Supporting Information

Single-atom dispersed Co-N-C catalyst: structure

identification and performance for hydrogenative coupling

of nitroarenes

Wengang Liu^{a,b,‡}, Leilei Zhang^{a,‡}, Wensheng Yan^c, Xiaoyan Liu^a, Xiaofeng Yang^a,

Shu Miao^a, Wentao Wang^a, Aiqin Wang^{a,*}, Tao Zhang^{a,*}

^a State Key Laboratory of Catalysis, *i*ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

- ^b University of Chinese Academy of Sciences, Beijing 100049, China.
- ^c National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China

[‡]These authors contributed equally to this work.

* Correspondence to: aqwang@dicp.ac.cn; taozhang@dicp.ac.cn

1. Characterization of the Co-N-C catalyst.

Figure S1. Representative SEM images of Co-N-C/Carbon (left) and Co-N-C/MgO (right) catalysts under back-scattering electron detector mode. The bright spots in the left image are big Co particles due to aggregation; in contrast, they are absent in the right image, indicating MgO support effectively limited the aggregation of cobalt particles.

Figure S2. N_2 adsorption-desorption isotherms of Co-N-C catalyst. Inset is the mesopore size distribution.

Figure S3. XRD pattern of the Co-N-C catalyst. The broad peaks located at 23° and 43° could be ascribed to the (002) and (004) planes of carbon matrix. No diffraction patterns of Co/CoO_x can be observed.

Figure S4. SEM images of Co-N-C catalyst under back-scattering electron detector mode.

Figure S5. STEM images of Co-N-C catalyst

Figure S6. Elemental mapping of Co-N-C catalyst in different regions.

Figure S7. Subångström-resolution HAADF-STEM images of different regions of Co-N-C catalyst. The white dots in images are Co single atoms.

Figure S8. Comparison between the XANES experimental spectrum of Co porphyrin at Co K edge (solid red lines) and the theoretical spectra calculated with the depicted structures (black dashed lines).

9 / 35

Figure S9. Comparison between the XANES experimental spectrum of Co-N-C at Co K edge (solid red lines) and the theoretical spectra calculated with the depicted structures (black dashed lines). In these calculations, the total scattering potentials including a fully relaxed core-hole were obtained iteratively, by successive calculations of the potential until self-consistency was reached. Based on this scattering potential, the final states of the excited photoelectron were then calculated. The Hedin-Lundqvist model of exchange potential with a 2 eV shift and additional broadening of 0.8 eV was used to give a closest match between the simulated and experimental spectra.

Figure S10. The contribution of every path including Co-N (blue line), Co-O (pink line) and Co-C (green and navy blue lines) in q-space for Co-N-C sample.

Figure S11. EPR spectra obtained at room temperature on the Co-N-C catalyst. A EPR signal with a Lorentzian shape and a g factor = 2.25 can be assigned to Co²⁺.

Figure S12. The C1s and O1s spectra of the Co-N-C catalyst. For the C1s spectrum, the four peaks with binding energies at 285, 286.4, 287.9 and 289.4 eV can be assigned to the graphitic C, C-O, C=O and C-OOH, respectively. For the O1s spectrum, the two peaks are ascribed to ketonic C=O groups (531.5 eV) and C-O groups (533.1 eV), respectively.

Figure S13. Proposed pathways for the reduction of nitroarenes on Co-N-C catalyst.

Figure S14. Dependency of the reaction rate on the pressure of H₂.

Figure S15. ATR-IR spectra of nitrobenzene, styrene and 3-nitrostyrene adsorbed on the Co-N-C catalyst at 25 °C.

Figure S16. HAADF-STEM images of Co-N-C catalyst after reuse.

Table S1. E_0 value (the first inflection point) of the Co-N-C sample. CoPc = Cobaltphthalocyanine complex, CoPTT = Co porphyrin complex.

Sample	Co	Co-N-C	Co-N-C	Co-N-C	Co(phen) ₂	CoPc	CoPTT	Co ₃ O ₄
	foil	-500	-700	-900	(OAc) ₂			
E _o (eV)	7709	7719.2	7719.4	7709.2	7720.3	7714.8	7712.7	7727

Table S2. The optimized bond parameters of some selected models of Co-N-C, with

 the corresponding geometric structures.

		CoN ₄ C ₈ -1	CoN ₄ C ₈ -1-2O ₂	CoN ₄ C ₁₀ -1	CoN ₄ C ₁₀ -1-2O ₂
--	--	------------------------------------	--	-------------------------------------	---

CoN1 / Å	1.925	1.972	1.894	1.908
CoN2 / Å	1.927	1.972	1.894	1.908
CoN3 / Å	1.927	1.972	1.894	1.908
CoN4 / Å	1.925	1.972	1.894	1.908
N1-Co-N2 /º	82.977	82.481	87.380	87.476
N3-Co-N4 /º	82.950	82.482	87.380	87.471
N1-Co-N4 /º	96.732	97.549	92.618	92.530
N2-Co-N3 /º	97.343	97.488	92.617	92.525
Co-O1 / Å		2.000		2.024
Co-O2 / Å		2.000		2.023
Co-C1 / Å	~2.76	~2.78	~2.74	~2.70
Co-C2 / Å	~3.02	~3.04	~2.96	~2.96

	CoN ₄ C ₁₂ -3	CoN ₄ C ₁₂ -3-2O ₂	CoN ₄ C ₁₂ -4	CoN ₄ C ₁₂ -4-2O ₂
CoN1 / Å	1.990	1.954	1.899	1.991
CoN2 / Å	1.981	1.946	1.915	1.999
CoN3 / Å	1.990	1.950	1.900	1.984
CoN4 / Å	1.982	1.956	1.915	1.992
N1-Co-N2 /º	87.008	88.172	92.193	88.829
N3-Co-N4 /º	87.037	88.397	92.088	88.741
N1-Co-N4 /º	92.990	91.634	94.907	93.722
N2-Co-N3 /º	92.965	91.547	94.842	93.667
Co-O1 / Å		1.972		1.991
Co-O2 / Å		2.058		2.035

 Table S3. Surface composition of Co-N-C catalyst determined by XPS.

Entry	Elements	Atomic (%)
1	C 1s	79.26
2	N 1s	8.66
3	O 1s	11.36
4	Co 2p	0.66
5	Mg 1s	0.06

2. Optimization of the reaction conditions, and control experiment results

Table S4. Optimization of the reaction conditions.

	O ₂ Cat	alyst 🔸		N, N-	+	+,0 ⁻ -N, N{		NH ₂
14				Za		20	4	20
					Conv.(% -		Yield(%)	
Entry	Solvent	T(°C)	P(MPa)	Base)	2a	2b	2c
1	Toluene	80	3	NaOH	47	0	33	7
2	THF	80	3	NaOH	100	7	89	0
3	Ethanol	80	3	NaOH	83	0	39	14
4	TBA	80	2	NaOH	100	17	82	0
5	TBA	80	1	NaOH	46	0	46	0
6	TBA	60	3	NaOH	58	0	58	0
7	TBA	40	3	NaOH	30	0	28	0
8	TBA	80	3	Na ₂ CO ₃	14	0	0	5
9	TBA	80	3	NaHCO ₃	15	0	0	10
10	TBA	80	3	NaOH	100	99	0	0

Reaction conditions: 3.6 wt% Co-N-C catalyst (0.7 mol%Co), 1.0 mmol nitrobenzene, Base 0.2 mmol, H_2 , 2 mL solvent, 1.5 h. Yield were Determined by GC, using 100 µl Dodecane as an internal standard. TBA=tert butyl alcohol.

Table S5. Hydrogenation of nitrobenzene and styrene over Co-N-C based cataly	sts.
--	------

Feed (mmol)	TOF (h ⁻¹)		
nitrobenzene	styrene	nitrobenzene	styrene	
1	0	271	-	
0	1	-	0	
0.5	0.5	268	0	

Reation conditions: 3.6 wt% Co-N-C catalyst (0.7 mol%Co), substrate, NaOH 0.2 mmol, 3 MPa H₂, 80 $^{\circ}$ C, 20 min, 2 mL TBA solvent, TBA=tert butyl alcohol.

Table S6. Recovery and reuse of Co-N-C based catalyst.

NO ₂ -	Co-N-C (0.7 mc 80 ^o C, 3 Mpa 0.2 equiv. Na	J-C (0.7 mol%)) ⁰C, 3 Mpa H ₂ 2 equiv. NaOH		N-N-N		
Recycle	1 st	2 nd	3 rd	4 th	5 th	
Reaction time (h)	1.5	2	2.5	3	3.5	
Conversion (%)	100	100	100	100	100	
Yield (%)	99	94	99	100	98	

3. Characterization of the obtained products

All chemicals (Analytical Grade) were used as received without further purification. The aerobic oxidative coupling reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel 60 F_{254} plates and visualized under UV (254 nm).

Gas chromatography (GC) analysis was performed on an Agilent 7890B system equipped with a 5% phenyl methyl siloxane capillary column (30 m \times 320 μ m \times 0.25 μ m). The GC yield was obtained from the calibration curve using dodecane as an internal standard.

¹H NMR spectra were recorded on commercial instruments (500 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$). ¹³C NMR spectra were collected on commercial instruments (125 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). The structures of the known compounds were confirmed by comparison with commercially available compounds or data published in literature.

The structures of the known compounds were confirmed by comparison with commercially available compounds or data published in literature.

Azobenzene (1a): This reaction was carried out according to general procedure with nitrobenzene(102 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow red solid (97% yield). ¹H NMR (500 MHz, CDC₁₃) δ 7.95 – 7.90 (m, J = 7.3 Hz, 4H), 7.54 – 7.46 (m, 6H). ¹³C NMR (126 MHz, CDC₁₃) δ 152.67, 130.92, 129.03, 122.81.

3,3'-Dimethylazobenzene(2a): This reaction was carried out according to general procedure with 3-nitrotoluene (119 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow red solid (94% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 6.5 Hz, 4H), 7.67 – 7.63 (m, 2H), 7.53 (d, J = 7.5 Hz, 2H), 2.70 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.81, 138.94, 131.68, 128.88, 122.89, 120.46, 21.36.

4,4'-Dimethylazobenzene(3a): This reaction was carried out according to general procedure with 4-nitrotoluene (137.1 mg, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (88% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 4H), 7.54 (d, J = 8.1 Hz, 4H), 2.66 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 150.83, 141.17, 129.68, 122.71, 21.45.

2,2'-Dimethylazobenzene(4a): This reaction was carried out according to general procedure with 2-nitrotoluene (118 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a red solid (63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 2H), 7.37 – 7.32 (m, 4H), 7.28 – 7.24 (m, 2H), 2.74 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 151.11, 137.93, 131.21, 130.61, 126.31, 115.84, 17.54.

2,2'-Dimethylazobenzene(5a): This reaction was carried out according to general procedure with 4-nitroethylbenzene (135 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 4H), 7.33 (d, J = 7.4 Hz, 4H), 2.72 (q, J = 7.5 Hz, 4H), 1.29 (ddd, J = 7.6, 4.3, 1.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.46, 151.10, 147.45, 128.51, 122.83, 28.84, 15.41.

1,2-Bis(3-vinylphenyl)diazene (6a): This reaction was carried out according to general procedure with 3-nitrostyrene (145 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (t, J = 1.7 Hz, 2H), 7.74 (dt, J = 7.6, 1.6 Hz, 2H), 7.46 – 7.35 (m, 4H), 6.73 (dd, J = 17.6, 10.9 Hz, 2H), 5.82 – 5.77 (m, 2H), 5.27 (d, J = 10.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.94, 138.71, 136.24, 129.23, 128.78, 122.17, 120.62, 115.05.

1,2-Bis(3-(trifluoromethyl)phenyl)diazene(7a): This reaction was carried out according to general procedure with 3-nitrobenzotrifluoride (137 μ L, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a red solid (85% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 2H), 8.14 (d, J = 7.9 Hz, 2H), 7.78 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.8 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 152.18, 131.99, 131.72, 129.79, 127.84 (d, J = 3.6 Hz, 1H), 126.45, 124.80, 122.64, 119.72 (q, J = 3.7 Hz, 1H).

1,2-Bis(4-chlorophenyl)diazene (8a): This reaction was carried out according to general procedure with 4-chloronitrobenzene (158 mg, 1 mmol, 1 equiv). The crude

reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (97% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 4H), 7.49 (d, J = 7.9 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.79, 137.20, 129.36, 124.15.

1,2-Bis(3-chlorophenyl)diazene (9a): This reaction was carried out according to general procedure with 3-chloronitrobenzene (158 mg, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (98% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 2H), 7.83 (d, J = 4.0 Hz, 2H), 7.46 (d, J = 3.9 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 153.11, 135.22, 131.16, 130.15, 122.55, 121.89.

1,2-Bis(3,4-dichlorophenyl)diazene(10a): This reaction was carried out according to general procedure with 3,4-dichloronitrobenzene (202.1 mg, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (99% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 2H), 7.80 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.02, 135.68, 133.66, 130.99, 124.05, 123.01.

1,2-Bis(3-bromophenyl)diazene(11a): This reaction was carried out according to general procedure with 1-bromo-3-nitrobenzene (206.1 mg, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (96% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 153.19, 134.06, 130.44, 124.77, 123.15, 123.07.

1,2-Bis(3-iodophenyl)diazene(12a): This reaction was carried out according to general procedure with 3-iodonitrobenzene (249.1 mg, 1 mmol, 1 equiv). The crude reaction mixture was purified on silica gel (2% ethyl acetate/petroleum ether) to afford the product as a yellow solid (94% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.24 (s, 2H), 7.90 (d, J = 7.8 Hz, 2H), 7.81 (d, J = 7.7 Hz, 2H), 7.31 – 7.26 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.06, 139.96, 130.77, 130.64, 123.63, 94.48.

4. Copy of ¹H NMR and ¹³C NMR spectra for products

