Supporting information

Biazulene Diimides: A New Building Block for Organic Electronic

Materials.

Hanshen Xin, Congwu Ge, Xiaodi Yang, Honglei Gao, Xiaochun Yang, and Xike Gao*

Contents:

1.	Materials and general methods. S2							
2.	Synthesis of compounds 1–12, BAzDI-1 and BAzDI-2	S2-S9						
3.	TGA and DSC curves for BAzDI-1 and S10	BAzDI-2.						
4.	X-ray Crystallographic Structure for BAzDI-1.	S10-S11						
5.	The geometries of 2,2'-biazulene, BAzDI-1 and BAzDI-2 obtained Calculations.	l by DFT S12						
6.	. UV-Vis spectra of BAzDI-1 and BAzDI-2 in thin film. S1							
7.	. Spectra and Color images of BAzDI-1 and PDI. S13							
8.	Characteristics of OFET devices based on BAzDI-2.	S14						
9.	XRD and AFM measurements for BAzDI-2.	S14						
10.	NMR, MS and IR spectra.	S15-S45						

Experimental Section

1. Materials and General Methods.

Bis(1,5-cyclooctadiene)nickel(0), Bis(triphenylphosphine)palladium(II) dichloride were purchased from Aldrich and used without further purification. Other reagents were obtained commercially and used as received. ¹H NMR (300 MHz or 400 MHz) and ¹³C NMR (100 MHz) spectra were measured on Varian Mercury (300 MHz and 400 MHz) instruments. Elemental analyses were performed on an ElementarVario EL III elemental analyzer. Mass spectra (DART-FT, ESI-FT and MALDI-FT) were carried out on a Thermo Fisher Scientific LTQ FT Ultra Mass Spectrometer. Optical absorption spectra were measured on a U-3900 UV-vis spectrophotometer. Fluorescence spectra were measured on a HITACHI F-2700 fluorescence spectrophotometer (for room temperature measurements) or Perkin-Elmer spectrofluorometer LS 55 (for -198 °C measurements). TGA measurements were conducted on a TGA Q500 instruments under a dry nitrogen flow at a heating rate of 10 °C/min, heating from room temperature to 500 °C or 600 °C. DSC analyses were performed on a DSC Q2000 instruments under a dry nitrogen flow at a heating rate of 5 °C/min, heating from -30 °C to 300 °C for BAzDI-1 and from -25 °C to 330 °C for BAzDI-2. Electrochemical measurements was carried out on a CHI610D instruments in a conventional three-electrode cell with a platinum button working electrode, a platinum wire counter electrode, and a saturated calomel electrode (SCE) reference electrode. Melting point were measured on an SGW X-4 microscopic melting point apparatus.

2. Synthesis

Tetraethyl 2,2'-biazulene-1,1',3,3'-tetracarboxylate 2: A mixture of Diethyl 2chloroazulene-1,3-dicarboxylate (920 mg, 3 mmol) **1** and Ni(COD)₂ (454 mg, 1.65 mmol) was dissolved in DMF (10 mL) under nitrogen atmosphere. The reaction mixture was heated at 50 °C for 6 h. It was then poured into water and extracted with dichloromethane. The combined organic phases was washed with water and dried over Na₂SO₄. After concentrated under reduced pressure, the residue was purified by column chromatography on silica gel with dichloromethane/ hexane (2:1) to give product as red crystals (572 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 9.81 (d, *J* = 10.1 Hz, 4H), 7.92 (t, *J* = 9.7 Hz, 2H), 7.74 (dd, *J* = 10.1 Hz, 9.7 Hz, 4H), 3.89 (q, *J* = 7.0 Hz, 8H), 0.52 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.2, 155.3, 143.3, 139.6, 138.2, 130.4, 116.1, 59.3, 13.3. MS (MALDI) m/z: 542.0 (M)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₃₂H₃₁O₈ 543.2013; Found, 543.2000.

2,2'-biazulene-1,1',3,3'-tetracarboxylic acid 3: A mixture of tetraethyl 2,2'biazulene-1,1',3,3'-tetracarboxylate **2** (542 mg, 1.0 mmol), EtOH (16 mL) and 12 M KOH aq. (1 mL) was refluxed for 4 h. The mixture was diluted with water and filtered to remove insoluble materials. The filtrate was then acidified with 2 M HCl and red crystals separated out were collected by filtration to give product as a red solid (386 mg, 90% yield). ¹H NMR (300 MHz, DMSO- d_6) δ (ppm): 11.86 (s, 4H), 9.71 (d, J =10.3 Hz, 4H), 8.08 (t, J = 9.9 Hz, 2H), 7.86 (dd, J = 10.3 Hz, 9.9 Hz 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.0, 155.6, 142.5, 139.9, 137.6, 130.1, 116.5. MS (MALDI) m/z: 452.4 (M+Na)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₂₄H₁₄O₈Na 453.0581; Found, 453.0577.

2,2'-biazulene-1,1',3,3'-tetracarboxylic dianhydride 4: A mixture of 2,2'-biazulene-1,1',3,3'-tetracarboxylic acid **3** (430 mg, 1.0 mmol) and acetic anhydride (5 mL) was refluxed for 2 h. Then the mixture was filtrated to give product as a red solid (374 mg, 95% yield). FT-IR (KBr, cm⁻¹) v 3079.8, 2396.4, 1705.1, 1686.1, 1579.7, 1453.1, 1431.0, 1381.8, 1368.0, 1327.3, 1299.1, 1240.9, 1159.9, 1132.9, 1091.3, 1067.7, 1016.8, 956.4, 884.7, 857.3, 760.7, 687.8, 592.7, 563.2, 476.7, 417.7. Anal. Calcd for $C_{24}H_{10}O_6$: C, 73.10; H, 2.56. Found: C, 73.00; H, 2.60.

1',3'-bis(octylcarbamoyl)-2,2'-biazulene-1,3-dicarboxylic acid 5: A solution of noctylamine solution (113 mg, 0.88 mmol) in 5 mL of dichloromethane was added dropwise to the solution of 2,2'-biazulene-1,1',3,3'-tetracarboxylic dianhydride **4** (160 mg, 0.4 mmol) in 10 mL of dichloromethane. The reaction was stirred under reflux for 4h. Upon removal of solvent, the residue was purified by column chromatography with dichloromethane/ ethanol (20:1) to give product as a purple solid (204 mg, 77% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ (ppm): 9.55 (d, *J* = 10.0 Hz, 2H), 9.02 (d, *J* = 9.8 Hz, 2H), 8.20 (t, *J* = 9.8 Hz, 1H), 7.95 (t, *J* = 10.0 Hz, 1H), 7.95 (dd, *J* = 10.0 Hz, 10.0 Hz, 2H), 7.60 (dd, *J* = 10.0 Hz, 9.8 Hz, 2H), 6.89 (t, *J* = 5.6 Hz, 2H), 2.99 (m, *J* = 4H). 1.20-1.13 (m, 4H), 1.06-0.98 (m, 4H), 0.86-0.59 (m, 22H). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166. 6, 166.4, 146.5, 143.7, 142.6, 141.2, 140.1, 137.6, 130.7, 126.6, 120.3, 117.8, 39.7, 31.7, 29.0, 28.8, 28.7, 26.4, 22.5, 14.1. MS (MALDI) m/z: 675.3 (M+Na)⁺. HRMS (MALDI-FT) (m/z): (M+H)⁺ Calcd for C₄₀H₄₉O₆N₂ 653.3585;

Found, 653.3586.

N,N'-bis(n-octyl)-2,2'-biazulene-1,1',3,3'tetracarboxdiimide **BAzDI-1:** А solution of 1',3'-bis(octylcarbamoyl)-2,2'-biazulene-1,3-dicarboxylic acid 5 (90 mg, 0.14 mmol) in 5 mL of thionyl chloride was refluxed for 3 h. Then all thionyl chloride was removed under vaccum. The residual oil was purified by column chromatography using dichloromethane/hexane (2:1) as eluent to provide product as a green solid (66 mg, 78% yield). M.p. =205 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.83 (d, J = 10.6 Hz, 4H), 8.04 (t, J = 9.3 Hz, 2H), 7.82 (dd, J = 10.6 Hz, 9.3 Hz, 4H), 4.40 (t, J =7.4 Hz, 4H), 1.86 (m, 4H), 1.47 – 1.26 (m, 20H), 0.86 (t, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 165.9, 143.9, 142.2, 140.7, 136.7, 131.3, 118.6, 46.6, 31.8, 29.4, 29.3, 29.0, 27.4, 22.7, 14.1. FT-IR (KBr, cm⁻¹) v 2919.2, 2851.1, 2359.5 1647.1, 1614.4, 1452.0, 1420.4, 1389.7, 1317.3, 1296.4, 1253.2, 1167.6, 1138.4, 1034.4, 959.3, 886.7, 855.3, 806.8, 772.9, 746.6, 734.5, 707.3, 684.1, 612.8, 569.9. Anal. Calcd for C₄₀H₄₄O₄N₂: C, 77.89; H, 7.19; N, 4.54. Found: C, 77.74; H, 7.24; N, 4.55. MS (MALDI) m/z: 616.2 (M)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₄₀H₄₅O₄N₂ 617.3374; Found, 617.3362.

Diethyl2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)azulene-1,3-dicarboxylate 7: Dry hydrogen chloride gas passed through a solution of Diethyl 2-amino-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)azulene-1,3-dicarboxylate6(1.24 g, 3.0 mmol) in toluene (75 mL) at 5 °C. After isoamyl nitrite (1.76 g, 15 mmol)

was added dropwise, the mixture was stirred and green precipitates began to separate out. It was then left to sit at room temperature to react for 72 h until the color changed to dark red. The mixture was poured into water (150 mL) and extracted with toluene. The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography with hexane/ethyl acetate (5:1) to give product as Reddish violet crystals (1.12 g, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.44 (d, *J* = 10.2 Hz, 2H), 8.21 (d, *J* = 10.2 Hz, 2H), 4.47 (d, *J* = 7.1 Hz, 4H), 1.46 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.2, 144.8, 142.7, 136.8, 115.0, 85.2, 60.6, 24.9, 14.4. MS (MALDI) m/z: 433.1 (M+H)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₂₂H₂₇O₆BCl 432.1620; Found, 432.1616.

Diethyl 2'-chloro-2,6'-biazulene-1',3'-dicarboxylate 9: A mixture of Pd(PPh₃)₂Cl₂ (140 mg, 0.2 mmol), 2-bromoazulene **8** (414 mg, 2.0 mmol), Diethyl 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)azulene-1,3-dicarboxylate **7** (1.56 g, 3.6 mmol), 2M NaHCO₃ aq. (4 mL) in toluene (8 mL) and EtOH (4 mL) was reacted at 60 °C for 2 h under nitrogen atmosphere. The mixture was poured into water (50 mL) and extracted with dichloromethane. The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residual was purified by column chromatography using dichloromethane/hexane (2:1) as eluent to provide product as dark green solid (510 mg, 59% yield). ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm): 9.44 (d, *J* = 11.1 Hz, 2H), 8.71 (d, *J* = 11.1 Hz, 2H), 8.50 (d, *J* = 9.6 Hz, 2H), 8.08 (s, 2H), 7.73 (t, *J* = 9.8 Hz, 1H), 7.32 (dd, *J* = 9.8 Hz, 9.6 Hz, 2H), 4.44 (q, *J* = 7.1 Hz, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.3, 149.9, 148.4, 142.9, 141.3, 140.5, 138.7, 138.2, 136.9, 130.8, 124.5, 116.3, 115.3, 60.6, 14.5. MS (MALDI) m/z: 433.1 (M+H)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₂₆H₂₂O₄Cl 433.1201; Found, 433.1201.

Tetraethyl 2,6':2',2'':6'',2'''-quaterazulene-1',1'',3',3''-tetracarboxylate 10: A mixture of Diethyl 2'-chloro-2,6'-biazulene-1',3'-dicarboxylate **9** (1.68 g, 3.7 mmol) and Ni(COD)₂ (1.0 g, 3.7 mmol) was dissolved in DMF (12 mL) under nitrogen atmosphere. The reaction mixture was heated at 50 °C for 6 h. It was then poured into water and extracted with dichloromethane. The combined organic phases was washed with water and dried over Na₂SO₄. After concentrated under reduced pressure, the residue was purified by column chromatography on silica gel with dichloromethane/ hexane (8:1) to give product as dark green crystals (1.49 g, 97% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.86 (d, *J* = 10.8 Hz, 4H), 8.43 (d, *J* = 10.8 Hz, 4H), 8.41 (d, *J* = 9.6 Hz, 4H), 7.86 (s, 4H), 7.62 (t, *J* = 10.0 Hz, 2H), 7.23 (dd, *J* = 10.0 Hz, 9.6 Hz, 4H), 3.97 (q, *J* = 7.0 Hz, 8H), 0.64 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 165.3, 155.4, 151.1, 147.8, 142.3, 141.5, 138.4, 138.0, 137.2, 130.4, 124.5, 116.5, 116.4, 59.4, 13.4. MS (MALDI) m/z: 817.1 (M+Na)⁺. HRMS (DART-FT) (m/z): (M+H)⁺ Calcd for C₅₂H₄₃O₈ 795.2952; Found, 795.2945.

2,6':2',2'':6'',2'''-quaterazulene-1',1'',3',3''-tetracarboxylic acid 11: A mixture of tetraethyl 2,6':2',2":6'',2'''-quaterazulene-1',1'',3',3''-tetracarboxylate (794 mg, 1.0 mmol), THF (12 mL), EtOH (16 mL) and 12 M KOH aq. (1 mL) was refluxed for 24 h. The mixture was diluted with water and filtered to remove insoluble materials. The filtrate was then acidified with 2 M HCl and crystals separated out were collected by filtration to give product as a brown solid (636 mg, 83% yield). MS (ESI) m/z: 681.2 (M–H)[–]. HRMS (ESI Negative) (m/z): (M–H)[–] Calcd for C₄₄H₂₅O₈ 681.1555; Found, 681.1544.

2,6':2',2'':6'',2'''-quaterazulene-1',1'',3',3''-tetracarboxylic dianhydride 12: A mixture of 2,6':2',2'':6'',2'''-quaterazulene-1',1'',3',3''-tetracarboxylic acid (205 mg, 0.3 mmol) and acetic anhydride (5 mL) was refluxed for 2 h. Then the mixture was filtrated to give product as a brown solid (169 mg, 87% yield). FT-IR (KBr, cm⁻¹) v 2970.7, 1690.0, 1566.1, 1433.2, 1405.0, 1366.7, 1329.4, 1250.9, 1214.2, 1189.4, 1122.0, 993.6, 913.2, 895.2, 859.5, 810.2, 756.5, 691.2, 571.9, 532.4. MS (MALDI) m/z: 647.2 (M+H)⁺.


```
N,N'-bis(2-hexyldecyl)-2,6':2',2'':6'',2'''-quaterazulene-1',1'',3',3''-
```

tetracarboxdiimide BAzDI-2: A solution of 2-hexyldecan-1-amine solution (73 mg, 0.3 mmol) in 5 mL of dichloromethane was added dropwise to the solution of 2,6':2',2":6",2"'-quaterazulene-1',1",3',3"-tetracarboxylic dianhydride **12** (65 mg, 0.1 mmol) in 10 mL of dichloromethane. The reaction was stirred under reflux for 4h. Upon removal of solvent, the residue was then added 10 mL of acetic anhydride and CH₃COONa (82 mg, 1.0 mmol). The resulting mixture was heated to reflux for another 4 h. The reaction mixture was diluted with water and thoroughly extracted with dichloromethane. The combined organic phases was washed with water and dried over Na₂SO₄. After concentrated under reduced pressure, the residue was purified by column chromatography on silica gel with dichloromethane/ hexane (1:2) to give product as red crystals (46 mg, 42% yield). M.p. = 282 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.63 (d, *J* = 11.2 Hz, 4H), 8.30 (d, *J* = 11.2 Hz, 4H), 8.27 (d, *J* = 9.3 Hz, 4H), 7.68 (s, 4H), 7.50 (t, *J* = 9.9 Hz, 2H), 7.12 (dd, *J* = 9.9 Hz, 9.3 Hz, 4H), 4.45 (d, *J* = 7.5 Hz, 4H), 2.10 (s, 2H), 1.29 (m, 48H), 0.79 (t, *J* = 6.7 Hz, 12H). ¹³C NMR

(100 MHz, CDCl₃) δ 165.7, 149.4, 149.3, 142.2, 140.9, 138.6, 138.3, 137.9, 135.8, 130.3, 124.0, 118.2, 116.0, 49.7, 36.9, 31.4, 29. 8, 29.4, 29.2, 29.0, 26.0, 22.2, 22.2, 13.6. FT-IR (KBr, cm⁻¹) v 2921.1, 2850.3, 2363.1, 1646.2, 1613.4, 1567.8, 1479.6, 1425.5, 1386.8, 1329.2, 1256.1, 1171.5, 1017.8, 943.4, 915.6, 895.9, 853.9, 803.4, 779.8, 759.8, 724.2, 681.5, 607.8, 573.9, 533.2, 408.5. Anal. Calcd for C₇₆H₈₈O₄N₂: C, 83.47; H, 8.11; N, 2.56. Found: C, 83.61; H, 8.03; N, 2.39. MS (MALDI) m/z: 1093.7 (M+H)⁺. HRMS (MALDI-FT) (m/z): (M+H)⁺ Calcd for C₇₆H₈₉O₄N₂ 1093.6817; Found, 1093.6812.

3. TGA and DSC curves for BAzDI-1 and BAzDI-2.

Figure S1. (a) TGA measurements for BAzDI-1. (b) TGA measurements for BAzDI-2. (c) DSC measurements for BAzDI-1. (d) DSC measurements for BAzDI-2.

4. X-ray Crystallographic Structure for BAzDI-1.

Figure S2. (a) ORTEP diagram of BAzDI-1. (b) Interplannar distance of BAzDI-1.Table S1. Crystal data and structure refinement for BAzDI-1.

Empirical formula	C40 H44 N2 O4		
Formula weight	616.77		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 10.124(2) Å	a= 90.017(5)°.	
	b = 10.455(3) Å	b=94.225(7)°.	
	c = 17.030(4) Å	g =	
109.592(6)°.			
Volume	1693.0(7) Å ³		
Z	2		
Density (calculated)	1.210 Mg/m ³		
Absorption coefficient	0.078 mm ⁻¹		
F(000)	660		
Crystal size	0.180 x 0.110 x 0.040 mm ³		
Theta range for data collection	2.068 to 25.498°.		
Index ranges	-11<=h<=12, -12<=k<=1	2, -16<=l<=20	
Reflections collected	9989		
Independent reflections	6310 [R(int) = 0.0476]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equ	ivalents	
Max. and min. transmission	0.7456 and 0.5895		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6310 / 98 / 491		
Goodness-of-fit on F ²	0.990		
Final R indices [I>2sigma(I)]	R1 = 0.0785, $wR2 = 0.1806$		
R indices (all data)	R1 = 0.1956, WR2 = 0.2416		
Largest diff. peak and hole	0.247 and -0.214 e.Å ⁻³		

5. The geometries of 2,2'-biazulene, BAzDI-1 and BAzDI-2 obtained by DFT calculations.

Figure S3. The geometries of 2,2'-biazulene (a, b), **BAzDI-1** (c, d), and N,N'-bis(methyl)-substituted model molecule for **BAzDI-2** (e, f), obtained by DFT calculations.

6. UV-Vis spectra of BAzDI-1 and BAzDI-2 in solution and thin film.

Figure S4. UV-vis spectra of **BAzDI-1** (green, in CH₂Cl₂; pink, as-spun film) and **BAzDI-2** (red, in CH₂Cl₂; blue, as-spun film).

7. Spectra and color of BAzDI-1 and PDI.

Figure S5. (a) Absorption spectra of BAzDI-1 and N,N'-bis(1-ethylpropyl)-3,4:9,10perylenebis(dicarboximide) PDI. (b) Emission spectra of BAzDI-1 (no fluorescence was observed at room temperature, and only very weak fluorescence was measured at -198 °C) and PDI (very strong fluorescence, measured at room temperature). (c) Color of BAzDI-1 (violet, in CH_2Cl_2) and PDI (yellow, in CH_2Cl_2). (d) Color of BAzDI-1 (green, solid state) and PDI (red, solid state).

8. Characteristics of OFET devices.

Table S2. Characteristics of OFETs Based on BAzDI-2 at Different Annealing

Temperatures.			
Annealing	$\mu_e \ (\mu_{\mathrm{ave}})$	I /I	
Temperature(°C)	$cm^2 V^{-1} s^{-1}$	I _{On} /I _{Off}	$V_{\rm T}(\mathbf{v})$
RT	3.0 ×10 ⁻⁴ (2.3 ×10 ⁻⁴)	104~105	38 - 58
80 °C	1.2 ×10 ⁻² (0.8 ×10 ⁻²)	104~105	42 - 56
120 °C	1.5 ×10 ⁻² (1.3 ×10 ⁻²)	10 ⁴ ~10 ⁵	50 - 65

9. XRD and AFM measurements for BAzDI-2.

Figure S6. XRD patterns of spin-coated thin films of BAzDI-2 annealed at room temperature (a), 80 $^{\circ}$ C (b) and 120 $^{\circ}$ C (c).

Figure S7. AFM images of spin-coated thin films of BAzDI-2 annealed at room temperature (a), 80 $^{\circ}$ C (b) and 120 $^{\circ}$ C.

10. NMR, MS and IR spectra.

175 165 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 **Figure S11**. ¹³C NMR spectrum of **3** (100 MHz, DMSO- d_6).

S19

Figure S23. ¹³C NMR spectrum of BAzDI-2 (100 MHz, CDCl₃)

Figure S24. MS spectrum of 2.

Date: 2015/02/05

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : E150477

Sample Serial Number: 2-71-1

Operator : HUAQIN

Eto OO OEt

Operation Mode: DART Postive

Elemental composition search on mass 543.20

m/z = 538.	20-548.20			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
543.2000	543.2000	0.03	18.0	C 30 H 29 O 7 N 3
	543.2000	0.04	23.5	C29 H23 O2 N10
	543.2005	-0.90	5.5	C 16 H 31 O 13 N 8
	543.2013	-2.43	23.0	C 31 H 25 O 3 N 7
	543.2013	-2.44	17.5	C 32 H 31 O 8
	543.1987	2.51	18.5	C 28 H 27 O 6 N 6
	543.2019	-3.37	5.0	C 18 H 33 O 14 N 5
	543.2027	-4.90	22.5	C 33 H 27 O 4 N 4
	543.1973	4.97	13.5	C 27 H 31 O 10 N 2
	543.1973	4.98	19.0	C26 H25 O5 N9

Figure S25. HRMS spectrum of 2.

Figure S26. MS spectrum of 3

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : E161253

Sample Serial Number: 2013128-3-53-1

Operator : ZHUFJ Date: 2016/05/05

Operation Mode: DART Positive Elemental composition search on mass 453.06

m/z= 448.	06-458.06			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
453.0577	453.0581	-0.97	17.5	C ₂₄ H ₁₄ O ₈ Na
	453.0565	2.60	16.5	C ₂₁ H ₁₃ O ₁₀ N ₂

Figure S27. HRMS spectrum of 3

Figure S28. MS spectrum of 5

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M152692

Sample Serial Number: 3-56-1

Operator : HUAQIN Date: 2015/09/29

Operation Mode: MALDI-FT_DHB

Elemental composition search on mass 653.36

m/z = 648.	36-658.36			
m/z	Theo. Mass	Delta (ppm)	RDB eguiv.	Composition
653.3586	653.3585	0.09	17.5	C 40 H 49 O 6 N 2
	653.3572	2.14	18.0	C 38 H 47 O 5 N 5
	653.3612	-4.02	22.0	C 43 H 47 O 3 N 3

Figure S29. HRMS spectrum of 5

Figure S30. MS spectrum of BAzDI-1

 C_8H_{17}

N_O

C

. С₈Н₁₇

0

Ó

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M152095

Sample Serial Number: 3-57-1

Operator : HUAQIN Date: 2015/06/18

Operation Mode: DART Postive

Elemental composition search on mass 617.34

m/z = 612.	34-622.34			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
617.3362	617.3360	0.26	20.0	С 38 Н 43 О 3 N 5
	617.3365	-0.49	10.5	C31 H49 O7 N4 Si
	617.3366	-0.57	2.0	C 25 H 51 O 14 N 3
	617.3352	1.68	5.5	C30H53O11Si
	617.3374	-1.92	19.5	C40H45O4N2
	617.3347	2.42	15.0	C 37 H 47 O 7 N
	617.3378	-2.67	10.0	C33H51O8NSi
	617.3379	-2.75	1.5	C 27 H 53 O 15
	617.3338	3.85	6.0	C ₂₈ H ₅₁ O ₁₀ N ₃ Si
	617.3334	4.60	15.5	C 35 H 45 O 6 N 4

Figure S32. MS spectrum of 7

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

EtO 0

EtŐ

0

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D160858

Sample Serial Number: 4-69-1

Operator :HUAQIN Date: 2016/03/31

Operation Mode: DART Positive

.

.

Elemental composition search on mass 432.16

rn/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
432.1616	432.1620	-1.03	9.0	C ₂₂ H ₂₇ O ₆ ¹⁰ B Cl
	432.1606	2.23	5.5	C ₂₀ H ₃₁ O ₅ N Cl S
	432.1628	-2.85	14.5	C ₂₆ H ₂₆ O ₃ NS
	432.1601	3.35	10.0	C ₂₃ H ₂₈ O ₆ S
	432.1595	4.76	13.0	C ₂₆ H ₂₇ O ¹⁰ BClS
	432.1594	4.95	19.5	C 29 H 22 O 3 N

Figure S34. MS spectrum of 9

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D160170

Sample Serial Number: 4-78-1

Operator : HUAQIN Date: 2016/01/14

Operation Mode: DART-Positive

Elemental composition search on mass 433.12

m/z = 428.	12-438.12			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
433.1201	433.1201	-0.08	15.5	C26 H22 O4 Cl
	433.1210	-2.04	25.0	C 30 H 15 O N 3
	433.1188	3.02	16.0	C ₂₄ H ₂₀ O ₃ N ₃ Cl
	433.1215	-3.17	20.5	C27 H18 N4 Cl
	433.1183	4.15	20.5	C 27 H 17 O 4 N 2

Figure S35. HRMS spectrum of 9

Figure S36. MS spectrum of 10

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D160862

Sample Serial Number: 5-23-1

EtO *,*OEt =00= =00= ÒEt EtO

Operator :HUAQIN Date: 2016/03/31

Operation Mode: DART Positive

Elemental composition search on mass 795,29

300.29			
eo. lass	Delta (ppm)	RDB equiv.	Composition
5.2952	-0.99	31.5	C 52 H 43 O 8
5.2961	-2.08	30.5	C 53 H 47 O 3 S 2
5.2979	-4.36	36.0	C 55 H 41 O 5 N
the second	300.29 eo. lass 5.2952 5.2961 5.2979	Subscription Delta lass (ppm) 5.2952 -0.99 5.2961 -2.08 5.2979 -4.36	100.29 200.29 .eo. Delta RDB lass (ppm) equiv. 5.2952 -0.99 31.5 5.2961 -2.08 30.5 5.2979 -4.36 36.0

Figure S37. HRMS spectrum of 10

Figure S38. MS spectrum of 11

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : E161398

Sample Serial Number: 2013128-5-48-1

Operation Mode: ESI Negative Elemental composition search on mass 681.15

m/z= 676.15-686.15

Operator : ZHUFJ

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
681.1544	681.1555	-1.57	32.5	C44 H25 O8
	681.1573	-4.29	19.5	C 32 H 29 O 15 N 2
	681.1515	4.33	28.5	C 39 H 25 O 10 N 2

Date: 2016/05/16

Figure S39. HRMS spectrum of 11

Figure S40. MS spectrum of 12

Figure S41. MS spectrum of BAzDI-2

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M160886

Sample Serial Number: 5-54-1

Operator : HUAQIN Date: 2016/03/24

Operation Mode: MALDI-FT_DHB

Elemental composition search on mass 1093.68

m/z= 1088.	68-1098.68			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
1093.6812	1093.6817	-0.43	33.5	C76 H 89 O 4 N 2
	1093.6803	0.79	34.0	C74 H87 O3 N5
	1093.6844	-2.89	38.0	C79 H87 ON3

Figure S43. IR spectrum of 4

Figure S44. IR spectrum of BAzDI-1

Figure S45. IR spectrum of 12

Figure S46. IR spectrum of BAzDI-2