Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Photocatalyst size controls electron and energy transfer: Selectable E/Z isomer synthesis via C-F alkenylation.

Anuradha Singh, Christopher J. Fennell, and Jimmie D. Weaver* Department of Chemistry, Oklahoma State University, Stillwater, OK 74078 jimmie.weaver@okstate.edu

Supporting Information Table of contents:-	
General experimental	S2
Synthesis of substrates	S 3
Photocatalytic alkenylation reactions and characterization	S 7
References	S26
NMR spectra	S28
Calculated photocatalyst structures	S134
<i>fac</i> -Ir(ppy) ₃ structure comparison	S148

General Experimental

All reagents were obtained from commercial suppliers (Sigma-Aldrich, Oakwood chemicals, Alfa Aesar, Matrix Scientific, VWR) and used without further purification unless otherwise noted. Acetonitrile (CH₃CN) was dried over molecular sieves. *N*,*N*-diisopropylethylamine was purchased from Sigma-Aldrich and was distilled and stored over anhydrous potassium hydroxide. Photocatalysts Ir(ppy)₃ fac-tris(2-phenyl pyridinato- C^2 , N)iridium(III), Ir(tbppy)₃ fac-tris[2-(4-*N*)]iridium(III), *tert*-butylphenyl)pyridinato- C^2 , Ir(CF₃ppy)₃ fac-tris[2-(4trifluoromethylphenyl)pyridinato- C^2 , fac-tris[2-(4-*N*)]iridium(III), Ir(Fppy)₃, fluorophenyl)pyridinato- C^2 , *N*)]]iridium(III), Ir(dFppy)3 fac-tris(2-(4,6difluorophenyl)pyridinato- C^2 , N)iridium(III), [Ir(dF(CF_3)ppy)_2(dtbbpy)](PF_6) [4,4'-Bis(tertbutyl)-2,2'-bipyridine]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl]phenyl]iridium(III) [2,2'-bipyridine]bis[3,5-difluoro-2-[5hexafluorophosphate, $[Ir(dF(CF_3)ppy)_2(bpy)](PF_6)$ (trifluoromethyl)-2-pyridinyl]phenyl]iridium(III) hexafluorophosphate, $[Ir(dF(CF_3)ppy)_2(phen)](PF_6)$ [phenothroline]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2pyridinyl]phenyl]iridium(III) hexafluorophosphate, [Ir(dFppy)₂(dtbbpy)](PF₆) [4,4'-Bis(tertbutyl)-2,2'-bipyridine]bis[3,5-difluoro-[2-pyridinyl]phenyl]iridium(III) hexafluorophosphate, [2,2'-bipyridine]bis[3,5-difluoro-2-pyridinyl]phenyl]iridium(III) $[Ir(dFppy)_2(bpy)](PF_6)$ hexafluorophosphate, [Ir(Fppy)₂(dtbbpy)](PF₆) [4,4'-Bis(tert-butyl)-2,2'-bipyridine]bis[3-fluoro-2-pyridinyl]phenyl]iridium(III) hexafluorophosphate, $[Ir(Fppy)_2(bpy)](PF_6)$ and [2.2'bipyridine]bis[3 fluoro-2-pyridinyl]phenyl]iridium(III) hexafluorophosphate were synthesized according to literature procedure.¹ N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)acetamide and ethyl (2-(perfluoropyridin-4-yl)acetyl) glycinate were synthesized according to literature procedures.^{2,3} 1-hexyne and 4-octyne were distilled before use. NMR spectra were obtained on a 400 MHz Bruker Avance III spectrometer or a 400 MHz Unity Inova spectrometer. ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak while ¹⁹F is set relative to an external standard. IR spectra were recorded on a Nicolet iS50 FT-IR. Melting points were determined on a Mel-Temp apparatus. High resolution mass spectra were obtained on LTQ-OrbitrapXL by Thermo Scientific ltd. Purifications were carried out using Teledyne Isco Combiflash Rf 200i flash chromatograph with normal phase silica (4 g, 12 g, 24 g, 40 g, or 80 g) as well as reverse phase Redisep Rf C18 (26 g) column with product detection at 254, 280 nm and by ELSD (evaporative light scattering detector). Some isolations were performed using Sorbent Technology Silica Prep TLC Plates, w/UV254, glass backed, 1000 µm, 20 x 20 cm, and were visualized with ultraviolet light. Substrate synthesis reactions were monitored by thin layer chromatography (TLC), obtained from Sorbent Technology Silica XHL TLC Plates, w/UV254, glass backed, 250 µm, and were visualized with ultraviolet light or potassium permanganate.

Photocatalytic Reaction Set up

Photocatalytic reactions were set up in a light bath as described below. Strips of blue LEDs (18 LEDs/ft.) were purchased from Solid Apollo. The strips (4.9 ft) were wrapped around the walls of glass crystallization dish and secured with masking tape and then wrapped with aluminum foil.

A lid which rest on the top was fashioned from cardboard and holes were made such that NMR tubes were held firmly in the cardboard lid which was placed on the top of bath. Isopropanol was added to the bath such that the tubes were submerged in the isopropanol which was maintained at 0 $^{\circ}$ C by placing a copper coil in the bath that was connected to a recirculating chiller.

Synthesis of (1S,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol

(1S,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol was synthesized according to the literature procedure.⁴ To a 100 mL round bottom flask, trimethylsilyl acetylene (2.2 mL, 15.7 mmol) and anhydrous THF (20 mL) were added and cooled to -78 °C under argon atmosphere. Then nBuLi (9.8 mL, 15.7 mmol) was added slowly and stirred for 50 min. Next, a solution of camphor (2 g, 13.1 mmol) in THF (8 mL) was added. The reaction was allowed to warm to room temperature and stirred for overnight. Reaction was quenched with the addition of water (10 mL) and then the THF was removed by rotary evaporation. The residue was partitioned between water and ether. Ether portion was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The resultant crude residue was purified by automated flash chromatography using 1% triethyl amine buffered hexane :DCM (0 % DCM for 5 cv and ramped to 100 % DCM for 15-20 cv and then held at 100% MeOH 20-25 cv) on a 24 g silica column to afford (1S,2R,4R)-1,7,7trimethyl-2-((trimethylsilyl)ethynyl)bicyclo[2.2.1]heptan-2-ol in 57% yield (1.86 g, 7.4 mmol) а white solid. То a solution of (1S,2R,4R)-1,7,7-trimethyl-2as ((trimethylsilyl)ethynyl)bicyclo[2.2.1]heptan-2-ol (1.86 g, 7.4 mmol) in methanol (15 mL), potassium carbonate (2 g, 14.86 mmol) was added and stirred for 1.5 h at room temperature. The methanol was removed (*in vacuo*) and the residue was dissolved in DCM. The DCM portion was washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to obtain (1S,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol in quant yield. NMR matched with the literature value.⁵ ¹H NMR (400 MHz, Chloroform-*d*) δ 2.45 (s, 1H), 2.22 (dt, *J* = 13.6, 3.9 Hz, 1H), 1.99 (s, 1H), 1.94 – 1.81 (m, 1H), 1.79 (t, *J* = 4.4 Hz, 1H), 1.70-1.65 (m, 1H), 1.50-1.44 (m, 1H), 1.2-1.08 (m, 1H), 1.06 (s, 3H), 0.95 (s, 3H), 0.87 (s, 3H).

Synthesis of (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl hex-5-ynoate

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl hex-5-ynoate was synthesized according to the literature⁶ procedure. In a 100 mL round bottom flask, L-menthol (1 g, 6.4 mmol), 5-hexynoic acid (0.68 mL, 6.6 mmol), 4-dimethylaminopyridine (195 mg, 1.6 mmol) in DCM:MeCN (1:1, 13 mL), *N*,*N*'-dicyclohexylcarbodiimide (1.5 g, 7.1 mmol) was added dropwise for 10 min at 0 °C. and then allowed to warm to room temperature and stirred overnight. Reaction mixture was filtered and concentrated *in vacuo*. The residue was dissolved in DCM (20 mL) and sequentially washed with 1M HCl (15 mL), 10% aq. NaHCO₃ (15 mL) and water (15 mL). The organic portion dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude material was purified by flash chromatography using hexane:DCM (0 % DCM for 5 cv and ramped slowly to 100 % EtOAc for 5-20 cv and then held at 100% EtOAc 20-25 cv) on a 24 g silica column to afford (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl hex-5-ynoate in 38% yield (0.6 g, 2.4 mmol) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.70 (td, *J* = 10.9, 4.5 Hz, 1H), 2.44 (t, *J* = 7.4 Hz, 2H), 2.27 (t, *J* = 7.1 Hz, 2H), 1.99 (d, *J* = 10.9 Hz, 2H), 1.87 (q, *J* = 7.0 Hz, 2H), 1.74 – 1.64 (m, 2H), 1.43 – 1.24 (m, 2H), 1.32 (m, 3H), 1.02 (m, 1H), 0.91 (d, *J* = 9.4 Hz, 6H), 0.77 (d, *J* = 7.0 Hz, 3H).

Synthesis of tert-butyldimethyl(pent-1-yn-3-yloxy)silane

tert-Butyldimethyl(pent-1-yn-3-yloxy)silane was synthesized according to the literature⁷ procedure. To a 100 mL round bottom flask, pent-1-yn-3-ol (2.2 mL, 23.8 mmol), tert-butylchlorodimethylsilane (3.6 g, 23.8 mmol), imidazole (3.24 g, 47.6 mmol), and

dichloromethane (10 mL) were added and the mixture was stirred at rt overnight. Dichloromethane was removed via rotary evaporation and residue was dissolved in ether (50 mL). The ether portion was washed with aq. NH₄Cl (20 mL), sat. aq. NaHCO₃ (20 mL), brine (20 mL), dried over anhydrous MgSO₄, concentrated to afford tert-butyldimethyl(pent-1-yn-3-yloxy)silane in 100% yield (4.7 g, 23.8 mmol) as a colorless liquid. NMR matched with the literature value.⁷

Synthesis of 2-(pent-1-yn-3-yloxy)tetrahydro-2H-pyran

2-(pent-1-yn-3-yloxy)tetrahydro-2H-pyran was synthesized according to the literature⁸ procedure. To a 100 mL round bottom flask, pent-1-yn-3-ol (2.2 mL, 23.8 mmol), 3,4-dihydropyran (3.2 mL, 35.7 mmol), *p*-tolunesulfonic acid (6 mg, 0.03 mmol), and dichloromethane (10 mL) were added and the mixture was stirred at 0 °C for 2 h.⁸ The dichloromethane was removed via rotary evaporation and residue was dissolved in ether (50 mL) and washed with sat. aq. NaHCO₃ (20 mL), brine (20 mL), dried over anhydrous MgSO₄, and concentrated to afford 2-(pent-1-yn-3-yloxy)tetrahydro-2H-pyran in 95% yield (3.8 g, 22.6 mmol) as a colorless liquid. NMR matched with the literature value.⁹

Synthesis of (E)-(3-((3-methylbut-2-en-1-yl)oxy)prop-1-en-1-yl)benzene

To a flame dried 50 mL two necked round bottom flask, cinnamyl bromide (1 g, 5.08 mmol), 3methyl-2-butenol (0.6 mL, 6.09 mmol), and THF (10 mL) were added and the mixture was stirred at 0 °C for 15 min under argon atmosphere. Sodium hydride (146 mg, 6.09 mmol) was added to the reaction portionwise. The suspension was stirred for 1 h at 0 °C and then warmed to room temperature and stirring was continued for overnight. The reaction was quenched with sat. aq. NH₄Cl and extracted with ether (3 x 10 mL), organic phase was washed with brine (20 mL), dried over anhydrous MgSO₄, and concentrated *in vacuo*. The crude material was purified by flash chromatography using hexane:ethyl acetate (0 % ethyl acetate for 5 cv and ramped slowly to 100 % EtOAc for 5-20 cv and then held at 100% EtOAc 20-25 cv) on a 24 g silica column to afford (**E**)-(**3**-((**3-methylbut-2-en-1-yl)oxy)prop-1-en-1-yl)benzene** in 70% yield (0.7 g, 3.47 mmol) as a colorless liquid. NMR matched with the literature value¹⁴.

Synthesis of (E)-(2-methyl-3-((3-methylbut-2-en-1-yl)oxy)prop-1-en-1-yl)benzene

(E)-(2-methyl-3-((3-methylbut-2-en-1-yl)oxy)prop-1-en-1-yl)benzene was synthesized according to the literature procedure¹⁴.

General Procedure for photocatalytic [2+2] cycloaddition reaction

The procedure was adapted from the literature. ¹⁴ To a test tube (18 x 150 mm), 1 mol% photocatalyst, 1 equiv of styrene substrate, and DMSO (0.01 M) were added. After degassing with argon for 15 min, the reaction tube was placed in front of two compact fluorescent lamps (each 13 W) and stirred for 7 h. The reaction mixture was diluted with water, and then extracted three times with ether. The combined organic layers were washed with water, brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The mixture was analyzed by ¹H NMR.

General Procedure for C-H Styrenylation of Amines

The reaction procedure for C–H styrenylation of amines was followed from literature¹⁵. To a dry test tube (13 x 100 mm), 1 mol% photocatalyst, and (*E*)-(2- (phenylsulfonyl)vinyl)benzene (122 mg, 0.500 mmol, 1.00 equiv.) were added. The tube was sealed with septum and evacuated and then refilled with argon. This evacuation and refilling process was repeated for three times. The reaction tube was taken to the glove box to add CsOAc (288 mg, 1.50 mmol, 3.0 equiv.). After that the tube was taken out from glove box and then added DCE (5.0 mL) and *N*-phenylpyrrolidine (181 μ L, 2.50 equiv) under argon. The reaction was degassed for 15 min. The tube was kept infront of two compact fluorescent light (CFL) bulbs (13 w) and stirred at room temperature. The conversion was determined by ¹H NMR and *E*:Z ratio was determined by GCMS.

The case in which two photocatalysts were used (**Cat 7** and **Cat 2**, 0.5 mol%, and 0.125% respectively) in one reaction tube, reaction was performed in blue LED light bath, as described in the general procedures.

Synthesis of (*Z*)-1-phenyl-2-styrylpyrrolidine The crude material (91:9 *Z*:*E* by GCMS) obtained from the reaction that contains two photocatalysts was purified by reverse phase flash chromatography using water:acetonitrile (0 % water for 10 cv and ramped slowly to 100 % acetontile for 10-40 cv and then held at 100% acetonitrile 40-50 cv) on a 28 g C18 column to afford (*Z*)-1-phenyl-2-styrylpyrrolidine in 94% yield (117 mg, 0.47 mmol) as yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.27 (m, 5H), 7.12 (td, *J* = 7.2, 1.9 Hz, 2H), 6.72 – 6.65 (m, 1H), 6.55 (d, *J* = 11.7 Hz, 1H), 6.45 – 6.36 (m, 2H), 5.68 (dd, *J* = 11.8, 9.2 Hz, 1H), 4.74 – 4.53 (m, 1H), 3.64 – 3.50 (m, 1H), 3.34-3.26 (m, 1H), 2.47 – 2.31 (m, 1H), 2.24 – 1.85 (m, 3H).

Photocatalytic C-F Alkenylation

General procedure A for the photocatalytic C-F Alkenylation reaction

An NMR tube was charged with fluoroarenes (0.1 mmol, 1.0 equiv), alkyne (0.6 mmol, 6.0 equiv), *N*,*N*-diisopropylethylamine (0.5-3 equiv, amine added portionwise and starting with 0.25 equiv), fac-tris(2- phenyl pyridinato- C^2 , N) Iridium(III) (Ir(ppy)₃) (0.25 mM, 1 mL in MeCN), and a sealed glass capillary containing C₆D₆. It was then capped with NMR septum (Ace glass, part no. 9096-25). When reaction was run in greater than 0.1 mmol of fluoroarenes, more than one NMR tube was used to set up reaction and each NMR tube had 1 mL of reaction mixture. The reaction mixture was degassed via Ar bubbling for 15 min at 0 °C (to avoid evaporation of N,Ndiisopropylethylamine) and then placed in a light bath (vide supra) such that the lower portion of the tube was submerged under the water bath which was maintained at 0 °C. The reaction was monitored periodically by ¹⁹F NMR. At the start of the reaction only 0.25 equiv of amine was added to the reaction which was monitored by ¹⁹F NMR. After 7-8 h, more amine (0.25 equiv) was added and the reaction was again degassed, and resubmerged in the light bath. This process was repeated until the complete consumption of starting material was observed by ¹⁹F NMR. The CH₃CN was removed via rotavap. The residue was treated with deionized water (2 mL) and extracted with DCM (3 x 1 mL). The organic portions were combined and dried with anhydrous MgSO₄. The crude product was concentrated *in vacuo* and purified by normal phase or reverse phase chromatography.

General procedure B for the photocatalytic C-F Alkenylation reaction followed by isomerization

An NMR tube was charged with purified alkenylated product (0.1 mmol, 1.0 equiv, *fac*-tris[2-(4-fluorophenyl)pyridinato- C^2 , N)]]iridium(III) (Ir(Fppy)₃) (0.25 mol%, 0.0002 mmol), DMF (0.5 mL),), sealed glass capillary containing C₆D₆ and was capped with NMR septum (Ace glass, part no. 9096-25). and placed in a light bath (*vide supra*) such that the lower portion of the tube was submerged under the water bath which was maintained at 65 °C. Isomerization reaction was monitored by ¹⁹F NMR. After completion of reaction, reaction mixture was diluted with ether (3 mL) and washed with water (4x2 mL), dried with anhydrous MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by normal phase or reverse phase chromatography.

General procedure C for the photocatalytic C-F alkenylation reaction to obtain Z-isomer

The reaction procedure is the same as **General procedure A**, except the photocatalyst *fac*-tris[2-(4-fluorophenyl)pyridinato- C^2 , N)]]iridium(III) (Ir(Fppy)_3) instead of Ir(ppy)_3 used. In some cases to get better Z:E ratio, isomerization reaction was carried out after the removal of acetonitrile, excess volatile alkyne and amine, in DMF at 65 °C.

General procedure D for the photocatalytic C-F alkenylation reaction to obtain E-isomer

The reaction procedure is the same as **General procedure A**, except the photocatalyst *fac*-tris[2-(4-*tert*-butylphenyl)pyridinato- C^2 , N]iridium(III) (Ir(*t*bppy)₃) instead of Ir(ppy)3 used.

General procedure E for the photocatalytic C-F alkenylation reaction

The reaction procedure is the same as **General procedure A**, except the alkyne (1 equiv), perfluoroarenes (3 equiv) used.

Optimization of phtocatalytic reaction with different photocatalysts

^aDetermined by ¹⁹F NMR. ^bFull conversion.

Catalysts	Screening		-	Time h
Entry	Catalysts	2a/2a'	Conversion to the product ^a	Time, n
1.	lr(ppy) ₃	5	67/70	17/47 ^b
2.	Ir(CF ₃ ppy) ₃	5.4	38/57	17/47
3.	lr(Fppy) ₃	5.4	37/65	17/47
4.	lr(dFppy) ₃	5.8	9/18	17/47
5.	lr(<i>t</i> Buppy) ₃	4.9	54/74	17/47
6.	lr(dF(CF ₃)ppy) ₂ (phen)PF ₆	1.7	5	47
7.	lr(dF(CF ₃)ppy) ₂ (bpy)PF ₆	4.7	27/45	17/47
8.	lr(dF(CF ₃)ppy) ₂ (dtbbpy)PF ₆	5	24/39	17/47
9.	lr(dFppy) ₂ (bpy)PF ₆	4.3	20/36	17/47
10.	lr(dFppy) ₂ (dtbbpy)PF ₆	5	34/44	17/47
11.	lr(Fppy) ₂ (bpy)PF ₆	5.7	14/22	17/47
12.	lr(Fppy) ₂ (dtbbpy)PF ₆	3.8	17/33	17/47

Optimization of Isomerization reaction

a. analysis was done using 19 F NMR

	Catalysts		
Entry	(triplet state energy)	time	ratio Z:E ^a
1.	lr(ppy) ₃ (55.2 Kcal/mol)	begin 40 min	1:0.85 1:0.89
2.	<mark>lr(Fppy)₃</mark> (58.6 Kcal/mol)	begin 40 min 18 h	1:0.84 1:0.88 1:0.84 1:0.68
3.	lr(dFppy) ₃ (60.1 Kcal/mol)	begin 40 min 18 h	1:0.87 1:0.91 1:0.82
4.	lr(CF₃dFppy)₂bpy (60.4 Kcal/mol)	begin 40 min 18 h	1:0.86 1:0.86 1:0.87
5.	lr(Fppy) ₂ bpy (51.4 Kcal/mol)	begin 40 min 18 h	1:0.88 1:0.88 1:0.87
6.	lr(tBuppy) ₃ (54.5 Kcal/mol)	begin 40 min 18 h	1:0.89 1:0.88 1:0.86
7.	Ir(CF ₃ ppy) ₃ (56.4 Kcal/mol)	begin 40 min 18 h	1:0.87 1:0.87 1:0.86
8.	$Ir(ppy)_3$ @60 °C and in DMF instead of rt and MeCN	begin 45 min 15 h 35 h	1:0.89 1:0.89 1:0.59 1:0.44
9.	lr(Fppy) ₃ @60 ^o C instead of rt and in DMF instead of rt and MeCN	60 n begin 45 min 15 h	1:0.35 1:0.87 1:0.53 1:0.06
10.	lr(dFppy) ₃ @60 ^o C instead of rt_and in DMF instead of rt and MeCN	begin 45 min 15 h 35 h	1:0.89 1:0.85 1:0.55 1:0.34
11.	no catalyst @60 °C instead of rt_and in DMF instead of rt and MeCN	60 h na	1:0.23 na

Started with E or Z isomer for isomerization reaction:

Two isomers were separated by running prep tlc using hexane as a solvent and then performed isomerization reaction on each isomers. a. ¹⁹F NMR was used for analysis.

		time	Z:E ratio ^a
F	lr(Fppy) ₃ 0.3 mol%	begin	1:0.04
FNF	@ 60 °C, DMF 0.2 M	50 min 16 h 40 h	1:0.05 1:0.04 1:0.03
Z-isomer			
\frown			
		time	Z:E ratio ^a
F	Ir (Fppy)₃ 0.3 mol%	begin 50 min	0.03:1 1:0 71
F N F	@ 60 °C, DMF 0.2 M	16 h	1:0.02

E-isomer

Optimization of isomerization reaction with various catalyst on disubstituted alkene

HC				но	
E J		catalyst 0.3 m	ol% ►		ОН
		DMF (0.2M), 60	O°C	F	F
				F N F	F N F
	Catalysts			E-Isomer	<u> </u>
Entry	(triplet state e	energy)	Time, ł	ו	Z:E ratio ^a
1.	lr(ppy) ₃ 55.2 kcal/mol		begin 18 h 35 h		1:1.19 1:0.41 1:0.33
2.	lr(Fppy) ₃ 58.6 kcal/mol		begin 18 h		1:1.19 1:0.10
3.	lr(CF ₃ ppy) ₃ 56.4 kcal/mol		begin 18 h 35 h		1:1.19 1:0.23 1:0.19
4.	lr(dFppy) ₃ 60.1 kcal/mol		begin 18 h		1:1.19 1:0.07
5.	lr(<i>t</i> Buppy) ₃ 54.5 kcal/mol		begin 18 h 35 h 60 h		1:1.19 1:0.65 1:0.52 1:0.40
6.	lr(CF ₃ dFppy) ₂ d 60 kcal/mol	tbbpy	begin 18 h 35 h		1:1.16 1:0.11 1:0.08
7.	Ir(Fppy) ₂ bpy 51.4 kcal/mol		begin 18 h 35 h 60 h		1:1.19 1:0.68 1:0.52 1:0.40

.Electron and energy transfer study with several catalysts. a. ¹⁹F NMR was used for analysis of conversion to product as well as Z:E ratio. ¹⁹F NMR spectrum containing both isomers is on page S110

F F N 1 eq	F + F F 6 equiv	Cat 0.25 mo DIPEA (incremental ad Blue LEDs, MeCN(0.1M 0 °C	l% dition) Ar M)	T-isomer E-isc	F F omer
Entry	Catalysts	DIPEA equiv	time	conversion to product	% ^a Z:E ratio ^a
1.	lr(ppy) ₃ cat 3	0.5 equiv 1.0 equiv	22 h 39 h	72 87	1:8 1:2.7
2.	Ir(CF ₃ ppy) ₃ cat 4	0.5 equiv 1.0 equiv 1.5 equiv	20 h 39 h 59 h	13% 19% 33%	0:1 1:26 1:17 3
3.	lr(Fppy) ₃ cat 5	0.5 equiv 1.0 equiv 1.5 equiv	20 h 39 h 59 h	8% 15% 22%	2:1 2:1
4.	lr(<i>t</i> Buppy) ₃ cat 2	0.5 equiv 1.0 equiv 1.5 equiv	20 h 39 h 59 h	17% 23% 32%	2.1:1 0:1 0:1
5.	Ir(CF ₃ dFppy) ₂ dtbbpy cat 6	0.5 equiv 1.0 equiv 1.5 equiv	20 h 39 h	16% 29%	1:50 0:1 1:22.5
6.	lr(Fppy) ₂ bpy cat 1	0.5 equiv 1.0 equiv 1.5 equiv	59 h 20 h 39 h 59 h	40% 16% 28% 25%	1:30 1:9 1:6 1:4 9
7.	lr(dFppy) ₃ cat 7	1.0 equiv 1.5 equiv	40 h 66 h	11% 21%	2.3:1 2.1:1

Quenching study on E- and Z- of 4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine with catalysts 2, 3 and 5

2.5 μ M solutions of 2, 3 and 5 catalysts were prepared in acetonitrile. 50 mM stock solutions of E and Z- isomers of 4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine were prepared in acetonitrile. 50 mM of E or Z- isomer of 4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine (2 mL) was taken in a vial. 1 mL of this solution was transferred to the second vial and diluted with 1 mL of acetonitrile. 1 mL of this diluted solution was transferred to the third vial and this way a series of dilution was performed. After that 2.5 μ M of catalyst (1 mL) solution was added to all the vials. The solution was mixed properly and fluorescence was measured. Catalyst 2,3, and 5 were excited at 390 nm, 385 nm and 380 nm respectively. The emission was observed at 520 nm, 516 nm, and 485 nm for catalysts 2,3, and 5 respectively.

Io = emission in the absence of quencher I = emission in the presence of quencher

Alkenylation study with internal alkynes

НÓ

Synthesis of S-3a (methyl (Z)-2,3,5,6-tetrafluoro-4-(2-(1-hydroxycyclopentyl)vinyl)benzoate)

The **General procedure A** was followed using methyl 2,3,4,5,6pentafluorobenzoate (89 μ L, 0.6 mmol, 1 equiv), 1-ethynylcyclopentan-1-ol (412 μ L, 3.6 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (78 μ L, 0.45 mmol, 0.75 equiv) and 6.0 mL of stock solution of Ir(ppy)3 (0.9 mg, 0.0015 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : ethyl acetate (0-5% EtOAc for 30 cv and ramped

to 100% EtOAc for 30-45 cv and then held at 100% EtOAc 45-50 cv), on a 24 g silica column to afford **S-3a** in 68% yield (129 mg, 0.41 mmol) as a white solid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -138.38 – -138.70 (m, 2F), -141.01 – -141.33 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 6.11 (d, J = 12.2 Hz, 1H), 6.01 (dt, J = 12.2, 1.4 Hz, 1H), 3.96 (s, 3H), 1.77 (m, 8H), 1.02 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.5, 145.2, 145.1 (ddt, J = 84.5, 13.2, 5.1 Hz), 142.6 (ddt, J = 74.1, 14.0, 4.9 Hz), 121.9 (t, J = 19.1 Hz), 110.9, 110.4 (t, J = 15.6 Hz), 83.0, 53.1, 40.8, 23.6. FT-IR cm⁻¹ 3501, 3024, 2979, 1640, 1481. GC/MS (m/z, relative intensity) 318 (M⁺, 10), 289 (20), 97 (100), 41 (70). HRMS (ESI⁺) *m*/*z* calcd. C₁₅H₁₄F₄O₃Na: 341.0777; found [M+Na]⁺ 341.0763. Melting point 46-48 °C.

Synthesis of S-4a ((Z)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol)

The **General procedure** C was followed using pentafluoropyridine (44 μ L, 0.4 mmol, 1 equiv), 1-ethynylcyclopentan-1-ol (274 μ L, 2.4 mmol, 6 equiv), N,N-diisopropylethylamine (140 μ L, 0.8 mmol, 2 equiv) and 4 mL of stock solution of Ir(Fppy)3 (0.7 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using 1% triethylamine buffered

hexane : ethyl acetate (0-15% EtOAc for 35 cv, ramped to 100% EtOAc for 35-45 cv and then held at 100% EtOAc for 40-50 cv), on a 12 g silica column to afford **S-4a** in 63% yield (66 mg, 0.25 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -92.7 – -93.0 (m, 2F), -140.8 – -141.2 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 6.15 (d, J = 12.3 Hz, 1H), 6.00 (d, J = 12.3 Hz, 1H), 1.78 (m, 8H), 1.04 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 146.3, 144.6 – 141.5 (m), 140.9 – 137.5 (m), 133.0 – 132.4 (m), 110.5 (t, J = 2.5 Hz), 83.3, 41.1, 23.8. FT-IR cm⁻¹ 3480, 3024, 2963, 2877, 1644, 1256. GC/MS (m/z, relative intensity) 261 (M⁺, 15), 232 (50), 204 (25), 97 (100). HRMS (ESI⁺) *m*/*z* calcd. C₁₂H₁₁F₄NONH₄: 279.1121; found [M+NH₄]⁺ 279.1194.

Synthesis of S-5a (methyl (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluorobenzoate)

The **General procedure A** was followed using methyl 2,3,4,5,6pentafluorobenzoate (74 μ L, 0.5 mmol, 1 equiv), 3,3-dimethylbut-1-yne (367 μ L, 3.0 mmol, 6 equiv), N,N-diisopropylethylamine (65 μ L, 0.38 mmol, 0.75 equiv) and 5.0 mL of stock solution of Ir(ppy)3 (0.8 mg, 0.00125 mmol, 0.0025 equiv) in

CH₃CN was used. The crude material was purified by flash chromatography using water : MeCN (0-65% MeCN for 45 cv and ramped to 100 % for 45-50 then held at 100% MeCN 50-60 cv), on a 26 g C18 reverse column to afford **S-5a** in 86% yield (124 mg, 0.43 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -138.0 – -138.5 (m, 2F), -140.2 – -140.8 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.00 (d, *J* = 12.6 Hz, 1H), 5.81 (d, *J* = 12.5 Hz, 1H), 3.98 (s, 3H), 0.98 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.5, 150.1, 145.4 (ddt, *J* = 80.8, 13.0, 4.9 Hz), 143.6 – 142.1 (m), 122.1 (t, *J* = 20.0 Hz), 111.0 (t, *J* = 15.7 Hz), 108.7, 53.4, 35.0, 29.6. FT-IR cm⁻¹ 3014, 2957, 2909, 1741, 1473, 1227. GC/MS (m/z, relative intensity) 290 (M⁺, 20), 275 (60), 259 (10), 59 (75), 41 (100). HRMS (ESI⁺) *m*/*z* calcd. C₁₄H₁₄F₄O₂NH₄: 308.1274; found [M+NH₄]⁺ 308.1260.

Synthesis of S-6a (methyl (E)-4-(1-ethoxy-1-oxopent-2-en-2-yl)-2,3,5,6-tetrafluorobenzoate)

The **General procedure A** was followed using methyl 2,3,4,5,6pentafluorobenzoate (89 μ L, 0.6 mmol, 1 equiv), ethyl pent-2-ynoate (395 μ L, 3.0 mmol, 6 equiv), N,N-diisopropylethylamine (130 μ L, 0.75 mmol, 1.25 equiv) and 6.0 mL of stock solution of Ir(ppy)₃ (0.9 mg, 0.0015 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane :ethyl acetate (0-45% EtOAc for 41 cv and ramped to 100% EtOAc for 41-50 and held at 100% EtOAc for 50-60 cv), on a 24 g silica column to afford **S-6a** in 53% yield (105 mg, 0.3 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -138.2 – -138.3 (m, 2F), -139.9 – -140.0 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (t, *J* = 7.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 4.00 (s, 3H), 2.06 (p, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.07 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.3, 160.3, 153.0, 145.6 (ddt, *J* = 45.3, 13.3, 4.9 Hz), 143.1 (ddt, *J* = 37.2, 14.1, 4.7 Hz), 119.4 (t, *J* = 2.0 Hz), 118.3 (t, *J* = 19.4 Hz), 112.3 (t, *J* = 16.0 Hz), 61.7, 53.5, 23.9, 14.2, 12.5. FT-IR cm⁻¹ 2981, 1714, 1473, 1302. GC/MS (m/z, relative intensity) 334 (M⁺, 30), 306 (30), 261 (60), 59 (100), 43 (80). HRMS (ESI⁺) *m/z* calcd. C₁₅H₁₄F₅O₄Na: 357.0726; found [M+Na]⁺ 357.0708.

Synthesis of S-7a (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine

F N F F The General procedure C was followed using pentafluoropyridine (44 μ L, 0.40 mmol, 1 equiv), 3,3-dimethylbut-1-yne (293 μ L, 2.4 mmol, 6 equiv), *N*,*N*diisopropylethylamine (60 μ L, 0.34 mmol, 0.86 equiv) and 4 mL of stock solution of Ir(Fppy)₃ (0.6 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. After removal of excess amine, and alkyne, the crude material was resubjected to isomerization reaction with DMF (2 mL) at 65 °C. The crude product was purified by flash chromatography using hexane : DCM (0% DCM for 6 cv, ramped to 100% DCM for 6-16 cv and then held at 100% DCM for 16-20 cv), on a 4 g silica column to afford **S-7a** in 85% yield (79 mg, 0.34 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.4 – -91.9 (m, 2F), -140.4 – -140.6 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.06 (d, *J* = 12.8 Hz, 1H), 5.81 (d, *J* = 12.7 Hz, 1H), 1.00 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.7, 144.8 – 141.5 (m), 140.9 – 137.4 (m), 133.0 – 132.0 (m), 108.1 (t, *J* = 2.4 Hz), 35.0, 29.3. FT-IR cm⁻¹ 3022, 2965, 2877, 1639, 1409, 1256. GC/MS (m/z, relative intensity) 233 (M⁺, 20), 218 (60), 198 (30), 41 (100). HRMS (ESI⁺) *m/z* calcd. C₁₁H₁₁F₄NNH₄: 251.1171; found [M+NH₄]⁺251.1246.

Synthesis of S-8a ((Z)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine)

The **General procedure C** was followed using pentafluoropyridine (44 μ L, 0.40 mmol, 1 equiv), 3-methylbut-1-yne (245 μ L, 2.4 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (139 μ L, 0.8 mmol, 2.0 equiv) and 4.0 mL of stock solution of Ir(Fppy)₃ (0.6 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude

material was purified by flash chromatography using hexane : ethyl acetate (0%EtOAc for 7 cv, ramped to 100% EtOAc for 7-10 cv and then held at 100% EtOAc for 10-14 cv) on a 4 g silica column to afford **S-8a** in 74% yield (65 mg, 0.3 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.4 – -91.9 (m, 2F), -141.3 – -142.0 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.03 – 5.88 (m, 2H), 2.32 (m, 1H), 1.02 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.3, 144.9 – 141.7 (m), 140.9 – 137.2 (m), 130.4 (td, *J* = 17.5, 16.9, 3.0 Hz), 109.5 (t, *J* = 2.5 Hz), 29.9, 22.0. FT-IR cm⁻¹ 2971, 2874, 1647, 1478. GC/MS (m/z, relative intensity) 219

 $(M^+, 25), 204(35), 184 (35), 164 (30), 56 (100), 39 (70).$ HRMS (ESI⁺) *m*/*z* calcd. C₁₀H₉F₄NNH₄: 237.1015; found [M+NH₄]⁺ 237.1091.

Synthesis of S-9a ((Z)-*N*-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)-4-(trifluoromethyl)phenyl)acetamide)

The **General procedure C** was followed using *N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl) acetamide (110 mg, 0.4 mmol, 1 equiv), pent-1-yn-3-ol (227 μ L, 2.4 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (60 μ L, 0.35 mmol, 1.15 equiv) and 4.0 mL of stock solution of Ir(Fppy)₃ (0.7 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified

by flash chromatography using hexane : ethyl acetate (0-18 % EtOAc for 28 cv, ramped to 100 % EtOAc for 28-40 cv and then held at 100% EtOAc for 40-45 cv), on a 12 g silica column to afford **S-9a** in 51% yield (70 mg, 0.21 mmol) as a yellow highly viscous liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -55.08 (dd, J = 25.7, 3.1 Hz, 3F), -119.54 (d, J = 13.3 Hz, 1F), -137.29 (d, J = 21.5 Hz, 1F), -139.64 – -140.01 (m, 1F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.22 (d, J = 10.6 Hz, 1H), 5.92 (dd, J = 11.5, 8.9 Hz, 1H), 3.89 (q, J = 7.4 Hz, 1H), 2.22 (s, 3H), 1.51 (dtt, J = 38.0, 13.8, 6.9 Hz, 3H), 0.81 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 149.2 (d, J = 244.1 Hz), 146.8 (ddd, J = 86.1, 15.2, 4.1 Hz), 144.3 (ddd, J = 82.0, 15.6, 4.6 Hz), 139.8, 123.8 – 120.6 (m), 119.1 (dd, J = 19.9, 13.2 Hz), 118.4 – 117.6 (m), 118.0, 116.5 – 115.0 (m), 70.5, 29.5, 23.1, 9.3. FT-IR cm⁻¹ 3437, 3249, 3193, 3027, 2968, 2877, 1682, 1500, 1454, 1371, 1315. GC/MS (m/z, relative intensity) 341 (M⁺-29, 5), 292 (60), 250 (20), 202 (15), 46 (100). HRMS (ESI⁺) m/z calcd. C₁₄H₁₃F₆NO₂Na: 364.0748; found [M+Na]⁺ 364.0748.

Synthesis of S-10a (((Z)-1-(2-(perfluorophenyl)vinyl)cyclopentan-1-ol)

The **General procedure C** was followed using hexafluorobenzene (58 μ L, 0.5 mmol, 1 equiv), 1-ethynylcyclopentan-1-ol (343 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (261 μ L, 1.5 mmol, 3.0 equiv) and 5.0 mL of stock solution of Ir(Fppy)₃ (0.9 mg, 0.00125 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : ether(0-10% ether for 25 cv, ramped to 100% ether for 25-32 cv and then held

at 100% ether for 32-40 cv), on a 12 g silica column followed by prep tlc in hexane to afford **S-10a** in 61% yield (85 mg, 0.31 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -139.4 (dt, J = 23.2, 6.4 Hz, 2F), -157.3 (td, J = 20.9, 4.6 Hz, 1F), -163.7 (tt, J = 22.1, 6.4 Hz, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.09 (dd, J = 12.1, 6.4 Hz, 1H), 5.98 (dd, J = 12.4, 5.0 Hz, 1H), 1.90 – 1.65 (m, 8H), 1.01 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0, 143.0 – 141.0 (m), 139.3 – 138.1 (m), 136.5 – 135.7 (m), 113.6 – 112.9 (m), 110.7, 83.1, 41.0, 23.7. FT-IR cm⁻¹3480, 2959, 2876, 1518, 1492. GC/MS (m/z, relative intensity) 278 (M⁺, 20), 249 (40),

221 (30), 181 (30), 97 (100), 41 (80).). HRMS (ESI⁺) m/z calcd. C₁₃H₁₂F₅O: 279.0808; found [M+H]⁺279.0535.

Synthesis of S-11a ((1S,2S,4R)-1,7,7-trimethyl-2-((Z)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol)

The **General procedure B** was followed using pentafluoropyridine (55 μ L, 0.50 mmol, 1 equiv), (1S,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (534 mg, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (43 μ L, 0.25 mmol, 0.5 equiv) and 5.0 mL of stock solution of Ir(Fppy)₃ (0.2 mg, 0.0002 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by reverse phase chromatography using water:acetonitrile (0-75% MeCN for 30 cv, ramped to 100% MeCN and then held at 100% MeCN for 35-50 cv), on a 26 g of C18

column to afford **S-11a** in 68% yield (112 mg, 0.34 mmol) as a colorless liquid. After isolation the compound (112 mg, 0.34 mmol) was resubjected to isomerization reaction in DMF (1.7, mL) with Ir(Fppy)₃ (1.1 mg, 0.0015 mmol, 0.004 equiv) to obtain Z-isomer in quantitative yield as a yellow solid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -90.7 – -91.2 (m, 2F), -140.9 – -141.5 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.14 (d, *J* = 11.4 Hz, 1H), 5.76 (t, *J* = 11.2 Hz, 1H), 2.57 (t, *J* = 9.4 Hz, 1H), 2.49 – 2.36 (m, 2H), 2.16 (t, *J* = 4.6 Hz, 1H), 1.85 (d, *J* = 18.4 Hz, 1H), 1.24 (dd, *J* = 13.0, 4.3 Hz, 2H), 0.96 (s, 3H), 0.84 (s, 3H), 0.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.6 – 141.7 (m), 142.8, 139.2 (dd, *J* = 258.0, 33.8 Hz), 129.8 (t, *J* = 16.9 Hz), 114.4 (t, *J* = 2.4 Hz), 62.8, 48.3, 44.3, 42.5, 42.4, 34.7, 20.3, 19.4, 8.1. FT-IR cm⁻¹ 2949, 2872, 1650, 1462, 1414. GC/MS (m/z, relative intensity) 327 (M⁺-2, 10), 244 (20), 124 (60), 98 (100), 41 (60). HRMS (ESI⁺) *m*/*z* calcd. C₁₇H₂₀F₄NO: 330.1481; found [M+H]⁺ 330.1403. Melting point 100-103 °C

Synthesis of S-12a (methyl (Z)-2,3,5,6-tetrafluoro-4-(3-hydroxypent-1-en-1-yl)benzoate)

The **General procedure A** was followed using methyl 2,3,4,5,6pentafluorobenzoate (74 μ L, 0.50 mmol, 1 equiv), pent-1-yn-3-ol (258 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (100 μ L, 0.58 mmol, 1.2 equiv) and 5.0 mL of stock solution of Ir(ppy)₃ (0.7 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : ether (0-30% ether for 40 cv, ramped to 100% ether and then held

at 100% ether for 40-50 cv) on a 24 g silica column to afford **S-12a** in 72% yield (105 mg, 0.36 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -139.3 – -139.5 (m, 2F), -139.5 – -139.7 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.19 (d, J = 11.6 Hz, 1H), 6.07 (ddd, J = 11.2, 9.2, 1.3 Hz, 1H), 4.04 (q, J = 7.7 Hz, 1H), 3.99 (s, 3H), 1.60 (m, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.3, 146.3 – 144.7 (m), 143.7 – 142.4 (m), 142.4, 119.5 (t, J = 17.8 Hz), 114.0, 111.6 (t, J = 15.5 Hz), 71.0, 53.5, 29.5, 9.6. FT-IR cm⁻¹ 3399, 3030,

2973, 1741, 1476, 1315. GC/MS (m/z, relative intensity) 292 (M+, 5), 263 (20), 243 (35), 57 (100). HRMS (ESI⁺) *m/z* calcd. C₁₃H₁₃F₄O₃: 293.0801; found [M+H]⁺ 293.0990.

Synthesis of S-13a ((E)-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)but-2-ene-1,4-diol)

The **General procedure C** was followed using 1,2,3,4,5-pentafluoro-6-(trifluoromethyl)benzene (65 μ L, 0.5 mmol, 1 equiv), but-2-yne-1,4-diol (258 mg, 3.0 mmol, 6.0 equiv), *N*,*N*-diisopropylethylamine (75 μ L, 0.43 mmol, 0.86 equiv) and 5.0 mL of stock solution of Ir(Fppy)₃ (0.9 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash

chromatography using DCM:MeOH (0% MeOH for 45 cv, ramped to 20% MeOH and then held at 20% MeOH for 45-60 cv) on a 24 g silica column to afford **S-13a** in 63% yield (76 mg, 0.25 mmol) as a white solid. ¹⁹F NMR (376 MHz, Acetonitrile- d_3) δ -57.2 (t, J = 21.8 Hz, 3F), -140.2 (td, J = 15.8, 6.4 Hz, 2F), -143.3 – -143.9 (m, 2F). ¹H NMR (400 MHz, Acetonitrile- d_3) δ 6.20 (t, J = 6.2 Hz, 1H), 4.20 (d, J = 5.1 Hz, 2H), 4.00 – 3.81 (m, 2H), 3.20 (t, J = 6.1 Hz, 1H), 2.87 (t, J = 5.5 Hz, 1H). ¹³C NMR (101 MHz, Acetonitrile- d_3) δ 146.7 – 146.0 (m), 144.2 – 143.5 (m), 134.6, 126.2 – 118.0 (m, supposed to be q one peak could not observe it might be under CD₃CN peak), 128.3, 123.2 (t, J = 20.4 Hz), 109.6 – 108.2 (m), 65.0, 59.9. FT-IR cm⁻¹ 3271, 2963, 2872, 1347. GC/MS (m/z, relative intensity) 286 (M⁺ -18, 30), 273 (20), 258 (100), 169 (40). HRMS (ESI⁺) m/z calcd. C₁₁H₇F₇O₂Na: 327.0232; found [M+Na]⁺ 327.0069. Melting point 90-92 °C.

Synthesis of S-14a ((Z)-2,3,5,6-tetrafluoro-4-(oct-4-en-4-yl)pyridine)

The **General procedure C** was followed using pentafluoropyridine (11 μ L, 0.10 mmol, 1 equiv), oct-4-yne (88 μ L, 0.6 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (13 μ L, 0.075 mmol, 0.75 equiv) and 1.0 mL of stock solution of Ir(Fppy)₃ (0.18 mg, 0.00025 mmol, 0.0025 equiv) in CH₃CN was

used. After removal of excess amine, and alkyne, the crude material was resubjected to isomerization reaction with DMF (0.5 mL) at 65 °C. After completion of reaction, extraction was done in hexane (2 mL) and washed with water (5x1 mL). Hexane portion was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude material was passed through a silica plug and the compound was eluted with hexane to afford **S-14a** in 81% yield (21 mg, 0.08 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -88.1 – -96.3 (m, 2F), -139.0 – -144.9 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.82 (t, *J* = 7.1 Hz, 1H), 2.31 (t, *J* = 7.6 Hz, 2H), 1.80 (q, *J* = 6.6 Hz, 2H), 1.41.1.31 (m, 4H), 0.90 (td, *J* = 7.3, 2.4 Hz, 3H), 0.84 (td, *J* = 7.4, 2.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.2 – 141.9 (m), 141.1 – 137.5 (m), 134.8, 134.7 – 134.0 (m), 126.3, 38.8, 31.9, 22.3, 21.3, 13.7, 13.5. FT-IR cm⁻¹ 2965, 2874, 1642, 1462. GC/MS (m/z, relative intensity) 261 (M+, 15), 219 (20), 191 (60), 170 (35), 41 (100). HRMS (ESI⁺) *m/z* calcd. C₁₃H₁₅F₄N: 261.1141; found [M]⁺ 261.1089.

Synthesis of S-15a (methyl (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate)

The **General procedure A** was followed using 2 methyl 2,3,4,5,6pentafluorobenzoate (60 μ L, 0.4 mmol, 1 equiv), cyclohexene (276 μ L, 2.4 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (52 μ L, 0.3 mmol, 0.75 equiv) and 4.0 mL of stock solution of Ir(ppy)₃ (0.6 mg, 0.001 mmol, 0.0025 equiv)

Me in CH₃CN was used. The crude material was purified by flash chromatography using water:acetonitrile (0-75% MeCN for 45 cv and ramped to 100% MeCN and then held at 100% MeCN for 45-50 cv) on a 26 g C18 column to afford **S-15a** in 82% yield (95 mg, 0.3 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -139.0 – -139.2 (m, 2F), -140.3 – -140.5 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.08 (m, 2H), 3.98 (s, 3H), 2.03 (q, *J* = 7.2, 2H), 1.40 (p, *J* = 7.0 Hz, 2H), 1.30 (h, *J* = 7.0 Hz, 2H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.5, 146.3 – 144.8 (m), 143.7 – 142.2 (m), 141.8, 120.4 (t, *J* = 18.7 Hz), 112.8 (t, *J* = 2.3 Hz), 110.9 (t, *J* = 15.7 Hz), 53.3 (d, *J* = 1.4 Hz), 31.0, 30.0 (t, *J* = 2.1 Hz), 22.4, 14.0. FT-IR cm⁻¹ 3027, 2955, 2864, 1736, 1468, 1433. GC/MS (m/z, relative intensity) 290 (M⁺, 5), 234 (85), 203 (70), 41 (100). HRMS (ESI⁺) *m/z* calcd. C₁₄H₁₄F₄O2NH₄: 308.1274; found [M+NH₄]⁺ 308.1261.

Synthesis of S-16a ((Z)-4-(6-chlorohex-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

CL

The **General procedure C** was followed using pentafluoropyridine (55 μ L, 0.50 mmol, 1 equiv), 6-chlorohex-1-yne (364 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (152 μ L, 0.88 mmol, 1.75 equiv) and 5.0 mL of stock solution of Ir(Fppy)₃ (0.9 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was

used. After removal of excess amine, and alkyne, the crude material was resubjected to isomerization reaction with DMF (2.5 mL) at 65 °C. The crude material was purified by flash chromatography using hexane : ethyl acetate (0% EtOAc for 25 cv, ramped to 100% EtOAc and then held at 100% EtOAc for 30-35 cv) on a 12 g silica column to afford **S-16a** in 64% yield (86 mg, 0.32 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.4 m, 2F), -141.1 – -141.5 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.20 – 6.15 (m, 2H), 3.52 (t, *J* = 6.4 Hz, 2H), 2.18 – 2.04 (m, 2H), 1.77 (dt, *J* = 12.6, 6.3 Hz, 2H), 1.62 (p, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0 – 142.1 (m), 142.1, 139.0 (dd, *J* = 257.8, 33.5 Hz), 130.3 – 129.7 (m), 113.0 (t, *J* = 2.5 Hz), 44.6, 32.0, 29.5 (d, *J* = 2.4 Hz), 25.9. FT-IR cm⁻¹ 3032, 2941, 2869, 1644, 1468. GC/MS (m/z, relative intensity) 267 (M⁺, 5), 232 (5), 177 (85), 41 (100). HRMS (ESI⁺) *m/z* calcd. C₁₁H₁₀ClF₄NNH₄: 285.0782; found [M+NH₄]⁺ 285.0915.

Synthesis of S-17a (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)pyridine

The **General procedure C** was followed using pentafluoropyridine (55 μ L, 0.5 mmol, 1 equiv), hex-1-yne (346 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (21 μ L, 0.12 mmol, 1.2 equiv) and 4.0 mL of stock solution of Ir(Fppy)₃ (0.9 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was

used. After removal of excess amine, and alkyne, the crude material was resubjected to isomerization reaction with DMF (2.5 mL) at 65 °C. The crude material was purified by flash chromatography using hexane : EtOAc (0% EtOAc for 6 cv, ramped to 100% EtOAc and then held at 100% EtOAc for 10-14 cv), on a 4 g silica column to afford **S-17a** in 66% yield (77 mg, 0.33 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.7 (m, 2F), -141.1 – -141.8 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.21 – 5.97 (m, 2H), 1.98 (q, *J* = 7.3 Hz, 2H), 1.35 (p, *J* = 7.1 Hz), 1.24 (h, *J* = 7.2 Hz, 2H), 0.80 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.1 – 142.1 (m), 143.3, 139.2 (dd, *J* = 258.0, 33.5 Hz), 130.5 (tt, *J* = 17.2, 3.3 Hz), 112.4 (t, *J* = 2.5 Hz), 30.9, 30.2 (t, *J* = 2.3 Hz), 22.4, 14.0. FT-IR cm⁻¹ 2965, 2866, 1639, 1253. GC/MS (m/z, relative intensity) 233 (M⁺, 15), 191 (5), 177 (80), 58 (100), 41 (100). HRMS (ESI⁺) *m/z* calcd. C₁₁H₁₂F₄N: 234.0906; found [M+H]⁺ 234.0216.

Synthesis of S-18a (methyl (Z)-4-(2-ethoxyvinyl)-2,3,5,6-tetrafluorobenzoate)

The **General procedure A** was followed using methyl 2,3,4,5,6pentafluorobenzoate (66 μ L, 0.45 mmol, 1 equiv), ethoxyethyne (526 μ L, 2.7 mmol, 6 equiv), N,N-diisopropylethylamine (117 μ L, 0.68 mmol, 1.5 equiv) and 4.5 mL of stock solution of Ir(ppy)3 (0.7 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : EtOAc (0-3% EtOAc for 40 cv and ramped to 100% EtOAc 40-50 cv and then

held at 100% EtOAc 50-60 cv), on a 24 g silica column to afford **S-18a** in 55% yield (69 mg, 0.25 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -136.9 – -137.5 (m, 2F), -141.1 – -141.5 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 6.48 (d, J = 6.7 Hz, 1H), 5.15 (dt, J = 6.8, 1.3 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.8, 151.5, 146.4 – 144.9 (m), 143.8 – 142.5 (m), 118.9 (t, J = 18.5 Hz), 109.5 (t, J = 15.7 Hz), 89.7 (t, J = 2.6 Hz), 69.7, 53.2, 15.4. FT-IR cm⁻¹ 2990, 2896, 1738, 1644, 1484, 1312. GC/MS (m/z, relative intensity) 278 (M⁺, 30), 250 (45), 220 (100), 143 (40). HRMS (ESI⁺) *m/z* calcd. C₁₂H₁₀F₄O₃Na: 301.0464; found [M+Na]⁺ 301.0449.

Synthesis of S-19a ((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((Z)-3-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)allyl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate)

The **General procedure E** was followed using 1,2,3,4,5-pentafluoro-6-(trifluoromethyl)benzene (77 μ L, 0.6 mmol, 3 equiv), 2-propynyltetra-*O*-acetyl- β -D-glucopyranoside (77 mg, 0.2 mmol, 1 equiv), *N*,*N*diisopropylethylamine (52 μ L, 0.3 mmol, 1.5 equiv) and 2.0 mL of stock solution of Ir(Fppy)₃ (0.36 mg, 0.0005 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : EtOAc (0-15% EtOAc for 60 cv, ramped to 100% EtOAc and then held at 100% EtOAc for 65-70 cv) on a 12 g silica column to afford **S-19a** in 56% yield (67 mg, 0.11 mmol) as a colorless highly viscous liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -56.3 (t, *J* = 21.7 Hz, 3F), -138.4 (td, *J* = 15.9, 6.0 Hz, 2F), -140.5 - -141.0 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.34 – 6.20 (m, 2H), 5.19 (t, *J* = 9.5 Hz, 1H), 5.08 (t, *J* = 9.3 Hz, 1H), 5.00 – 4.93 (m, 1H), 4.51 (d, *J* = 7.9 Hz, 1H), 4.36 (dd, *J* = 10.1, 5.0, 2.6 Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 170.4, 169.5, 169.4, 145.7 – 144.8 (m), 143.1 – 142.3 (m), 136.9, 122.3 – 119.4 (m), 120.0 (t, *J* = 18.1 Hz), 114.6, 100.4, 100.2 – 99.7 (m), 72.8, 72.0, 71.2, 68.4, 67.0 (t, *J* = 4.4 Hz), 61.9, 20.8, 20.75, 20.72, 20.71. FT-IR cm⁻¹ 3030, 2973, 1757, 1494, 1334. GC/MS (m/z, relative intensity) 604 (M⁺- sugar unit (-347), 10), 43 (100). HRMS (ESI⁺) *m/z* calcd. C₂₄H₂₃F₇O₁₀Na: 627.1077; found [M+Na]⁺ 627.1052.

Synthesis of S-20a (ethyl (Z)-(2-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)pyridin-4-yl)acetyl)glycinate)

The **General procedure C** was followed using ethyl (2-(perfluoropyridin-4yl)acetyl)glycinate (155 mg, 0.5 mmol, 1 equiv), pent-1-yn-3-ol (283 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (150 μ L, 0.86 mmol, 1.7 equiv) and 5.0 mL of stock solution of Ir(Fppy)₃ (0.9 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : ethyl acetate (0-30% EtOAc for 45 cv,

ramped to 100% EtOAc and then held at 100% EtOAc for 50-60 cv) on a 12 g silica column to afford **S-20a** in 53% yield (95 mg, 0.27 mmol) as a yellow viscous liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -72.3 (dd, *J* = 27.6, 12.8 Hz, 1F), -89.4 (dd, *J* = 22.9, 12.7 Hz, 1F), -148.2 (dd, *J* = 26.3, 24.1 Hz, 1F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.38 (s, 1H), 6.11 (d, *J* = 11.3 Hz, 1H), 6.01 (dd, *J* = 11.3, 8.6 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 4.01 (t, *J* = 5.2 Hz, 2H), 3.94 (q, *J* = 7.2 Hz, 1H), 3.80 (dd, *J* = 15.3, 1.6 Hz, 1H), 3.68 (dd, *J* = 15.2, 2.3 Hz, 1H), 3.20 (s, 1H), 1.57 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.7, 167.9, 152.0 (dd, *J* = 241.8, 11.9 Hz), 147.8 (ddd, *J* = 245.4, 17.5, 15.2 Hz), 142.4, 141.6 (ddd, *J* = 253.6, 25.6, 6.0 Hz), 138.2 (d, *J* = 12.7 Hz), 118.0 (dd, *J* = 33.6, 6.5 Hz), 117.6 (d, *J* = 3.3 Hz), 69.9, 62.0, 41.8, 35.4 – 32.0 (m), 29.2, 14.1, 9.6. FT-IR cm⁻¹3314, 2976, 2960, 1752, 1714, 1540, 1210. GC/MS (m/z, relative intensity) 360 (M+, 5), 303 (40), 257 (60), 229 (40), 200 (50), 104 (100), 57 (85). HRMS (ESI⁺) *m*/*z* calcd. C₁₆H₁₉F₃N₂O₄Na: 383.1195; found [M+Na]⁺ 383.1107.

Synthesis of S-21a ((Z)-1-(4-bromo-2,3,5,6-tetrafluorostyryl)cyclopentan-1-ol)

The **General procedure C** was followed using 1,4-dibromo-2,3,5,6tetrafluorobenzene (62 mg, 0.20 mmol, 1 equiv), 1-ethynylcyclopentan-1-ol (137 μ L, 1.2 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (104 μ L, 0.6 mmol, 3 equiv) and 2.0 mL of stock solution of Ir(Fppy)₃ (0.36 mg, 0.0005 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : DCM (0-45% DCM for 30 cv, ramped to 100% DCM and then

held at 100% DCM for 40-50 cv), on a 12 g silica column to afford **S-21a** in 78% yield (53 mg, 0.16 mmol) as a yellow liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -135.0 – -135.2 (m, 2F), -137.9 – -138.2 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.10 (d, J = 12.2 Hz, 1H), 5.97 (dt, J = 12.2, 1.4 Hz, 1H), 1.92 – 1.65 (m, 8H), 1.03 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.0 – 144.7 (m), 145.0, 143.70 – 142.28 (m), 118.1 (t, J = 19.4 Hz), 111.3, 97.9 (t, J = 22.4 Hz), 83.1, 41.0, 23.7. FT-IR cm⁻¹ 3472, 3030, 2960, 1462. GC/MS (m/z, relative intensity) 338 (M⁺-1, 25), 309 (30), 281 (30), 174 (25), 97 (100).). HRMS (ESI⁺) m/z calcd. C₁₃H₁₂BrF₄O: 339.0008; found [M+H]⁺ 339.1771.

Synthesis of S-22a (methyl 2,3,5,6-tetrafluoro-4-((Z)-6-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-6-oxohex-1-en-1-yl)benzoate)

The **General procedure E** was followed using methyl 2,3,4,5,6pentafluorobenzoate (45 µL, 0.3 mmol, 3 equiv), (1R,2R,5R)-2-isopropyl-5methylcyclohexyl hex-5-ynoate (25 mg, 0.1 mmol, 1 equiv), *N*,*N*diisopropylethylamine (83 µL, 0.48 mmol, 1.2 equiv) and 1.0 mL of stock solution of Ir(Fppy)₃ (0.18 mg, 0.00025 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : DCM (0-15% DCM for 30 cv, ramped to 100 % DCM and then held at 100% DCM for 45-50 cv) on a 12 g silica column to afford **S-22a** in 72% yield (33 mg, 0.07 mmol) as a colorless viscous liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -138.9 (td, *J* = 15.7, 4.7 Hz, 2F), -139.9 – -140.2 (m, 2F). ¹H NMR (400 MHz,

Chloroform-*d*) δ 6.25 – 6.01 (m, 2H), 4.66 (td, *J* = 10.9, 4.5 Hz, 1H), 3.98 (s, 3H), 2.28 (t, *J* = 7.5 Hz, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.94 (dq, *J* = 12.5, 3.8, 3.3 Hz, 1H), 1.87 – 1.72 (m, 3H), 1.66 (ddd, *J* = 13.4, 6.5, 3.1 Hz, 2H), 1.47 (td, *J* = 6.2, 3.2 Hz, 1H), 1.34 (ddt, *J* = 14.1, 10.9, 3.1 Hz, 1H), 1.04 (qd, *J* = 13.5, 12.8, 3.8 Hz, 2H), 0.88 (dd, *J* = 6.7, 4.3 Hz, 7H), 0.73 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8, 160.5, 146.4 – 144.7 (m), 143.8 – 142.3 (m), 140.5 (d, *J* = 7.7 Hz), 120.4 – 119.7 (m), 113.8, 111.5 – 110.7 (m), 74.3, 53.4 (d, *J* = 8.6 Hz), 47.1, 41.1 (d, *J* = 6.9 Hz), 34.6 – 34.3 (m), 34.1 (d, *J* = 8.5 Hz), 31.5, 29.6 (d, *J* = 6.1 Hz), 26.4, 24.3, 23.6, 22.1, 20.8, 16.4 FT-IR cm⁻¹3024, 2955, 2869, 1725, 1650, 1473, 1229. GC/MS (m/z, relative intensity) 458 (M⁺- 138 loss of menthol unit, 40), 288 (25), 260 (20), 138 (30), 80 (100). HRMS (ESI⁺) *m*/*z* calcd. C₂₄H₃₀F₄O₄Na: 481.1978; found [M+Na]⁺ 481.1947.

Synthesis of S-23a ((E)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

The **General procedure D** was followed using pentafluoropyridine (55 µL, 0.50 mmol, 1 equiv), 3,3-dimethylbut-1-yne (367 µL, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (174 µL, 1.0 mmol, 2 equiv) and 5.0 mL of stock solution of Ir(*t*Buppy)₃ (1.0 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : EtOAc (0% EtOAc for 15 cv, ramped to 100% EtOAc and then held at 100% EtOAc for 20-25 cv) on a 4 g silica column to afford **S-23a** in 77% yield (90 mg, 0.39 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.4 – -92.8 (m, 2F), -143.9 – -148.0 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.90 (d, *J* = 16.6 Hz, 1H), 6.32 (d, *J* = 16.6 Hz, 1H), 1.16 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.6, 143.9 (dt, *J* = 245.9, 15.7 Hz), 141.4 – 137.7 (m), 130.6 – 129.6 (m), 110.3, 35.1, 28.9. FT-IR cm⁻¹ 2963, 2880, 1636, 1476, 1315. GC/MS (m/z, relative intensity) 233 (M⁺, 20), 218 (45), 198 (30), 170 (20), 69 (40), 42 (100). HRMS (ESI⁺) *m/z* calcd. C₁₁H₁₁F₄NNH₄: 251.1171; found [M+NH₄]⁺ 251.1246.

Synthesis of S-24a (E)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine

The **General procedure D** was followed using pentafluoropyridine (22 μ L, 0.20 mmol, 1 equiv), 3-dimethylbut-1-yne (123 μ L, 1.2 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (52 μ L, 0.3 mmol, 1.5 equiv) and 2.0 mL of stock solution of Ir(*t*Buppy)₃ (0.4 mg, 0.0005 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was passed through silica pipette using hexane to afford **S-24a** in 66% yield (29 mg, 0.13 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.4 – -92.8 (m, 2F), -145.4 – -146.3 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.85 (dd, *J* = 16.4, 7.1 Hz, 1H), 6.38 (dd, *J* = 16.5, 1.3 Hz, 1H), 2.70 – 2.45 (m, 1H), 1.14 (d, *J* = 6.8 Hz, 6H). GC/MS (m/z, relative intensity) 219 (M⁺, 25), 204(50), 184 (40), 164 (35), 56 (100), 39 (70). FT-IR cm⁻¹ 2965, 1647, 1478. HRMS (ESI⁺) *m*/*z* calcd. C₁₀H₉F₄NNH₄: 237.1015; found [M+NH₄]⁺237.1090.

Synthesis of S-25a (E)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol

The **General procedure D** was followed pentafluoropyridine (44 μ L, 0.40 mmol, 1 equiv), 1-ethynylcyclopentan-1-ol (275 μ L, 2.4 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (52 μ L, 0.3 mmol, 0.75 equiv) and 4.0 mL of stock solution of Ir(*t*Buppy)₃ (0.8 mg, 0.0015 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using DCM : MeOH (0-10% MeOH for 30 cv, ramped to 20% MeOH and then held at 20% MeOH for 30-35

cv) on a 12 g basic alumina column to afford **S-25a** in 71% yield (74 mg, 0.28 mmol) as a white solid. ¹⁹F NMR (376 MHz, Methylene Chloride- d_2) δ -93.3 – -93.7 (m, 2F), -145.2 – -146.3 (m, 2F). ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 7.00 (d, J = 16.3 Hz, 1H), 6.78 (d, J = 16.3 Hz, 1H), 2.09 – 1.67 (m, 8H), 1.26 (s, 1H). ¹³C NMR (101 MHz, Methylene Chloride- d_2) δ 151.1

(t, J = 7.3 Hz), 145.2 – 142.2 (m), 141.2 – 137.9 (m), 129.6 – 129.1 (m), 111.2 (t, J = 3.0 Hz), 82.2, 40.9, 24.0. FT-IR cm⁻¹ 3397, 2952, 2874, 1744, 1481. GC/MS (m/z, relative intensity) 261 (M+, 10), 232 (15), 199 (20) 97 (45), 41 (100). HRMS (ESI⁺) m/z calcd. C₁₂H₁₁F₄NOK: 300.0414; found [M+K]⁺ 300.0473. Melting point 77-79 °C.

Synthesis of S-26a (1S,2S,4R)-1,7,7-trimethyl-2-((E)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol

'n

The **General procedure D** was followed using pentafluoropyridine (49 μ L, 0.45 mmol, 1 equiv), (1S,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (480 mg, 2.7 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (52 μ L, 0.3 mmol, 0.75 equiv) and 4.5 mL of stock solution of Ir(*t*Buppy)₃ (0.9 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : ethyl acetate (0-3% EtOAc for 25 cv, ramped to 100% EtOAc and then held at 100% EtOAc for 35-40 cv) on a 12 g silica column to

afford **S-26a** in 68% yield (101 mg, 0.31 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.1 (m, 2F), -144.9 – -145.2 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.48 – 6.31 (m, 2H), 2.79 – 2.68 (m, 1H), 2.44 (dddd, *J* = 15.7, 10.6, 8.0, 3.6 Hz, 2H), 2.21 (t, *J* = 4.6 Hz, 1H), 1.87 (d, *J* = 18.2 Hz, 1H), 1.38 (dd, *J* = 13.0, 4.3 Hz, 1H), 1.25 (s, 1H), 1.07 (s, 3H), 0.90 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.9 (t, *J* = 7.8 Hz), 145.2 – 142.1 (m), 141.0 – 137.7 (m), 128.8 – 128.4 (m), 116.0 (t, *J* = 2.9 Hz), 63.0, 48.3, 47.0, 43.9, 42.4, 34.4, 20.2, 19.2, 8.1. FT-IR cm⁻¹ 3472, 2963, 1636, 1482. GC/MS (m/z, relative intensity) 329 (M⁺-2, 10), 284 (20), 244 (20), 124 (30), 98 (100), 41 (80).). HRMS (ESI⁺) *m/z* calcd. C₁₇H₂₀F₄NO: 329.1403; found [M]⁺ 329.1370.

Synthesis of S-27 ((Z)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol)

The **General procedure A** was followed using pentafluoropyridine (55 μ L, 0.5 mmol, 1 equiv), pent-1-yn-3-ol (258 μ L, 3.0 mmol, 6 equiv), *N*,*N*-diisopropylethylamine (101 μ L, 0.58 mmol, 1.16 equiv) and 5.0 mL of stock solution of Ir(ppy)₃ (0.8 mg, 0.00125 mmol, 0.0025 equiv) in CH₃CN was used.

The crude material was purified by flash chromatography using hexane : ether(0-20% Ether for 30 cv, ramped to 100% ether and then held at 100% ether for 30-40 cv), on a 24 g silica column to afford **S-27** in 64% yield (76 mg, 0.32 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -90.8 – -91.1 (m, 2F), -141.6 – -141.8 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.27 – 6.13 (m, 2H), 4.10 (q, *J* = 7.2, 3.8 Hz, 1H), 1.81 (b, 1H), 1.76 – 1.47 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.6, 143.4 (dddd, *J* = 245.2, 16.9, 13.2, 2.9 Hz), 141.0 – 137.3 (m), 129.7 (tt, *J* = 17.0, 3.0 Hz), 113.2 (t, *J* = 2.4 Hz), 70.9 (t, *J* = 1.8 Hz), 29.4, 9.4. FT-IR cm⁻¹ 3390, 2961, 1630, 1460. GC/MS (m/z, relative intensity) 235 (M⁺-1, 5), 216 (5), 206 (70), 138 (20), 57 (100).

Synthesis of S-27a (E)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

The General procedure E was followed using pentafluoropyridine (165 µL, 1.5 mmol, 3 equiv), pent-1-yn-3-ol (45 µL, 0.50 mmol, 1 equiv), N,Ndiisopropylethylamine (101 µL, 0.58 mmol, 1.16 equiv) and 5.0 mL of stock solution of Ir(*t*Buppy)₃ (1 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. The crude material was purified by flash chromatography using hexane : DCM (0-5% EtOAc for 18 cv, ramped to 100% EtOAc then held at 100% EtOAc for 18-40 cv), on a 24 g silica column to afford S-27a in 84% yield (99 mg, 0.42 mmol) as a colorless liquid.

The General procedure D was followed using pentafluoropyridine (44 µL, 0.40 mmol, 1 equiv), μL, tert-butyldimethyl(pent-1-yn-3-yloxy)silane (476 2.4 mmol. 6 equiv). N.Ndiisopropylethylamine (70 µL, 0.4 mmol, 1.0 equiv) and 4.0 mL of stock solution of Ir(tBuppy)₃ (1 mg, 0.001 mmol, 0.0025 equiv) in CH₃CN was used. After the completion of reaction, solvent was removed. The crude material, S-27b, was dissolved in THF (2 mL) and treated with TBAF (2 mL) and stirred for 1 h at room temperature. THF was removed and the desilylated crude material was purified by prep tlc using hexane ether (70:30) to afford S-27a in 41% yield (39 mg, 0.17 mmol) as a colorless liquid.

The General procedure D was followed using pentafluoropyridine (66 µL, 0.60 mmol, 1 equiv), 2-(pent-1-yn-3-yloxy)tetrahydro-2H-pyran (600 mg, 3.6 mmol, 6 equiv), N,Ndiisopropylethylamine (130 µL, 0.75 mmol, 1.25 equiv) and 6.0 mL of stock solution of Ir(tBuppy)₃ (1.2 mg, 0.0015 mmol, 0.0025 equiv) in CH₃CN was used. After the completion of reaction solvent was removed. The crude material, S-27c, was dissoled in MeOH (2 mL) and 2M HCl (1 mL) added and then stirred overnight at room temperature. After removal of methanol, the crude material was purified by prep tlc using hexane:ether (70:30) to afford S-27a in 85% yield (120 mg, 0.51 mmol) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -91.7 – -92.2 (m, 2F), -144.7 - -145.2 (m, 2F). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 (dd, J = 16.4, 5.0 Hz, 1H), 6.64 (dd, J = 16.4, 1.6 Hz, 1H), 4.29 (b, 1H), 1.68 – 1.59 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). FT-IR cm⁻¹ 3394, 2971, 2877, 1634, 1468. GC/MS (m/z, relative intensity) 235 (M⁺, 5), 218 (5), 206 (50), 57 (100), 43 (25). HRMS (ESI⁺) m/z calcd. C₁₀H₁₀F₄NO: 236.0699; found [M+H]⁺ 236.0399.

References

- 1. J. Organomet. Chem. 2015, 776, 51.
- 2. J. Am. Chem. Soc. 2014, 136, 3002.
- 3. J.Org. Chem. 2014, 79, 10466.
- 4. Organometallics 2003, 1293
- 5. J. Org. Chem. 2002, 1308
- 6. J. Org. Chem. 2008, 9334

- 7. Tetrahedron: Asymmetry 2010, 106
- 8. J. Am. Chem. Soc. 2007, 14148
- 9. J. Am. Chem. Soc. 2001, 12736
- 10. Phys. Rev. Lett. 2003, 91, 146401
- 11. Phys. Chem. Chem. Phys. 2005, 7, 3297
- 12. Gaussian 09, Revision C.01
- 13. Eur. J. Inorg. Chem. 2010, 11, 1613
- 14. Angew. chem. Int. Ed. 2012, 51, 10329
- 15. J. Am. Chem. Soc. 2014, 136, 11602

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-3a (methyl (Z)-2,3,5,6-tetrafluoro-4-(2-(1-hydroxycyclopentyl)vinyl)benzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-3a (methyl (Z)-2,3,5,6-tetrafluoro-4-(2-(1-hydroxycyclopentyl)vinyl)benzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of 3a (methyl (Z)-2,3,5,6-tetrafluoro-4-(2-(1-hydroxycyclopentyl)vinyl)benzoate)

GC and MS of 3a (methyl (Z)-2,3,5,6-tetrafluoro-4-(2-(1hydroxycyclopentyl)vinyl)benzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-4a (Z)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-4a (Z)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-4a (Z)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol)

GC and MS of S-4a (Z)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol)

¹⁹F NMR (400 MHz, Chloroform-*d*, at rt) of S-5a (methyl (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluorobenzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-5a (methyl (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluorobenzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-5a (methyl (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluorobenzoate)

GC and MS of S-5a of S-5a (methyl (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluorobenzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-6a (methyl (E)-6-(1-ethoxy-1-oxopent-2-en-2-yl)-2,3,5,6-tetrafluorobenzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-6a (methyl (E)-4-(1-ethoxy-1-oxopent-2-en-2-yl)-2,3,5,6-tetrafluorobenzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-6a (methyl (E)-4-(1-ethoxy-1-oxopent-2-en-2-yl)-2,3,5,6-tetrafluorobenzoate)

GC and MS of S-6a (methyl (E)-4-(1-ethoxy-1-oxopent-2-en-2-yl)-2,3,5,6-tetrafluorobenzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-7a (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6tetrafluoropyridine

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-7a (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-7a (Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine

GC and MS of S-7a 3(Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-8a ((Z)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-8a ((Z)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-8a ((Z)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine)

GC and MS of S-8a ((Z)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine)

9.0 m/z

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-9a (Z)-N-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)-4-(trifluoromethyl)phenyl)acetamide)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-9a (Z)-N-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)-4-(trifluoromethyl)phenyl)acetamide)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-9a ((Z)-N-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)-4-(trifluoromethyl)phenyl)acetamide)

GC and MS of S-9a (Z)-N-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)-4-(trifluoromethyl)phenyl)acetamide)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-10a (Z)-1-(2-(perfluorophenyl)vinyl)cyclopentan-1-ol

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-10a (Z)-1-(2-(perfluorophenyl)vinyl)cyclopentan-1-ol

GC and MS of S-10a (Z)-1-(2-(perfluorophenyl)vinyl)cyclopentan-1-ol

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-11a ((1S,2S,4R)-1,7,7-trimethyl-2-((Z)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-11a ((1S,2S,4R)-1,7,7-trimethyl-2-((Z)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol)

¹³C NMR of (101 MHz, Chloroform-*d*, at rt) S-11a ((1S,2S,4R)-1,7,7-trimethyl-2-((Z)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol)

$GC \quad and \quad MS \quad of \quad S-11a \quad ((1S,2S,4R)-1,7,7-trimethyl-2-((Z)-2-(perfluoropyridin-4-yl)vinyl) bicyclo \cite{2.2.1} heptan-2-ol)$

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-12a (methyl (Z)-2,3,5,6-tetrafluoro-4-(3-hydroxypent-1-en-1-yl)benzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-12a (methyl (Z)-2,3,5,6-tetrafluoro-4-(3-hydroxypent-1-en-1-yl)benzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-12a (methyl (Z)-2,3,5,6-tetrafluoro-4-(3-hydroxypent-1-en-1-yl)benzoate)

¹⁹F NMR (376 MHz, Acetonitrile-*d*₃, at rt) of S-13a ((E)-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)but-2-ene-1,4-diol)

¹H NMR (400 MHz, Acetonitrile-*d*₃, at rt) of S-13a ((E)-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)but-2-ene-1,4-diol)

¹³C NMR (101 MHz, Acetonitrile-*d*₃, at rt) of S-13a ((E)-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)but-2-ene-1,4-diol)

GC and MS of S-13a ((E)-2-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)but-2-ene-1,4-diol)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-14a ((Z)-2,3,5,6-tetrafluoro-4-(oct-4-en-4-yl)pyridine)

¹H NMR (376 MHz, Chloroform-*d*, at rt) of S-14a ((Z)-2,3,5,6-tetrafluoro-4-(oct-4-en-4-yl)pyridine)

¹³C NMR (376 MHz, Chloroform-*d*, at rt) of S-14a ((Z)-2,3,5,6-tetrafluoro-4-(oct-4-en-4-yl)pyridine)

GC and MS of of S-14a ((Z)-2,3,5,6-tetrafluoro-4-(oct-4-en-4-yl)pyridine)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-15a (methyl (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate)

¹⁹H NMR (400 MHz, Chloroform-*d*, at rt) of S-15a (methyl (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-15a (methyl (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate)

GC and MS of S-15a (methyl (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-16a ((Z)-4-(6-chlorohex-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-16a ((Z)-4-(6-chlorohex-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-16a ((Z)-4-(6-chlorohex-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

GC and MS of S-16a ((Z)-4-(6-chlorohex-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-17a (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)pyridine

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-17a (Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)pyridine

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-17a S-(Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)pyridine

GC and MS of S-16a S-17a S-(Z)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)pyridine

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-18a (methyl (Z)-4-(2-ethoxyvinyl)-2,3,5,6-tetrafluorobenzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-18a (methyl (Z)-4-(2-ethoxyvinyl)-2,3,5,6-tetrafluorobenzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-18a (methyl (Z)-4-(2-ethoxyvinyl)-2,3,5,6-tetrafluorobenzoate

GC and MS of S-18a (methyl (Z)-4-(2-ethoxyvinyl)-2,3,5,6-tetrafluorobenzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-19a ((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((Z)-3-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)allyl)oxy)tetrahydro-2H-pyran-3,4,5triyl triacetate)

		7
		-175
		-170
		-165
98'07I	tone between the second	-160
78'07I 08'07I		-155
62.071 92'071 52'071		-150
52'001 12'001		-145
89'07L	3-00.2	-140
59'07L-J 19'07L 20'04L	±-50 <i>5</i>	-135
09'07T 85'07T		-130
74'881 07'881 /5'881		- 125
SE 8EI ZE 8EI		-120
15 851-3		(ppm)
		110
		105 -
		- 01
		- 26
		- 6
		- 22
		- 8
		- 25
L. L.		- 6
		- 29
		- 09
	≖ - £0.£	- 23
7C795-J		

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-19a ((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((Z)-3-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)allyl)oxy)tetrahydro-2H-pyran-3,4,5triyl triacetate)

¹³C NMR (151 MHz, Chloroform-*d*, at rt) of S-19a ((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((Z)-3-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)allyl)oxy)tetrahydro-2H-pyran-3,4,5triyl triacetate)

GC and MS of S-19a ((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((Z)-3-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)allyl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-20a (ethyl (Z)-(2-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)pyridin-4-yl)acetyl)glycinate

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-20a (ethyl (Z)-(2-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)pyridin-4-yl)acetyl)glycinate

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-20a (ethyl (Z)-(2-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)pyridin-4-yl)acetyl)glycinate

GC and MS of S-20a (ethyl (Z)-(2-(2,3,6-trifluoro-5-(3-hydroxypent-1-en-1-yl)pyridin-4-yl)acetyl)glycinate

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-21a (Z)-1-(4-bromo-2,3,5,6-tetrafluorostyryl)cyclopentan-1-ol

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-21a (Z)-1-(4-bromo-2,3,5,6-tetrafluorostyryl)cyclopentan-1

¹³C NMR of (101 MHz, Chloroform-*d*, at rt) S-21a (Z)-1-(4-bromo-2,3,5,6-tetrafluorostyryl)cyclopentan-1-ol

GC and MS of S-21a ((Z)-1-(4-bromo-2,3,5,6-tetrafluorostyryl)cyclopentan-1-ol

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-22a (methyl 2,3,5,6-tetrafluoro-4-((Z)-6-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-6-oxohex-1-en-1-yl)benzoate)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-22a (methyl 2,3,5,6-tetrafluoro-4-((Z)-6-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-6-oxohex-1-en-1-yl)benzoate)

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-22a (methyl 2,3,5,6-tetrafluoro-4-((Z)-6-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-6-oxohex-1-en-1-yl)benzoate)

GC and MS of S-22a (methyl 2,3,5,6-tetrafluoro-4-((Z)-6-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-6-oxohex-1-en-1-yl)benzoate)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-23a ((E)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-23a ((E)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹³C NMR (101 MHz, Chloroform-d, at rt) of S-23a ((E)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

GC and MS of S-23a ((E)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-23a and S-7a((E/Z)-4-(3,3-dimethylbut-1-en-1-yl)-2,3,5,6-tetrafluoropyridine)

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-24a (E)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-24a (E)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine

GC and MS of of S-24a (E)-2,3,5,6-tetrafluoro-4-(3-methylbut-1-en-1-yl)pyridine

¹⁹F NMR (376 MHz, Methylene Chloride-*d*₂, at rt) of S-25a (E)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol

¹H NMR (400 MHz, Methylene Chloride-*d*₂, at rt) of S-25a (E)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol

¹³C NMR (101 MHz, Methylene Chloride-*d*₂, at rt) of S-25a (E)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol

GC and MS of S-25a (E)-1-(2-(perfluoropyridin-4-yl)vinyl)cyclopentan-1-ol

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-26a (1S,2S,4R)-1,7,7-trimethyl-2-((E)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol

¹H NMR (400 MHz, Chloroform-*d*, at rt) of S-26a (1S,2S,4R)-1,7,7-trimethyl-2-((E)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-26a (1S,2S,4R)-1,7,7-trimethyl-2-((E)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol

GC and MS of S-26a (1S,2S,4R)-1,7,7-trimethyl-2-((E)-2-(perfluoropyridin-4-yl)vinyl)bicyclo[2.2.1]heptan-2-ol

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-27 (Z)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

¹H NMR (400 MHz, Chloroform-d, at rt) of S-27 (Z)-1-(perfluoropyridin-4-yl)pent-1-en-3-o

¹³C NMR (101 MHz, Chloroform-*d*, at rt) of S-27 (Z)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

¹⁹F NMR (376 MHz, Chloroform-*d*, at rt) of S-27 (E)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

¹H NMR (400 MHz, Chloroform-d, at rt) of S-27 (E)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

GC and MS of S-27a (Z)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

GC and MS of S-27a (E)-1-(perfluoropyridin-4-yl)pent-1-en-3-ol

¹H NMR (400 MHz, Chloroform-*d*, at rt) of (Z)-1-phenyl-2-styrylpyrrolidine

Calculated photocatalyst structures

Geometry optimized structures were produced using standard ground-state optimization calculations of the tested photocatalysts using Gaussian09.¹² The TPSS functional and QZVP basis set were selected due to their expected quality for describing noble metal complex geometry and energetics.¹⁰⁻¹² These gas-phase geometry optimizations were performed until variation in structure energies between optimization cycles fell below 0.059 kcal/mol (0.1 k_BT at standard temperature). Images in the 0.001 e-/Å³ electron density isosurfaces and PDB coordinates for the final molecular structures are provided below.

Cat-1, Ir(Fppy)2bpy+

HETATM	1	IR	LIG	1	0.136	-0.000	0.000	1.00	0.00	Ir
HETATM	2	С	LIG	1	-1.978	1.014	2.006	1.00	0.00	C
HETATM	3	С	LIG	1	-1.311	1.181	0.786	1.00	0.00	C
HETATM	4	С	LIG	1	-1.641	2.321	0.001	1.00	0.00	C
HETATM	5	С	LIG	1	-2.605	3.247	0.437	1.00	0.00	C
HETATM	6	С	LIG	1	-3.257	3.071	1.649	1.00	0.00	C
HETATM	7	С	LIG	1	-2.923	1.952	2.406	1.00	0.00	C
HETATM	8	Ν	LIG	1	-0.001	1.444	-1.479	1.00	0.00	N
HETATM	9	С	LIG	1	0.723	1.449	-2.620	1.00	0.00	C
HETATM	10	С	LIG	1	0.586	2.427	-3.589	1.00	0.00	C
HETATM	11	С	LIG	1	-0.340	3.452	-3.377	1.00	0.00	C
HETATM	12	С	LIG	1	-1.087	3.454	-2.210	1.00	0.00	C
HETATM	13	С	LIG	1	-0.918	2.442	-1.254	1.00	0.00	C
HETATM	14	С	LIG	1	-1.978	-1.014	-2.006	1.00	0.00	C
HETATM	15	С	LIG	1	-1.311	-1.181	-0.786	1.00	0.00	C
HETATM	16	С	LIG	1	-1.641	-2.321	-0.001	1.00	0.00	C
HETATM	17	С	LIG	1	-2.605	-3.247	-0.437	1.00	0.00	C
HETATM	18	С	LIG	1	-3.257	-3.071	-1.649	1.00	0.00	C
HETATM	19	С	LIG	1	-2.923	-1.952	-2.406	1.00	0.00	C
HETATM	20	Ν	LIG	1	-0.001	-1.444	1.479	1.00	0.00	N
HETATM	21	С	LIG	1	0.723	-1.449	2.620	1.00	0.00	C
HETATM	22	С	LIG	1	0.586	-2.427	3.589	1.00	0.00	C
HETATM	23	С	LIG	1	-0.340	-3.452	3.377	1.00	0.00	C
HETATM	24	С	LIG	1	-1.087	-3.454	2.210	1.00	0.00	C

HETATM	25	С	LIG	1	-0.918	-2.442	1.254	1.00	0.00	С
HETATM	26	С	LIG	1	1.771	-2.154	-1.587	1.00	0.00	С
HETATM	27	Ν	LIG	1	1.848	-1.058	-0.804	1.00	0.00	Ν
HETATM	28	С	LIG	1	3.077	-0.598	-0.431	1.00	0.00	С
HETATM	29	С	LIG	1	4.243	-1.245	-0.852	1.00	0.00	С
HETATM	30	С	LIG	1	4.155	-2.370	-1.663	1.00	0.00	С
HETATM	31	С	LIG	1	2.895	-2.833	-2.037	1.00	0.00	С
HETATM	32	Ν	LIG	1	1.848	1.058	0.804	1.00	0.00	N
HETATM	33	С	LIG	1	1.771	2.154	1.587	1.00	0.00	С
HETATM	34	С	LIG	1	2.895	2.833	2.037	1.00	0.00	С
HETATM	35	С	LIG	1	4.155	2.370	1.663	1.00	0.00	С
HETATM	36	С	LIG	1	4.243	1.245	0.852	1.00	0.00	С
HETATM	37	С	LIG	1	3.077	0.598	0.431	1.00	0.00	С
HETATM	38	Η	LIG	1	2.777	3.708	2.666	1.00	0.00	Н
HETATM	39	F	LIG	1	-3.553	-1.765	-3.591	1.00	0.00	F
HETATM	40	Η	LIG	1	-1.791	0.167	2.656	1.00	0.00	Н
HETATM	41	Η	LIG	1	-2.852	4.114	-0.168	1.00	0.00	Н
HETATM	42	Η	LIG	1	-4.005	3.769	2.006	1.00	0.00	Н
HETATM	43	Η	LIG	1	-1.814	4.236	-2.028	1.00	0.00	Н
HETATM	44	Η	LIG	1	-1.791	-0.167	-2.656	1.00	0.00	Н
HETATM	45	Η	LIG	1	-2.852	-4.114	0.168	1.00	0.00	Н
HETATM	46	Η	LIG	1	-4.005	-3.769	-2.006	1.00	0.00	Н
HETATM	47	Η	LIG	1	-1.814	-4.236	2.028	1.00	0.00	Н
HETATM	48	Η	LIG	1	0.768	-2.473	-1.844	1.00	0.00	Н
HETATM	49	Η	LIG	1	5.213	-0.875	-0.545	1.00	0.00	Н
HETATM	50	Η	LIG	1	5.055	-2.877	-1.993	1.00	0.00	Н
HETATM	51	Η	LIG	1	2.777	-3.707	-2.666	1.00	0.00	Н
HETATM	52	Η	LIG	1	0.768	2.473	1.844	1.00	0.00	Н
HETATM	53	Η	LIG	1	5.055	2.877	1.993	1.00	0.00	Н
HETATM	54	Η	LIG	1	5.213	0.875	0.545	1.00	0.00	Н
HETATM	55	F	LIG	1	-3.553	1.765	3.591	1.00	0.00	F
HETATM	56	Η	LIG	1	-0.477	-4.234	4.116	1.00	0.00	Н
HETATM	57	Η	LIG	1	1.188	-2.381	4.488	1.00	0.00	Н
HETATM	58	Η	LIG	1	1.419	-0.629	2.741	1.00	0.00	Н
HETATM	59	Η	LIG	1	-0.477	4.234	-4.116	1.00	0.00	Н
HETATM	60	Η	LIG	1	1.188	2.381	-4.488	1.00	0.00	Н
HETATM	61	Н	LIG	1	1.419	0.629	-2.741	1.00	0.00	Н

Cat-2, *fac*-Ir(*t*Buppy)₃

HETATM	1	IR	LIG	1	-1.005	-0.030	0.051	1.00	0.00	Ir
HETATM	2	С	LIG	1	-3.034	-1.602	1.874	1.00	0.00	С
HETATM	3	Ν	LIG	1	-2.012	-1.689	1.000	1.00	0.00	Ν
HETATM	4	С	LIG	1	-1.508	-2.920	0.672	1.00	0.00	С
HETATM	5	С	LIG	1	-2.069	-4.077	1.240	1.00	0.00	С
HETATM	6	С	LIG	1	-3.129	-3.979	2.129	1.00	0.00	С
HETATM	7	С	LIG	1	-3.622	-2.713	2.460	1.00	0.00	С
HETATM	8	С	LIG	1	0.035	-1.602	-0.702	1.00	0.00	С
HETATM	9	С	LIG	1	1.114	-1.563	-1.608	1.00	0.00	С
HETATM	10	С	LIG	1	1.759	-2.711	-2.078	1.00	0.00	С
HETATM	11	С	LIG	1	1.304	-3.965	-1.621	1.00	0.00	С
HETATM	12	С	LIG	1	0.247	-4.051	-0.732	1.00	0.00	С
HETATM	13	С	LIG	1	-0.395	-2.888	-0.268	1.00	0.00	С
HETATM	14	С	LIG	1	1.294	-0.520	2.071	1.00	0.00	С
HETATM	15	С	LIG	1	0.126	0.191	1.724	1.00	0.00	С
HETATM	16	С	LIG	1	-0.334	1.165	2.654	1.00	0.00	С
HETATM	17	С	LIG	1	0.360	1.391	3.856	1.00	0.00	С
HETATM	18	С	LIG	1	1.502	0.670	4.156	1.00	0.00	C
HETATM	19	С	LIG	1	1.995	-0.302	3.261	1.00	0.00	С
HETATM	20	Ν	LIG	1	-2.084	1.532	1.086	1.00	0.00	N
HETATM	21	С	LIG	1	-3.188	2.162	0.640	1.00	0.00	С
HETATM	22	С	LIG	1	-3.816	3.175	1.348	1.00	0.00	С
HETATM	23	С	LIG	1	-3.274	3.564	2.576	1.00	0.00	С
HETATM	24	С	LIG	1	-2.132	2.925	3.039	1.00	0.00	С
HETATM	25	С	LIG	1	-1.533	1.902	2.284	1.00	0.00	С
HETATM	26	С	LIG	1	1.062	2.164	-0.661	1.00	0.00	С
HETATM	27	С	LIG	1	-0.063	1.402	-1.038	1.00	0.00	С
HETATM	28	С	LIG	1	-0.630	1.678	-2.314	1.00	0.00	С
HETATM	29	С	LIG	1	-0.078	2.670	-3.143	1.00	0.00	С
HETATM	30	С	LIG	1	1.026	3.397	-2.732	1.00	0.00	С
HETATM	31	С	LIG	1	1.621	3.154	-1.477	1.00	0.00	С
HETATM	32	Ν	LIG	1	-2.206	-0.011	-1.745	1.00	0.00	N
HETATM	33	С	LIG	1	-3.264	-0.805	-2.001	1.00	0.00	С
HETATM	34	С	LIG	1	-3.973	-0.756	-3.191	1.00	0.00	С
HETATM	35	С	LIG	1	-3.568	0.155	-4.171	1.00	0.00	С
HETATM	36	С	LIG	1	-2.474	0.971	-3.919	1.00	0.00	С
HETATM	37	С	LIG	1	-1.789	0.884	-2.695	1.00	0.00	С

HETATM	38	Н	LIG	1	-4.818	-1.417	-3.348	1.00	0.00	Н
HETATM	39	С	LIG	1	3.264	-1.084	3.631	1.00	0.00	С
HETATM	40	С	LIG	1	2.934	-2.654	-3.065	1.00	0.00	С
HETATM	41	н	LTG	1	-3.375	-0.599	2.100	1.00	0.00	н
HETATM	42	н	LIG	1	-1.667	-5.049	0.982	1.00	0.00	H
HETATM	43	н	LTG	1	-3 561	-4 873	2 568	1 00	0 00	н
	10	и Ц	TTC	1	1 451	-0 591	_1 9/6	1 00	0.00	11 11
UEDADM	15	11	TTC	1	1 700	1 070	1 062	1 00	0.00	11
HETATM	45	н	LIG	1	1.782	-4.8/8	-1.962	1.00	0.00	н
HETATM	46	н	LIG	1	-0.080	-5.032	-0.397	1.00	0.00	H
HETATM	47	Н	LIG	1	1.658	-1.264	1.372	1.00	0.00	Н
HETATM	48	Н	LIG	1	0.005	2.134	4.566	1.00	0.00	H
HETATM	49	Η	LIG	1	2.016	0.863	5.093	1.00	0.00	H
HETATM	50	Η	LIG	1	-3.562	1.830	-0.321	1.00	0.00	Н
HETATM	51	Η	LIG	1	-4.703	3.650	0.945	1.00	0.00	Н
HETATM	52	Η	LIG	1	-3.736	4.352	3.161	1.00	0.00	Н
HETATM	53	Η	LIG	1	-1.694	3.218	3.986	1.00	0.00	Н
HETATM	54	Н	LIG	1	1.504	1.967	0.308	1.00	0.00	Н
HETATM	55	Н	LIG	1	-0.515	2.881	-4.116	1.00	0.00	Н
HETATM	56	Н	LIG	1	1.431	4.159	-3.391	1.00	0.00	Н
HETATM	57	С	LIG	1	2.839	3.987	-1.050	1.00	0.00	С
HETATM	58	Н	LTG	1	-3.533	-1.498	-1.212	1.00	0.00	н
НЕТАТМ	59	н	LTG	1	-4 097	0 223	-5 116	1 00	0 00	н
	60	и Ц	TTC	1	-2 1/1	1 676	-4 671	1 00	0.00	11 11
UEDADM	61	п	LIG	1	-2.141	2 500	2 1 5 7	1 00	0.00	п 11
HETATM	61	п	LIG	1	-4.442	-2.589	3.13/	1.00	0.00	н
HETATM	62	C	LIG	1	3.324	-1.213	-3.441	1.00	0.00	C
HETATM	63	C	LIG	1	2.553	-3.404	-4.364	1.00	0.00	С
HETATM	64	С	LIG	1	4.169	-3.338	-2.431	1.00	0.00	С
HETATM	65	С	LIG	1	3.377	3.584	0.334	1.00	0.00	С
HETATM	66	С	LIG	1	2.443	5.483	-0.997	1.00	0.00	C
HETATM	67	С	LIG	1	3.978	3.802	-2.081	1.00	0.00	С
HETATM	68	С	LIG	1	3.663	-2.112	2.557	1.00	0.00	С
HETATM	69	С	LIG	1	3.028	-1.842	4.960	1.00	0.00	С
HETATM	70	С	LIG	1	4.442	-0.098	3.815	1.00	0.00	С
HETATM	71	Н	LIG	1	2.202	-2.553	4.858	1.00	0.00	Н
HETATM	72	Н	LIG	1	2.786	-1.156	5.776	1.00	0.00	Н
HETATM	73	Н	LTG	1	3,929	-2.399	5.242	1.00	0.00	Н
HETATM	74	н	LTG	1	2 876	-2 853	2 390	1 00	0 00	н
	75	ц	TTC	1	1 563	-2 645	2.330	1 00	0.00	
	76	ц Ц	TTC	⊥ 1	3 007	_1 630	1 601	1 00	0.00	11 U
UEDDOM	70	п	LIG	1	3.007	-1.030	2 007	1 00	0.00	п
HETATM	77	н	LIG	1	4.642	0.440	2.887	1.00	0.00	н
HETATM	/8	н	LIG	1	5.350	-0.644	4.096	1.00	0.00	Н
HETATM	./9	Н	LIG	1	4.235	0.637	4.599	1.00	0.00	H
HETATM	80	Η	LIG	1	2.496	-0.679	-3.916	1.00	0.00	H
HETATM	81	Η	LIG	1	4.160	-1.235	-4.148	1.00	0.00	Н
HETATM	82	Η	LIG	1	3.643	-0.638	-2.566	1.00	0.00	Н
HETATM	83	Η	LIG	1	4.467	-2.824	-1.512	1.00	0.00	Н
HETATM	84	Н	LIG	1	5.014	-3.314	-3.128	1.00	0.00	Н
HETATM	85	Н	LIG	1	3.966	-4.384	-2.182	1.00	0.00	Н
HETATM	86	Н	LIG	1	1.682	-2.940	-4.838	1.00	0.00	Н
HETATM	87	Н	LIG	1	2.313	-4.453	-4.168	1.00	0.00	Н
HETATM	88	Н	LTG	1	3.387	-3.375	-5.074	1.00	0.00	Н
НЕТАТМ	89	н	LTG	1	2 622	3 713	1 116	1 00	0 00	н
ΗΕͲΔͲΜ	9.0 9.0	н	T.T.C	⊥ 1	2.02Z	4 216	0 588	1 00	0 00	11 11
TELVUM	Q 1	ц 11	T T C	⊥ 1	7.204 7.711	2 510	0 320	1 00	0.00	п
	9 T C O	11 11	TTC	1	J./II 4 001	2.342	0.300	1 00	0.00	н
HETATM	92	н	цтс	1	4.281	2.152	-2.140	1.00	0.00	H
HETATM	93	H	цТС	1	4.852	4.394	-1./8/	1.00	0.00	H
he'l'ATM	94	H	LIG	1	3.675	4.123	-3.081	1.00	0.00	Н
HETATM	95	Η	LIG	1	1.638	5.644	-0.273	1.00	0.00	Н
HETATM	96	Η	LIG	1	2.100	5.844	-1.971	1.00	0.00	Н
HETATM	97	Η	LIG	1	3.304	6.090	-0.695	1.00	0.00	Н

Cat-3, fac-Ir(ppy)3

HETATM	1	IR	LIG	1	0.001	0.000	0.018	1.00	0.00	Ir
HETATM	2	С	LIG	1	-2.240	-0.405	-2.145	1.00	0.00	С
HETATM	3	Ν	LIG	1	-1.603	-0.932	-1.079	1.00	0.00	Ν
HETATM	4	С	LIG	1	-1.998	-2.150	-0.593	1.00	0.00	С
HETATM	5	С	LIG	1	-3.050	-2.840	-1.215	1.00	0.00	С
HETATM	6	С	LIG	1	-3.694	-2.295	-2.316	1.00	0.00	С
HETATM	7	С	LIG	1	-3.282	-1.049	-2.795	1.00	0.00	С
HETATM	8	С	LIG	1	-0.243	-1.724	1.061	1.00	0.00	С
HETATM	9	С	LIG	1	0.472	-2.154	2.196	1.00	0.00	С
HETATM	10	С	LIG	1	0.212	-3.377	2.810	1.00	0.00	С
HETATM	11	С	LIG	1	-0.779	-4.231	2.312	1.00	0.00	С
HETATM	12	С	LIG	1	-1.507	-3.843	1.196	1.00	0.00	С
HETATM	13	С	LIG	1	-1.250	-2.608	0.573	1.00	0.00	С
HETATM	14	С	LIG	1	-2.109	0.657	2.193	1.00	0.00	С
HETATM	15	С	LIG	1	-1.375	1.067	1.063	1.00	0.00	С
HETATM	16	С	LIG	1	-1.638	2.383	0.578	1.00	0.00	С
HETATM	17	С	LIG	1	-2.582	3.219	1.203	1.00	0.00	С
HETATM	18	С	LIG	1	-3.284	2.777	2.315	1.00	0.00	С
HETATM	19	С	LIG	1	-3.041	1.490	2.808	1.00	0.00	С
HETATM	20	Ν	LIG	1	-0.003	1.861	-1.071	1.00	0.00	Ν
HETATM	21	С	LIG	1	0.775	2.158	-2.130	1.00	0.00	С
HETATM	22	С	LIG	1	0.741	3.386	-2.773	1.00	0.00	С
HETATM	23	С	LIG	1	-0.138	4.361	-2.294	1.00	0.00	С
HETATM	24	С	LIG	1	-0.936	4.068	-1.198	1.00	0.00	С
HETATM	25	С	LIG	1	-0.864	2.808	-0.583	1.00	0.00	С
HETATM	26	С	LIG	1	1.625	1.481	2.204	1.00	0.00	C
HETATM	27	С	LIG	1	1.613	0.650	1.066	1.00	0.00	C
HETATM	28	С	LIG	1	2.883	0.219	0.581	1.00	0.00	С
HETATM	29	С	LIG	1	4.080	0.606	1.212	1.00	0.00	С
HETATM	30	С	LIG	1	4.049	1.426	2.331	1.00	0.00	С
HETATM	31	С	LIG	1	2.813	1.861	2.825	1.00	0.00	С
HETATM	32	Ν	LIG	1	1.612	-0.920	-1.078	1.00	0.00	N
HETATM	33	С	LIG	1	1.478	-1.731	-2.146	1.00	0.00	С
HETATM	34	С	LIG	1	2.558	-2.308	-2.797	1.00	0.00	С
HETATM	35	С	LIG	1	3.842	-2.041	-2.315	1.00	0.00	С
HETATM	36	С	LIG	1	3.989	-1.216	-1.211	1.00	0.00	С
HETATM	37	С	LIG	1	2.863	-0.653	-0.588	1.00	0.00	С

HETATM	38	Η	LIG	1	2.392	-2.953	-3.651	1.00	0.00	Н
HETATM	39	Η	LIG	1	-3.585	1.136	3.680	1.00	0.00	Н
HETATM	40	Η	LIG	1	0.786	-3.672	3.685	1.00	0.00	Н
HETATM	41	Н	LIG	1	-1.888	0.567	-2.468	1.00	0.00	Н
HETATM	42	Η	LIG	1	-3.361	-3.801	-0.824	1.00	0.00	Н
HETATM	43	Η	LIG	1	-4.508	-2.830	-2.794	1.00	0.00	Н
HETATM	44	Η	LIG	1	1.246	-1.514	2.607	1.00	0.00	Н
HETATM	45	Η	LIG	1	-0.980	-5.184	2.792	1.00	0.00	Н
HETATM	46	Η	LIG	1	-2.278	-4.505	0.810	1.00	0.00	Н
HETATM	47	Η	LIG	1	-1.941	-0.334	2.602	1.00	0.00	Н
HETATM	48	Η	LIG	1	-2.770	4.219	0.820	1.00	0.00	Н
HETATM	49	Η	LIG	1	-4.011	3.424	2.796	1.00	0.00	Н
HETATM	50	Η	LIG	1	1.445	1.370	-2.456	1.00	0.00	Н
HETATM	51	Η	LIG	1	1.390	3.570	-3.621	1.00	0.00	Н
HETATM	52	Η	LIG	1	-0.193	5.336	-2.765	1.00	0.00	Н
HETATM	53	Η	LIG	1	-1.616	4.814	-0.804	1.00	0.00	Н
HETATM	54	Η	LIG	1	0.684	1.832	2.613	1.00	0.00	Н
HETATM	55	Η	LIG	1	5.039	0.268	0.829	1.00	0.00	Н
HETATM	56	Η	LIG	1	4.973	1.723	2.817	1.00	0.00	Н
HETATM	57	Η	LIG	1	2.780	2.501	3.702	1.00	0.00	Н
HETATM	58	Η	LIG	1	0.461	-1.912	-2.472	1.00	0.00	Н
HETATM	59	Η	LIG	1	4.714	-2.475	-2.794	1.00	0.00	Н
HETATM	60	Η	LIG	1	4.976	-1.003	-0.817	1.00	0.00	Н
HETATM	61	Н	LIG	1	-3.760	-0.579	-3.646	1.00	0.00	Н

Cat-4, fac-Ir(CF3ppy)3

HETATM	1	IR	LIG	1	0.986	-0.015	0.008	1.00	0.00	Ir
HETATM	2	С	LIG	1	3.136	0.604	2.214	1.00	0.00	С
HETATM	3	Ν	LIG	1	2.083	1.071	1.515	1.00	0.00	Ν
HETATM	4	С	LIG	1	1.594	2.320	1.789	1.00	0.00	С
HETATM	5	С	LIG	1	2.197	3.103	2.783	1.00	0.00	C
HETATM	6	С	LIG	1	3.287	2.618	3.493	1.00	0.00	C
HETATM	7	С	LIG	1	3.769	1.340	3.203	1.00	0.00	С
HETATM	8	С	LIG	1	-0.031	1.740	0.051	1.00	0.00	C
HETATM	9	С	LIG	1	-1.136	2.109	-0.742	1.00	0.00	С
HETATM	10	С	LIG	1	-1.730	3.363	-0.622	1.00	0.00	С
HETATM	11	С	LIG	1	-1.250	4.305	0.300	1.00	0.00	С
HETATM	12	С	LIG	1	-0.166	3.972	1.093	1.00	0.00	С
HETATM	13	С	LIG	1	0.446	2.711	0.976	1.00	0.00	C
HETATM	14	С	LIG	1	-1.214	-0.389	2.153	1.00	0.00	С
HETATM	15	С	LIG	1	-0.086	-0.904	1.483	1.00	0.00	С
HETATM	16	С	LIG	1	0.371	-2.188	1.894	1.00	0.00	С
HETATM	17	С	LIG	1	-0.275	-2.903	2.918	1.00	0.00	С
HETATM	18	С	LIG	1	-1.380	-2.369	3.559	1.00	0.00	С
HETATM	19	С	LIG	1	-1.846	-1.106	3.167	1.00	0.00	С
HETATM	20	Ν	LIG	1	2.047	-1.882	0.231	1.00	0.00	Ν
HETATM	21	С	LIG	1	3.110	-2.283	-0.494	1.00	0.00	C
HETATM	22	С	LIG	1	3.722	-3.514	-0.316	1.00	0.00	C
HETATM	23	С	LIG	1	3.210	-4.379	0.654	1.00	0.00	C
HETATM	24	С	LIG	1	2.113	-3.976	1.401	1.00	0.00	C
HETATM	25	С	LIG	1	1.530	-2.719	1.183	1.00	0.00	C
HETATM	26	С	LIG	1	-1.180	-1.671	-1.459	1.00	0.00	C
HETATM	27	С	LIG	1	-0.051	-0.831	-1.534	1.00	0.00	C
HETATM	28	С	LIG	1	0.441	-0.538	-2.838	1.00	0.00	C
HETATM	29	С	LIG	1	-0.175	-1.064	-3.989	1.00	0.00	C
HETATM	30	С	LIG	1	-1.280	-1.891	-3.880	1.00	0.00	С
HETATM	31	С	LIG	1	-1.779	-2.191	-2.604	1.00	0.00	С
HETATM	32	Ν	LIG	1	2.096	0.726	-1.686	1.00	0.00	Ν
HETATM	33	С	LIG	1	3.162	1.549	-1.633	1.00	0.00	С
HETATM	34	С	LIG	1	3.805	2.024	-2.766	1.00	0.00	С
HETATM	35	С	LIG	1	3.320	1.637	-4.018	1.00	0.00	С
HETATM	36	С	LIG	1	2.219	0.796	-4.082	1.00	0.00	С
HETATM	37	С	LIG	1	1.606	0.339	-2.904	1.00	0.00	С

HETATM	38	Н	LIG	1	4.658	2.686	-2.668	1.00	0.00	Н
HETATM	39	С	LIG	1	-3.045	-0.538	3.880	1.00	0.00	С
HETATM	40	С	LIG	1	-2.901	3.752	-1.487	1.00	0.00	С
HETATM	41	Н	LIG	1	3.462	-0.397	1.958	1.00	0.00	Н
HETATM	42	Н	LIG	1	1.802	4.088	3.001	1.00	0.00	Н
HETATM	43	Н	LIG	1	3.750	3.223	4.266	1.00	0.00	Н
HETATM	44	Н	LIG	1	-1.536	1.405	-1.461	1.00	0.00	Н
HETATM	45	Н	LIG	1	-1.721	5.277	0.386	1.00	0.00	Н
HETATM	46	Н	LIG	1	0.207	4.703	1.804	1.00	0.00	Н
HETATM	47	Н	LIG	1	-1.606	0.581	1.875	1.00	0.00	Н
HETATM	48	Н	LIG	1	0.084	-3.882	3.219	1.00	0.00	Н
HETATM	49	Н	LIG	1	-1.881	-2.919	4.348	1.00	0.00	Н
HETATM	50	Н	LIG	1	3.461	-1.579	-1.239	1.00	0.00	Н
HETATM	51	Н	LIG	1	4.573	-3.788	-0.929	1.00	0.00	Н
HETATM	52	Н	LIG	1	3.656	-5.353	0.818	1.00	0.00	Н
HETATM	53	Н	LIG	1	1.695	-4.638	2.151	1.00	0.00	Н
HETATM	54	Н	LIG	1	-1.598	-1.919	-0.491	1.00	0.00	Н
HETATM	55	Н	LIG	1	0.209	-0.829	-4.977	1.00	0.00	Н
HETATM	56	Н	LIG	1	-1.756	-2.296	-4.766	1.00	0.00	Н
HETATM	57	С	LIG	1	-2.978	-3.096	-2.502	1.00	0.00	С
HETATM	58	Н	LIG	1	3.491	1.827	-0.640	1.00	0.00	Н
HETATM	59	Н	LIG	1	3.790	1.993	-4.928	1.00	0.00	Н
HETATM	60	Н	LIG	1	1.822	0.493	-5.042	1.00	0.00	Н
HETATM	61	Н	LIG	1	4.611	0.916	3.738	1.00	0.00	Н
HETATM	62	F	LIG	1	-3.292	2.770	-2.333	1.00	0.00	F
HETATM	63	F	LIG	1	-2.615	4.846	-2.259	1.00	0.00	F
HETATM	64	F	LIG	1	-3.993	4.095	-0.743	1.00	0.00	F
HETATM	65	F	LIG	1	-3.391	-3.296	-1.227	1.00	0.00	F
HETATM	66	F	LIG	1	-2.726	-4.332	-3.033	1.00	0.00	F
HETATM	67	F	LIG	1	-4.049	-2.604	-3.192	1.00	0.00	F
HETATM	68	F	LIG	1	-3.441	0.661	3.390	1.00	0.00	F
HETATM	69	F	LIG	1	-2.801	-0.356	5.214	1.00	0.00	F
HETATM	70	F	LIG	1	-4.124	-1.371	3.808	1.00	0.00	F

Cat-5, fac-Ir(Fppy)3

HETATM	1	IR	LIG	1	0.001	0.001	-0.254	1.00	0.00	Ir
HETATM	2	С	LIG	1	0.768	2.151	-2.412	1.00	0.00	С
HETATM	3	Ν	LIG	1	-0.004	1.858	-1.346	1.00	0.00	Ν
HETATM	4	С	LIG	1	-0.859	2.808	-0.852	1.00	0.00	С
HETATM	5	С	LIG	1	-0.928	4.069	-1.468	1.00	0.00	С
HETATM	6	С	LIG	1	-0.137	4.357	-2.569	1.00	0.00	С
HETATM	7	С	LIG	1	0.734	3.377	-3.055	1.00	0.00	С
HETATM	8	С	LIG	1	-1.371	1.067	0.792	1.00	0.00	С
HETATM	9	С	LIG	1	-2.100	0.646	1.919	1.00	0.00	С
HETATM	10	С	LIG	1	-3.017	1.501	2.512	1.00	0.00	С
HETATM	11	С	LIG	1	-3.274	2.790	2.052	1.00	0.00	С
HETATM	12	С	LIG	1	-2.567	3.225	0.941	1.00	0.00	С
HETATM	13	С	LIG	1	-1.628	2.387	0.311	1.00	0.00	С
HETATM	14	С	LIG	1	1.615	1.491	1.921	1.00	0.00	С
HETATM	15	С	LIG	1	1.612	0.652	0.792	1.00	0.00	С
HETATM	16	С	LIG	1	2.884	0.213	0.309	1.00	0.00	С
HETATM	17	С	LIG	1	4.078	0.603	0.938	1.00	0.00	С
HETATM	18	С	LIG	1	4.059	1.432	2.051	1.00	0.00	С
HETATM	19	С	LIG	1	2.814	1.855	2.513	1.00	0.00	С
HETATM	20	Ν	LIG	1	1.611	-0.923	-1.349	1.00	0.00	N
HETATM	21	С	LIG	1	1.475	-1.736	-2.416	1.00	0.00	С
HETATM	22	С	LIG	1	2.552	-2.323	-3.060	1.00	0.00	С
HETATM	23	С	LIG	1	3.837	-2.064	-2.573	1.00	0.00	С
HETATM	24	С	LIG	1	3.986	-1.237	-1.472	1.00	0.00	С
HETATM	25	С	LIG	1	2.862	-0.663	-0.855	1.00	0.00	С
HETATM	26	С	LIG	1	0.484	-2.145	1.918	1.00	0.00	С
HETATM	27	С	LIG	1	-0.241	-1.722	0.790	1.00	0.00	С
HETATM	28	С	LIG	1	-1.258	-2.601	0.306	1.00	0.00	С
HETATM	29	С	LIG	1	-1.519	-3.831	0.937	1.00	0.00	С
HETATM	30	С	LIG	1	-0.792	-4.228	2.050	1.00	0.00	С
HETATM	31	С	LIG	1	0.198	-3.364	2.511	1.00	0.00	С
HETATM	32	Ν	LIG	1	-1.602	-0.930	-1.351	1.00	0.00	N
HETATM	33	С	LIG	1	-2.236	-0.405	-2.419	1.00	0.00	С
HETATM	34	С	LIG	1	-3.280	-1.046	-3.067	1.00	0.00	С
HETATM	35	С	LIG	1	-3.699	-2.289	-2.583	1.00	0.00	С
HETATM	36	С	LIG	1	-3.060	-2.831	-1.478	1.00	0.00	С
HETATM	37	С	LIG	1	-2.004	-2.144	-0.858	1.00	0.00	С

HETATM	38	Н	LIG	1	-3.754	-0.578	-3.922	1.00	0.00	Н
HETATM	39	F	LIG	1	2.783	2.671	3.605	1.00	0.00	F
HETATM	40	F	LIG	1	-3.708	1.063	3.603	1.00	0.00	F
HETATM	41	Н	LIG	1	1.431	1.359	-2.741	1.00	0.00	Н
HETATM	42	Η	LIG	1	-1.602	4.819	-1.072	1.00	0.00	Н
HETATM	43	Η	LIG	1	-0.192	5.332	-3.041	1.00	0.00	Н
HETATM	44	Η	LIG	1	-1.957	-0.340	2.344	1.00	0.00	Н
HETATM	45	Η	LIG	1	-4.001	3.417	2.555	1.00	0.00	Н
HETATM	46	Η	LIG	1	-2.751	4.226	0.566	1.00	0.00	Н
HETATM	47	Η	LIG	1	0.690	1.861	2.348	1.00	0.00	Н
HETATM	48	Н	LIG	1	5.038	0.261	0.562	1.00	0.00	Н
HETATM	49	Η	LIG	1	4.966	1.746	2.553	1.00	0.00	Н
HETATM	50	Η	LIG	1	0.457	-1.909	-2.746	1.00	0.00	Н
HETATM	51	Η	LIG	1	2.385	-2.968	-3.914	1.00	0.00	Н
HETATM	52	Н	LIG	1	4.707	-2.508	-3.046	1.00	0.00	Н
HETATM	53	Η	LIG	1	4.972	-1.032	-1.075	1.00	0.00	Н
HETATM	54	Η	LIG	1	1.269	-1.529	2.343	1.00	0.00	Н
HETATM	55	Η	LIG	1	-2.296	-4.490	0.561	1.00	0.00	Н
HETATM	56	Н	LIG	1	-0.976	-5.170	2.553	1.00	0.00	Н
HETATM	57	F	LIG	1	0.919	-3.745	3.603	1.00	0.00	F
HETATM	58	Н	LIG	1	-1.878	0.563	-2.747	1.00	0.00	Н
HETATM	59	Н	LIG	1	-4.516	-2.820	-3.058	1.00	0.00	Н
HETATM	60	Н	LIG	1	-3.377	-3.788	-1.083	1.00	0.00	Н
HETATM	61	Н	LIG	1	1.377	3.559	-3.908	1.00	0.00	Н

Cat-6, Ir(diFPhCF3Pyr)2dtbbpy+

HETATM	1	IR	LIG	1	-0.794	-0.079	-0.005	1.00	0.00	Ir
HETATM	2	С	LIG	1	-3.072	0.999	-1.766	1.00	0.00	С
HETATM	3	С	LIG	1	-2.255	-0.078	-1.409	1.00	0.00	С
HETATM	4	С	LIG	1	-2.412	-1.321	-2.098	1.00	0.00	С
HETATM	5	С	LIG	1	-3.385	-1.407	-3.110	1.00	0.00	С
HETATM	6	С	LIG	1	-4.197	-0.349	-3.471	1.00	0.00	С
HETATM	7	С	LIG	1	-4.014	0.842	-2.777	1.00	0.00	С
HETATM	8	Ν	LIG	1	-0.663	-2.029	-0.670	1.00	0.00	Ν
HETATM	9	С	LIG	1	0.208	-2.933	-0.177	1.00	0.00	С
HETATM	10	С	LIG	1	0.278	-4.234	-0.644	1.00	0.00	С
HETATM	11	С	LIG	1	-0.594	-4.628	-1.665	1.00	0.00	С
HETATM	12	С	LIG	1	-1.493	-3.708	-2.174	1.00	0.00	С
HETATM	13	С	LIG	1	-1.532	-2.393	-1.675	1.00	0.00	С
HETATM	14	С	LIG	1	-2.730	-1.686	1.762	1.00	0.00	С
HETATM	15	С	LIG	1	-2.210	-0.440	1.397	1.00	0.00	С
HETATM	16	С	LIG	1	-2.678	0.727	2.079	1.00	0.00	С
HETATM	17	С	LIG	1	-3.643	0.571	3.090	1.00	0.00	С
HETATM	18	С	LIG	1	-4.162	-0.656	3.458	1.00	0.00	С
HETATM	19	С	LIG	1	-3.683	-1.766	2.771	1.00	0.00	С
HETATM	20	Ν	LIG	1	-1.153	1.844	0.655	1.00	0.00	N
HETATM	21	С	LIG	1	-0.528	2.933	0.165	1.00	0.00	С
HETATM	22	С	LIG	1	-0.790	4.213	0.622	1.00	0.00	С
HETATM	23	С	LIG	1	-1.746	4.382	1.630	1.00	0.00	С
HETATM	24	С	LIG	1	-2.391	3.270	2.139	1.00	0.00	С
HETATM	25	С	LIG	1	-2.094	1.983	1.652	1.00	0.00	С
HETATM	26	С	LIG	1	0.899	-0.393	2.621	1.00	0.00	С
HETATM	27	Ν	LIG	1	0.936	-0.143	1.295	1.00	0.00	N
HETATM	28	С	LIG	1	2.144	0.109	0.721	1.00	0.00	С
HETATM	29	С	LIG	1	3.319	0.092	1.478	1.00	0.00	С
HETATM	30	С	LIG	1	3.299	-0.177	2.848	1.00	0.00	С
HETATM	31	С	LIG	1	2.035	-0.419	3.411	1.00	0.00	С
HETATM	32	Ν	LIG	1	0.876	0.398	-1.301	1.00	0.00	N
HETATM	33	С	LIG	1	0.786	0.656	-2.619	1.00	0.00	С
HETATM	34	С	LIG	1	1.893	0.918	-3.415	1.00	0.00	С
HETATM	35	С	LIG	1	3.178	0.918	-2.859	1.00	0.00	С
HETATM	36	С	LIG	1	3.256	0.646	-1.487	1.00	0.00	С
HETATM	37	С	LIG	1	2.114	0.392	-0.728	1.00	0.00	С
HETATM	38	Н	LIG	1	1.735	1.119	-4.467	1.00	0.00	Н
--------	----	--------	-----	---	--------	--------	--------	------	------	---------
HETATM	39	F	LIG	1	-4.172	-2.978	3.107	1.00	0.00	F
HETATM	40	Η	LIG	1	-3.007	1.960	-1.271	1.00	0.00	Н
HETATM	41	F	LIG	1	-3.560	-2.571	-3.789	1.00	0.00	F
HETATM	42	Η	LIG	1	-4.939	-0.448	-4.253	1.00	0.00	Н
HETATM	43	Н	LIG	1	-2.176	-3.994	-2.959	1.00	0.00	Н
HETATM	44	Н	LIG	1	-2.422	-2.603	1.274	1.00	0.00	Н
HETATM	45	F	LIG	1	-4.107	1.656	3.762	1.00	0.00	F
HETATM	46	Н	LIG	1	-4.906	-0.742	4.239	1.00	0.00	Н
HETATM	47	Н	LIG	1	-3.134	3.381	2.914	1.00	0.00	Н
HETATM	48	Н	LIG	1	-0.084	-0.584	3.034	1.00	0.00	Н
HETATM	49	Н	LIG	1	4.261	0.293	0.987	1.00	0.00	Н
HETATM	50	С	LIG	1	4.559	-0.219	3.711	1.00	0.00	С
HETATM	51	Н	LIG	1	1.923	-0.632	4.468	1.00	0.00	Н
HETATM	52	Н	LIG	1	-0.216	0.651	-3.030	1.00	0.00	Н
HETATM	53	С	LIG	1	4.445	1.189	-3.672	1.00	0.00	С
HETATM	54	Н	LIG	1	4.224	0.631	-1.002	1.00	0.00	Н
HETATM	55	F	LIG	1	-4.795	1.893	-3.105	1.00	0.00	F
HETATM	56	Н	LIG	1	-1.980	5.371	2.009	1.00	0.00	Н
HETATM	57	С	LIG	1	-0.059	5.398	0.048	1.00	0.00	С
HETATM	58	Н	LIG	1	0.194	2.758	-0.620	1.00	0.00	Н
HETATM	59	Н	LIG	1	-0.570	-5.641	-2.051	1.00	0.00	Н
HETATM	60	Н	LIG	1	0.856	-2.590	0.617	1.00	0.00	Н
HETATM	61	F	LTG	-	0.824	5.032	-0.918	1.00	0.00	 'म
HETATM	62	F	LIG	1	0.643	6.058	1.006	1.00	0.00	F
HETATM	63	F	LTG	1	-0.914	6.294	-0.502	1.00	0.00	न
HETATM	64	C	LTG	-	1.272	-5.206	-0.065	1.00	0.00	C
HETATM	65	۔ ٦	LTG	1	2.030	-4.639	0.910	1.00	0.00	- 'न
HETATM	66	- 7	LIG	1	2.123	-5.670	-1.017	1.00	0.00	- T
HETATM	67	- F	LIG	1	0.658	-6.286	0.476	1.00	0.00	т Я
HETATM	68	C	LTG	-	4.130	1.480	-5.149	1.00	0.00	C
HETATM	69	C	LTG	-	5.365	-0.055	-3.593	1.00	0.00	C
HETATM	70	C	LTG	1	5.180	2.412	-3.069	1.00	0.00	C
HETATM	71	Н	LIG	1	3.638	0.632	-5.636	1.00	0.00	H
HETATM	72	н	LTG	1	5.063	1.671	-5.686	1.00	0.00	H
HETATM	73	н	LIG	1	3.497	2.365	-5.264	1.00	0.00	H
HETATM	74	н	LTG	1	4 557	3 309	-3 116	1 00	0 00	н
HETATM	75	н	LTG	1	6 096	2 602	-3 635	1 00	0 00	н
HETATM	76	н	LIG	1	5.461	2.244	-2.025	1.00	0.00	H
HETATM	77	н	LIG	1	4.874	-0.936	-4.016	1.00	0.00	H
HETATM	78	н	LIG	1	5.653	-0.284	-2.563	1.00	0.00	H
HETATM	79	н	LIG	1	6,280	0.133	-4.162	1.00	0.00	H
HETATM	80	С	LIG	1	5.833	0.063	2.896	1.00	0.00	C
HETATM	81	C	LIG	1	4.679	-1.626	4.351	1.00	0.00	C
HETATM	82	C	LIG	1	4,436	0.844	4.831	1.00	0.00	C
HETATM	83	н	LTG	1	5.984	-0.678	2.105	1.00	0.00	н
HETATM	84	н	LTG	1	6.701	0.016	3.558	1.00	0.00	H
HETATM	85	н	LIG	1	5.818	1.061	2.447	1.00	0.00	H
HETATM	86	Н	LIG	1	4.355	1.851	4.412	1.00	0.00	н
HETATM	87	Н	LIG	1	5.324	0.808	5.468	1.00	0.00	H
HETATM	88	Н	LIG	1	3.563	0.664	5,465	1.00	0.00	н
HETATM	89	Н	LIG	1	4.764	-2.402	3,585	1.00	0.00	H
HETATM	90	Н	LTG	1	3.816	-1.859	4.981	1.00	0.00	н
HETATM	91	Н	LIG	1	5.573	-1.665	4.979	1.00	0.00	H
		-		-						

Cat-7, fac-Ir(diFppy)3

HETATM	1	IR	LIG	1	-0.001	-0.001	-0.282	1.00	0.00	Ir
HETATM	2	С	LIG	1	1.872	1.268	-2.425	1.00	0.00	С
HETATM	3	Ν	LIG	1	1.070	1.508	-1.369	1.00	0.00	Ν
HETATM	4	С	LIG	1	0.927	2.790	-0.900	1.00	0.00	C
HETATM	5	С	LIG	1	1.616	3.838	-1.537	1.00	0.00	С
HETATM	6	С	LIG	1	2.433	3.578	-2.628	1.00	0.00	С
HETATM	7	С	LIG	1	2.567	2.267	-3.087	1.00	0.00	С
HETATM	8	С	LIG	1	-0.506	1.668	0.757	1.00	0.00	С
HETATM	9	С	LIG	1	-1.342	1.723	1.883	1.00	0.00	С
HETATM	10	С	LIG	1	-1.620	2.940	2.483	1.00	0.00	С
HETATM	11	С	LIG	1	-1.110	4.151	2.025	1.00	0.00	С
HETATM	12	С	LIG	1	-0.286	4.090	0.917	1.00	0.00	С
HETATM	13	С	LIG	1	0.046	2.895	0.258	1.00	0.00	С
HETATM	14	С	LIG	1	2.157	0.302	1.888	1.00	0.00	С
HETATM	15	С	LIG	1	1.695	-0.395	0.760	1.00	0.00	С
HETATM	16	С	LIG	1	2.486	-1.483	0.261	1.00	0.00	С
HETATM	17	С	LIG	1	3.683	-1.795	0.925	1.00	0.00	С
HETATM	18	С	LIG	1	4.143	-1.113	2.036	1.00	0.00	С
HETATM	19	С	LIG	1	3.348	-0.066	2.492	1.00	0.00	С
HETATM	20	Ν	LIG	1	0.775	-1.680	-1.370	1.00	0.00	Ν
HETATM	21	С	LIG	1	0.171	-2.257	-2.427	1.00	0.00	С
HETATM	22	С	LIG	1	0.695	-3.355	-3.091	1.00	0.00	C
HETATM	23	С	LIG	1	1.902	-3.885	-2.634	1.00	0.00	C
HETATM	24	С	LIG	1	2.531	-3.307	-1.540	1.00	0.00	С
HETATM	25	С	LIG	1	1.958	-2.192	-0.900	1.00	0.00	С
HETATM	26	С	LIG	1	-0.822	-2.025	1.882	1.00	0.00	С
HETATM	27	С	LIG	1	-1.193	-1.274	0.756	1.00	0.00	С
HETATM	28	С	LIG	1	-2.531	-1.409	0.258	1.00	0.00	C
HETATM	29	С	LIG	1	-3.400	-2.293	0.917	1.00	0.00	С
HETATM	30	С	LIG	1	-3.041	-3.038	2.025	1.00	0.00	С
HETATM	31	С	LIG	1	-1.737	-2.875	2.482	1.00	0.00	С
HETATM	32	Ν	LIG	1	-1.843	0.172	-1.370	1.00	0.00	Ν
HETATM	33	С	LIG	1	-2.038	0.985	-2.427	1.00	0.00	C
HETATM	34	С	LIG	1	-3.251	1.085	-3.089	1.00	0.00	С
HETATM	35	С	LIG	1	-4.317	0.310	-2.631	1.00	0.00	С
HETATM	36	С	LIG	1	-4.132	-0.527	-1.539	1.00	0.00	С
HETATM	37	С	LIG	1	-2.880	-0.594	-0.901	1.00	0.00	C

HETATM	38	Н	LIG	1	-3.353	1.757	-3.934	1.00	0.00	Н
HETATM	39	F	LIG	1	3.778	0.622	3.583	1.00	0.00	F
HETATM	40	F	LIG	1	-2.434	2.970	3.572	1.00	0.00	F
HETATM	41	Н	LIG	1	1.944	0.232	-2.732	1.00	0.00	Н
HETATM	42	Н	LIG	1	1.509	4.846	-1.165	1.00	0.00	Н
HETATM	43	Н	LIG	1	2.963	4.391	-3.112	1.00	0.00	Н
HETATM	44	Н	LIG	1	-1.777	0.822	2.300	1.00	0.00	Н
HETATM	45	Н	LIG	1	-1.340	5.092	2.506	1.00	0.00	Н
HETATM	46	F	LIG	1	0.208	5.285	0.472	1.00	0.00	F
HETATM	47	Н	LIG	1	1.592	1.127	2.305	1.00	0.00	Н
HETATM	48	F	LIG	1	4.473	-2.819	0.481	1.00	0.00	F
HETATM	49	Н	LIG	1	5.072	-1.385	2.520	1.00	0.00	Н
HETATM	50	Н	LIG	1	-0.767	-1.808	-2.732	1.00	0.00	Н
HETATM	51	Н	LIG	1	0.167	-3.778	-3.936	1.00	0.00	Н
HETATM	52	Н	LIG	1	2.349	-4.745	-3.121	1.00	0.00	Н
HETATM	53	Н	LIG	1	3.460	-3.712	-1.170	1.00	0.00	Н
HETATM	54	Н	LIG	1	0.175	-1.951	2.300	1.00	0.00	Н
HETATM	55	F	LIG	1	-4.683	-2.462	0.473	1.00	0.00	F
HETATM	56	Н	LIG	1	-3.741	-3.707	2.506	1.00	0.00	Н
HETATM	57	F	LIG	1	-1.357	-3.595	3.571	1.00	0.00	F
HETATM	58	Η	LIG	1	-1.178	1.569	-2.732	1.00	0.00	Н
HETATM	59	Η	LIG	1	-5.286	0.359	-3.116	1.00	0.00	Н
HETATM	60	Н	LIG	1	-4.949	-1.127	-1.169	1.00	0.00	Н
HETATM	61	Н	LIG	1	3.200	2.018	-3.931	1.00	0.00	Н

fac-Ir(ppy)₃ structure comparison

To validate the use of the TPSS density functional theory DFT calculations for quantitative depiction of photocatalyst geometries, we performed structural comparisons between the calculated geometry of *fac*-Ir(ppy)₃ and the available gas-phase electron diffraction (GED) structure.¹³ A structural alignment of the heavy atoms for both systems was performed resulting in a root-mean-square deviation of atomic positions of 0.094 Å (0.122 Å with hydrogen atoms present). Comparisons of the atom-metal coordination distances and angles, comparisons of the torsion angle between the aromatic rings of the 2-phenylpyridine molecules, and image of the superimposed structural alignment (GED = orange; TPSS = blue) are included below.

Structural parameters of fac-Ir(ppy)₃ measured from a gas-phase electron diffraction structure¹³ and TPSS DFT calculations.

	GED	TPSS
Ir-N (Å)	2.158(7)	2.155
Ir-C (Å)	2.033(6)	2.030
N-Ir-N _b (deg)	98(1)	97
$C-Ir-C_b$ (deg)	93(1)	96
τ (C–C–C–N) (deg)	-5(3)	-1

