ is the corresponding electron-vibrational coupling constant or Huang–Rhys factor. The quantum spacing for the averaged medium-frequency vibrational mode, $\hbar \omega_{\rm M}$, was fixed at *ca*. 1300 cm⁻¹ or *ca*. 1700 cm⁻¹ in the fits. The parameter $v_{\rm M}$ is the vibrational quantum number for the medium frequency acceptor mode, and the summation was carried out over 6 vibrational levels: $0 \rightarrow 5$.

The fitted E_0 and $\Delta v_{1/2}$ values may be used to calculate the free energy of the MLCT excited state, ΔG^0_{MLCT} , according to eqn (S2) and are listed in Table S1.

$$I(\nu) = \sum_{\nu_{\rm M}=0}^{\infty} \left[\frac{E_0 - \nu_{\rm M} \hbar \omega_{\rm M}}{E_0} \right]^4 \left[\frac{S_{\rm M}^{\nu_{\rm M}}}{\nu_{\rm M}!} \right] \exp\left\{ -4 \ln 2 \left[\frac{\nu - E_0 + \nu_{\rm M} \hbar \omega_{\rm M}}{\Delta \nu_{\rm 1/2}} \right]^2 \right\}$$
(S1)

$$\Delta G^{0}{}_{\rm MLCT} = E_{0} + \frac{(\Delta v_{1/2})^{2}}{16 k_{\rm B} T \ln 2}$$
(S2)

Table S1. En	nergy of the	MLCT	excited	state	of R(X)	at 25 °C
--------------	--------------	------	---------	-------	---------	----------

	Solvent	$\Delta G^0_{\rm MLCT}$ / eV
R(4)	DMF	2.49
R(5)	DMF	2.57
	DMA	2.59
R(4·5)	DMF	2.65
	DMA	2.67
R(OMe)	DMF	2.52
R(5)-e	DMF	2.50

Table S2. Properties of R(4.5) in DMA at 25 °C

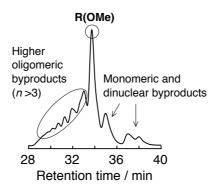
	$\lambda_{\mathrm{abs}}{}^{a}$ / nm ($arepsilon$ / M^{-1} cm ⁻¹)	$\lambda_{ m em}^{\ \ b}$ / nm	$\Phi_{\mathrm{em}}{}^{b}$	$ au_{ m em}{}^c$ / $\mu_{ m S}$	$E_{1/2}^{\operatorname{red} d} / V$	$E_{\rm red} *^e / eV$	$K_{\rm SV}^{f}/{\rm M}^{-1}$	$k_q^g / M^{-1} s^{-1}$	$\eta_{ ext{q}}^{\;h}$
R(4·5)	385 (12100)	542	0.53	3.15	-1.84	0.83	9.0	2.8×10^{6}	0.92

^{*a*} MLCT band. ^{*b*} $\lambda_{ex} = 400 \text{ nm.}$ ^{*c*} $\lambda_{ex} = 401 \text{ nm.}$ ^{*d*} First reduction potential *vs.* Ag/AgNO₃, determined from the DPV peak. ^{*e*} $E_{red} * \approx \Delta G^0_{MLCT} + E_{red}$. ^{*f*} Stern–Volmer constant obtained from quenching experiment of emission by TEOA. ^{*g*} $k_q = K_{SV} / \tau_{em}$. ^{*h*} [TEOA] = 1.256 M.

Table S3. Absorption and electrochemical properties of the catalysts measured at 25 °C

	λ_{abs}^{a} / nm (ε / M ⁻¹ cm ⁻¹)	$\varepsilon_{436}\left(\varepsilon_{405}\right)/M^{-1}cm^{-1}$	$E_{\mathrm{p}}^{\mathrm{red}b}$ / V
Re-ACN ^c	353 (3600)	490 (1650)	-1.68
$\mathbf{Ru}(t\mathbf{Bu})$ - $\mathbf{Cl_2}^d$	349 (2000)	50	-1.57
Mn(tBu)-ACN ^d	389 (3400)	1450	-1.68

^{*a*} MLCT band. ^{*b*} Irreversible wave (the reduction potential vs. Ag/AgNO₃ was determined from the DPV peaks. ^{*c*} Measured in a CO₂-saturated DMF–TEOA (5 : 1 v/v). ^{*d*} Measured in a CO₂-saturated DMA–TEOA (5 : 1 v/v).


Table S4. Fraction of the absorbed light by R(X) in regard to Re-ACN at different wavelengths (in DMF)

	λ / nm (R (X) : Re-ACN molar ratio)		
	436 (1 : 1)	405 (2 : 1)	
R(4)	90%	89%	
R(5)	87% 88%		
R(4·5)	85% 89%		
R(OMe)	75%	88%	

Table S5. Photocatalytic CO₂ reduction using R(4.5) photosensitizer with various catalysts^{*a*}

		TON		${oldsymbol{\Phi}}^b$
	НСООН	СО	H_{2}	НСООН
$Ru(tBu)-Cl_2^c$	50	15	15	0.45
Mn(<i>t</i> Bu) - ACN ^{<i>d</i>}	18	9	traces	0.18 ^e

^{*a*} Photocatalytic CO₂ reduction using an DMA–TEOA mixture (5 : 1 v/v) containing **R(4·5)** (0.05 mM) as a PS and various catalysts (0.05 mM) under 436 nm light irradiation of 4.2 × 10⁻⁹ einstein s⁻¹ intensity. ^{*b*} ± 2%; ^{*c*} TON at 16 h of irradiation. ^{*d*} TON at 12 h of irradiation. ^{*c*} Taking into account absorption of the Mn-dimer.

Fig. S1. Size exclusion chromatogram of the crude reaction mixture of **R(OMe)** synthesis according to Scheme 1 (main text).

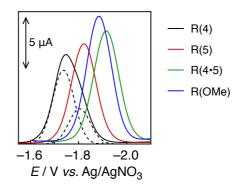
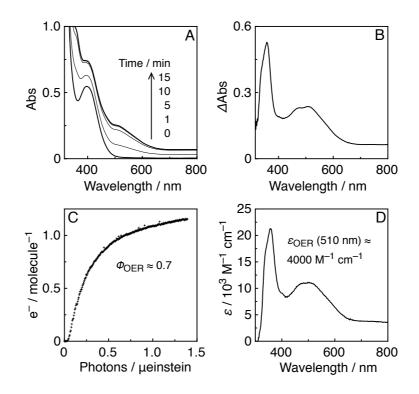
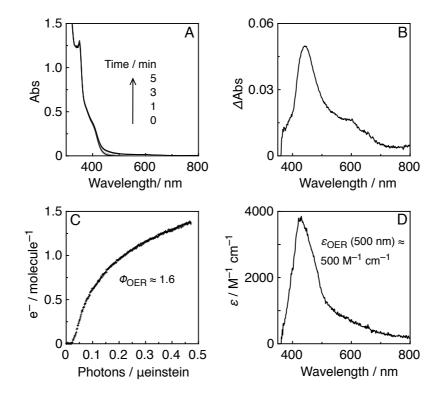




Fig. S2. Differential pulse voltammograms of the first reduction of $\mathbf{R}(\mathbf{X})$ (0.5 mM) in DMF under Ar. The DPV peak of $\mathbf{R}(\mathbf{4})$ was deconvoluted with two Gaussian functions (---).

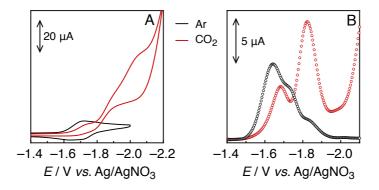
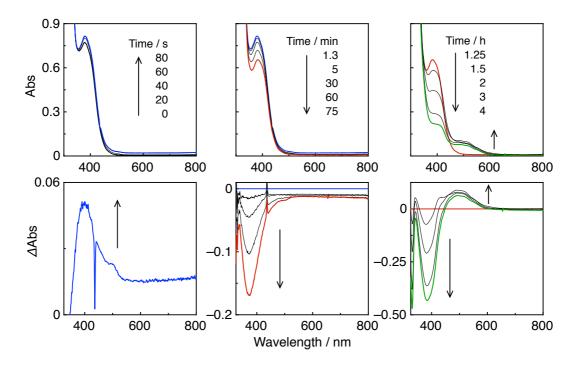


Fig. S3. (A) UV–vis absorption spectral changes of an Ar-saturated DMF–TEOA (5 : 1 v/v) solution containing **R(4)** (0.05 mM) under irradiation at $\lambda_{ex} = 436$ nm (5.6 × 10⁻⁹ einstein s⁻¹). (B) Differential absorption spectra

derived from the spectrum before irradiation and after 15 min of irradiation. (C) Time course of accumulated electrons in $\mathbf{R}(4)$ as function of absorbed photons within 10 min of irradiation, compensated for the inner filter effect. (D) Differential absorption spectrum of $\mathbf{R}(4)$ before and after bulk electrolysis in an Ar-saturated DMF solution at -1.95 V vs. Ag/AgNO₃.


Fig. S4. (A) UV-vis absorption spectral changes of an Ar-saturated DMF-TEOA (5 : 1 v/v) solution containing **R(OMe)** (0.05 mM) under irradiation at $\lambda_{ex} = 405$ nm (1.3 × 10⁻⁹ einstein s⁻¹). (B) Differential absorption spectra derived from the spectrum before irradiation and after 5 min of irradiation. (C) Time course of accumulated electrons in **R(OMe)** as function of absorbed photons within 10 min of irradiation, compensated for the inner filter effect. (D) Differential absorption spectrum of **R(OMe)** before and after bulk electrolysis in an Ar-saturated DMF solution at -2.0 V vs. Ag/AgNO₃.

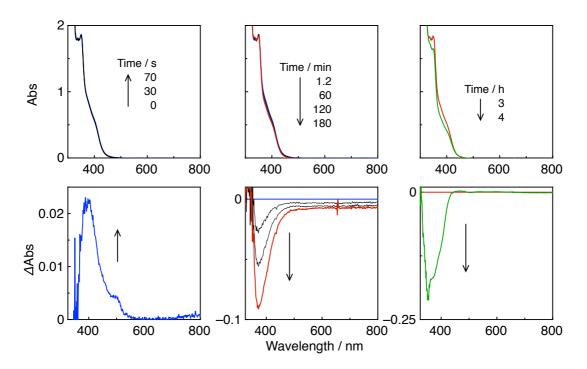
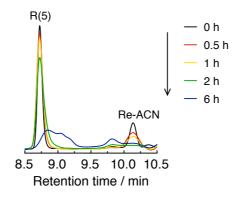
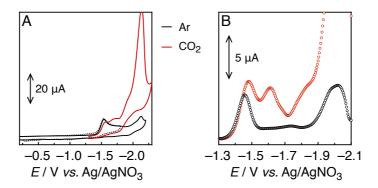
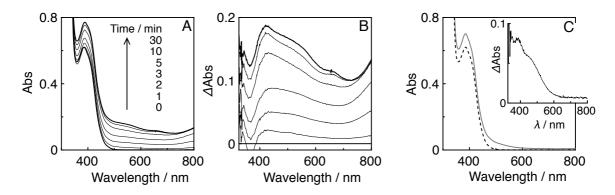
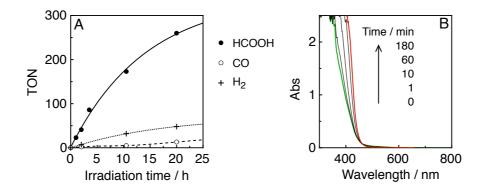

Fig. S5. Cyclic voltammogram (A) and corresponding differential pulse voltammogram (B) of **Re-Solv** (0.5 mM) in DMF–TEOA (5 : 1 v/v), where Solv = TEOA under Ar (black) or Solv = CO₂-TEOA under CO₂ (red) atmosphere, respectively; CV sweep rate = 100 mV s⁻¹.

Fig. S6. UV–vis (top) and corresponding differential (bottom) absorption spectral changes of a CO₂-saturated DMF–TEOA (5 : 1 v/v) solution containing **R(4)** (0.05 mM) as a PS and **Re-ACN** (0.05 mM) as the catalyst, under irradiation at $\lambda_{ex} = 436$ nm (5.7 × 10⁻⁹ einstein s⁻¹) in the initial stage (left) and over 3.5 h of irradiation (middle and right).

Fig. S7. UV–vis (top) and corresponding differential (bottom) absorption spectral changes of a CO₂-saturated DMF–TEOA (5 : 1 v/v) solution containing **R(4·5)** (0.05 mM) as a PS and **Re-ACN** (0.05 mM) as the catalyst, under irradiation at $\lambda_{ex} = 436$ nm (5.7 × 10⁻⁹ einstein s⁻¹) in the initial stage (left) and over 4 h of irradiation (middle and right).

Fig. S8. UV–vis (top) and corresponding differential (bottom) absorption spectral changes of a CO₂-saturated DMF–TEOA (5 : 1 v/v) solution containing **R(OMe)** (0.05 mM) as a PS and **Re-ACN** (0.05 mM) as the catalyst, under irradiation at $\lambda_{ex} = 436$ nm (5.7 × 10⁻⁹ einstein s⁻¹) in the initial stage (left) and over 4 h of irradiation (middle and right).


Fig. S9. UPLC chart of the R(5)/Re-ACN photocatalytic system ; $\lambda_{det} = 350$ nm.

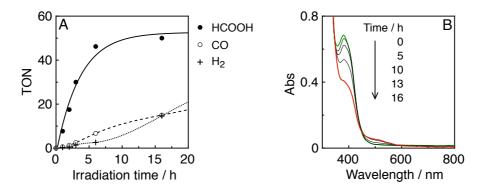
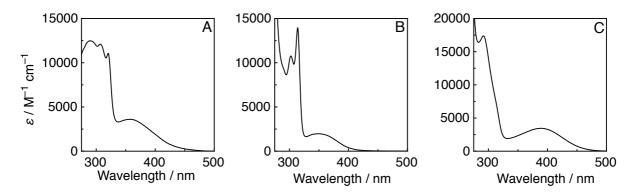
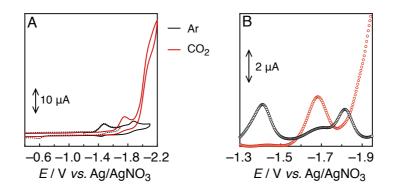
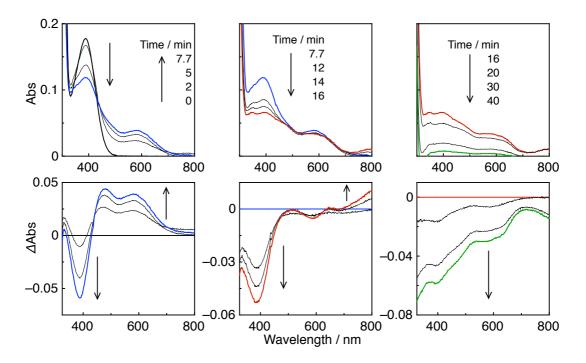
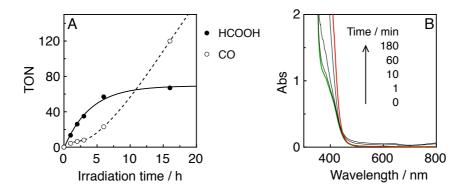

Fig. S10. Cyclic voltammogram (A) and corresponding differential pulse voltammogram (B) of **Ru**(*t***Bu**)-Cl₂ (0.5 mM) in DMA–TEOA (5 : 1 v/v) under Ar (black) or CO₂ (red) atmosphere; CV sweep rate = 100 mV s⁻¹.

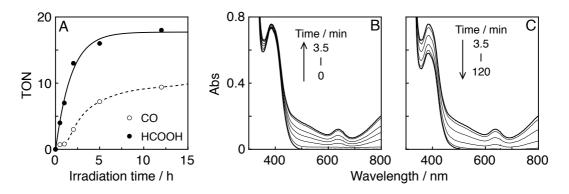
Fig. S11. UV–vis (A) and corresponding differential (B) absorption spectral changes of an Ar-saturated DMA–TEOA (5 : 1 v/v) solution containing **R(5)** (0.05 mM) and **Ru(***t***Bu)-Cl₂** (0.05 mM), over 1 h irradiation at $\lambda_{ex} = 436$ nm (4.2 × 10⁻⁹ einstein s⁻¹). (C) UV–vis spectra of the solution before irradiation (black dashed), and that of the irradiated solution after exposure to the air (gray solid); Inset: Corresponding differential UV–vis spectrum.

Fig. S12. (A) Products-time course of photocatalytic CO₂ reduction using **R(5)** (0.05 mM) as a PS, **Ru(***t***Bu)-Cl₂** (0.05 mM) as the catalysts and BI(OH)H (0.03M) as a sacrificial electron donor in DMA–TEOA (5 : 1 v/v) under 436-nm light irradiation of 4.2×10^{-9} einstein s⁻¹ intensity. (B) UV–vis absorption spectral changes of the irradiated solution.

Fig. S13. (A) Products-time course of photocatalytic CO₂ reduction using **R(4·5)** (0.05 mM) as a PS and **Ru(***t***Bu)-Cl₂** (0.05 mM) as the catalysts in DMA–TEOA (5 : 1 v/v) under 436-nm light irradiation of 4.2×10^{-9} einstein s⁻¹ intensity. (B) UV–vis absorption spectral changes of the irradiated solution.


Fig. S14. (A) UV-vis absorption spectrum of Re-ACN (A) in a CO₂-saturated DMF-TEOA (5 : 1 v/v), Ru(tBu)-Cl₂ (B) and Mn(tBu)-ACN (C) both in a CO₂-saturated DMA-TEOA (5 : 1 v/v).


Fig. S15. Cyclic voltammogram (A) and corresponding differential pulse voltammogram (B) of **Mn(***t***Bu)-Solv** (0.5 mM) in DMA–TEOA (5 : 1 v/v), where Solv = TEOA under Ar (black) or Solv = CO_2 -TEOA under CO_2 (red) atmosphere, respectively; CV sweep rate = 100 mV s⁻¹.

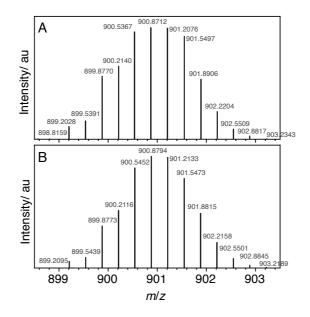

Fig. S16. UV–vis (top) and corresponding differential (bottom) absorption spectral changes of a CO₂-saturated DMA–TEOA (5 : 1 v/v) solution containing **Mn(***t***Bu)-ACN** (0.05 mM) as photocatalyst under irradiation at λ_{ex} = 436 nm over 1 h irradiation.

Fig. S17. (A) Products-time course of photocatalytic CO₂ reduction using **R(5)** (0.05 mM) as a PS, **Mn(***t***Bu)-ACN** (0.05 mM) as the catalysts and BI(OH)H (0.03M) as a sacrificial electron donor in DMA–TEOA (5 : 1 v/v) under 436-nm light irradiation of 5.3×10^{-9} einstein s⁻¹ intensity. (B) UV–vis absorption spectral changes of the irradiated solution.

Fig. S18. (A) Time course of product formation using **R**(4·5) (0.05 mM) as a PS and **Mn**(*t***Bu**)-ACN (0.05 mM) as the catalysts in DMA–TEOA (5 : 1 v/v) under 436 nm-light irradiation of 4.2×10^{-9} einstein s⁻¹ intensity. UV–vis absorption spectral changes of the photocatalytic reaction in the initial stage (B) and over 2 h irradiation (C).

Fig. S19. Peaks corresponding to $[M - 3PF_6]^{3+}$ in the ESI-TOFMS spectrum of **R(4·5)** (A) and the calculated isotope distribution pattern (B).

Supporting References

- S1 J. V. Caspar, T. D. Westmoreland, G. H. Allen, P. G. Bradley, T. J. Meyer and W. H. Woodruff, *J. Am. Chem. Soc.*, 1984, **106**, 3492–3500.
- S2 L. A. Worl, R. Duesing, P. Chen, L. Della Ciana and T. J. Meyer, J. Chem. Soc., Dalton Trans., 1991, 849-858.