Supporting Information

Heptamethylindenyl (Ind*) Enables Diastereoselective Benzamidation of Cyclopropenes *via* Rh(III)-Catalyzed C-H Activation

Natthawat Semakul,^a and Tomislav Rovis^{*a}

^a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA

4th October 2016

Note added after first publication: This Supplementary Information file replaces that originally published on 23rd September 2016, and contains corrected ¹³C NMR characterisation data for the reported structures.

Table of Contents

1. General methods	
2. Preparation of starting materials and rhodium precatalysts	2
2.1 O-substituted Arylbenzhydroxamate Synthesis	
2.2 3,3-disubstituted cyclopropene Synthesis	
2.3 Catalyst Synthesis	
3. General procedures for Rh(III)-catalyzed amidoarylation O-	substituted arylhydroxamate
with cyclopropene	4
4. Product characterizations	5
4.1 Amide scope (Table 2)	
4.2 Cyclcopropene scope (Table 3)	
5. Mechanistic studies	
5.1 C-H activation reversibility	
5.2 Electronic preference of the reaction	
5.3 Kinetic isotope study	
5.4 Epimerization study	
5.5 The role of an acyl directing group	

6.	Derivatizations of dihydroisoquinolone products	23
7.	X-ray Structure of 3m	25
8.	Spectra	31

1. General methods

Flash column chromatography was performed on SiliCycle Inc.® silica gel 60 (230-400 mesh). Thin Layer chromatography was performed on SiliCycle Inc.® 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light (254 nm), KMnO₄, or CAM.

¹H-NMR and ¹³C-NMR spectra were recorded on a Varian 400 MHz spectrometers or a Bruker Avance III 500 (500 MHz) at ambient temperature. ¹H-NMR data are reported as the following: chemical shift in parts per million (δ , ppm) from chloroform (CHCl₃) taken as 7.26 ppm, integration, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd=doublet of doublets) and coupling constant (*J* in Hz unit). ¹³C-NMR is reported as the following: chemical shifts are reported in ppm from CDCl₃ taken as 77.0 ppm. Several spectra contain a probe-shielding artifact that consistently appeared on all spectra taken at that instrument over a period of months.

Mass spectra were obtained on an Agilent Technologies 6130 Quadrupole Mass Spec (LRMS, ESI+APCI).

Infrared spectra (IR) were obtained on Bruker Tensor 27 FT-IR spectrometer.

2. Preparation of starting materials and rhodium precatalysts

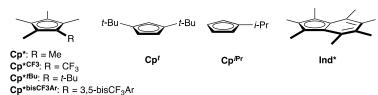
2.1 O-substituted Arylbenzhydroxamate Synthesis

O-pivaloyl arylhydroxamates¹ and *O*-Boc arylhydroxamates² were prepared by previously reported procedure.

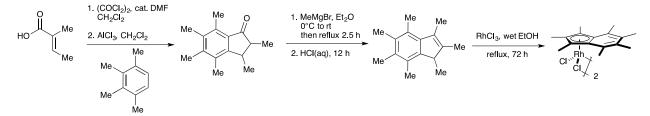
2.2 3,3-disubstituted cyclopropene Synthesis

3,3-disubstituted cyclopropenes were synthesized according to literature procedures³⁻⁴.

¹ (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. **2011**, 133, 6449. (b) Wang, H.; Glorius, F. Angew. Chem. Int. Ed. **2012**, 51, 7318 (c) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. **2013**, 135, 5364.


² (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. **2011**, 133, 6449. (b) Ye, B.; Cramer, N. Science **2012**, 338, 504

³ Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 796.


⁴ Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. **2010**, 132, 16354.

2.3 Catalyst Synthesis

[Cp*RhCl₂]₂⁵, [Cp*^{*t*-Bu}RhCl₂]₂⁶, [Cp*^{CF3}RhCl₂]₂⁷, [Cp*^{bisCF3Ar}RhCl₂]₂⁸ and [Cp^{*i*Pr}RhCl₂]₂⁹ were synthesized by reported procedures. [Cp^{*i*}RhCl₂]₂ was purchased from Sigma-Aldrich (RNI00147).

Synthesis of heptamethylindenyl rhodium chloride dimer [Ind*RhCl₂]₂

To a flame-dried round bottom flask charged with a stir bar, 2,3,4,5,6,7-hexamethylindan-1-one¹⁰ (700 mg, 3.23 mmol, 1 equiv.), Et₂O (11 mL, 0.3 M) were added and cooled to 0°C. 3 M MeMgBr (2.16 mL, 6.47 mmol, 2 equiv.) was added to the solution dropwise. The reaction was mixture was warmed to room temperature and refluxed for 2.5 h. At 0°C, H₂O was added to the reaction mixture following by conc HCl and stirred at room temperature for 12 h. The reaction was extracted with Et₂O (×3 times), washed with satd NaHCO₃, H₂O, brine, dried over MgSO₄, filtered and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using 5% Et₂O/hexane as an eluent to afford Heptamethylindene (Ind*H)¹¹ (334 mg, 48% yield). The characterizations were agreed with the previously report. ¹H-NMR (CDCl₃, 400 MHz) δ 3.28 (m, 1H), 2.61 (s, 3H), 2.42 (s, 3H), 2.35 (s, 9H), 2.05 (s, 3H), 1.33 (d, *J* = 4 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz) δ 144.9, 142.9, 140.9, 133.8, 132.0, 130.8, 128.4, 126.5, 46.4, 16.7, 16.4, 16.2, 16.1, 16.0, 15.3, 12.3.

⁵ Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2004, 6, 2785.

⁶ Piou, T.; Rovis, T. Nature 2015, 527, 86

⁷ Gassman, P. G.; Mickelson, J. W.; Sowa, J. R. J. Am. Chem. Soc. **1992**, 114, 6942

⁸ Davis, T. A.; Wang, C. Q.; Rovis, T., *Synlett* **2015**, *26*, 1520

⁹ Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292

¹⁰ Arnold, T. A.-Q.; Buffet, J.-C.; Turner, Z. R.; O'Hare, D. J. Organomet. Chem. 2015, 792, 5565

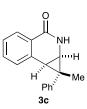
¹¹ O'Hare, D.; Green, J. C.; Marder, T.; Collins, S.; Stringer, G.; Kakkar, A. K.; Kaltsoyannis, N.; Kuhn, A.; Lewis,

R.; Mehnert, C.; Scott, P.; Kurmoo, M.; Pugh, S. Organometallics 1992, 11, 48-55

Heptamethylindene (Ind*H) (1.26 equiv., 1.2 mmol, 260 mg) was dissolved in EtOH (0.063 M, 15 mL) and a few drops of water. RhCl₃·H₂O (1 equiv., 0.95 mmol, 250 mg) was added to the reaction mixture which was subsequently refluxed for 72 h. The mixture was cooled to room temperature and the solvent was evaporated to dryness. The crude product was washed several times with hexane to remove excess ligand. The crude solid was redissolved in CH₂Cl₂ and filtered through Celite. The filtrate was concentrated which give [Ind*RhCl₂]₂ complex as a red-brown solid (60 mg, 48% yield). The characterizations were agreed with the previously report¹². ¹H-NMR (CDCl₃, 400 MHz) δ 2.54 (s, 6H), 2.07 (s, 6H), 1.97 (s, 6H), 1.59 (s, 3H). ¹³C-NMR (CDCl₃, 126 MHz) δ 143.7, 130.4, 102.6, 95.2 (d), 81.0(d), 18.5, 17.8, 13.4, 10.3. **IR** (neat, cm⁻¹) 2922.6, 2852.3

3. General procedures for Rh(III)-catalyzed amidoarylation *O*-substituted arylhydroxamate with cyclopropene

Without any precaution of air and moisture, *O*-substituted arylhydroxamate (0.1 mmol, 1 eq), $[ind*RhCl_2]_2$ (0.001 mmol, 1 mol%), CsOPiv (0.025 mmol, 0.25 equiv) and MeOH (1 mL, 0.1 M) were weighed into a dram vial charged with a stir bar. The mixture was stirred for 30 seconds and cyclopropene (0.11 mmol, 1.1 equiv) was then added. The reaction was stirred at room temperature for 16 h until the starting material was consumed (monitoring by TLC). The reaction was quenched with saturated NaHCO₃ and extracted 3 times with EtOAc. The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. The crude product was purified by column chromatography using 1/3 to 2/1 EtOAc/hexane to obtain the desired product.


Condition A: using O-pivaloyl arylhydroxamate

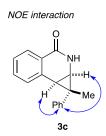
Condition B: using O-Boc arylhydroxamate

¹² Kakkar, A. K.; Stringer, G.; Taylor, N. J.; Marder, T. B. Can. J. Chem. 1995, 73, 981

4. Product characterizations

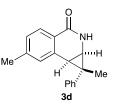
(1*S*,1a*R*,7b*R*)-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3*H*-cyclopropa[*c*]isoquinolin-3-one (3c)

General procedure B, *O*-Boc arylhydroxamate **1c'** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as a white solid (17.9 mg, 68% yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 8.20 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.44-7.32 (m, 6H), 7.28-7.24 (m, 1H), 6.99 (br. s, NH), 3.49 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.72 (d, *J* = 8.0 Hz, 1H), 1.13 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 164.1, 144.8, 136.4, 132.5, 129.5, 128.7, 128.2, 126.95, 126.86, 126.78, 126.5, 40.7, 26.7, 24.9, 13.1

IR (neat, cm⁻¹) 3174, 2923, 1658, 1599


LRMS m/z (ESI+APCI) calcd for C₁₇H₁₅NO [M+H]: 250.1; Found: 250.1

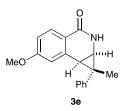
NOESY

4.1 Amide scope (Table 2)

(1*S*,1a*R*,7b*R*)-1,6-dimethyl-1-phenyl-1,1a,2,7b-tetrahydro-3*H*-cyclopropa[*c*]isoquinolin-3-one (3d)

General procedure A, *O*-Piv arylhydroxamate **1d** (0.1 mmol, 23.5 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (21.0 mg, 90 % yield).

General procedure B, *O*-Boc arylhydroxamate **1d'** (0.1 mmol, 25.1 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as a white solid (17.9 mg, 68% yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.39-7.32 (m, 4H), 7.28-2.22 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 6.89 (br. s, 1H), 3.47 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.67 (d, *J* = 8.0 Hz, 1H), 2.41 (s, 3H), 1.13 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 164.3, 144.9, 143.1, 136.3, 130.0, 128.7, 128.2, 127.9, 126.8, 126.4, 124.3, 40.7, 26.7, 25.0, 21.6, 13.2

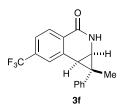
IR (neat, cm⁻¹) 3176, 3024, 2919, 1575, 1614

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO [M+H]: 264.1; Found: 264.2

(1*S*,1a*R*,7b*R*)-6-methoxy-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3*H*cyclopropa[*c*]isoquinolin-3-one (3e)

General procedure A, *O*-Piv arylhydroxamate **1e** (0.1 mmol, 25.1 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (24.9 mg, 89 % yield).

General procedure B, using *O*-Boc arylhydroxamate **1e'** (0.1 mmol, 26.7 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (17.9 mg, 64% yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 8.13 (d, J = 8.0 Hz, 1H), 7.39-7.31 (m, 4H), 7.27-7.23 (m, 1H), 6.89-6.83 (m, 2H), 6.83 (br. s, 1H), 3.88 (s, 3H), 3.47 (dd, J = 8.0, 4.0 Hz, 1H), 2.67 (d, J = 8 Hz), 1.15 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 164.1, 162.8, 144.9, 138.5, 130.4, 128.7, 126.7, 126.4, 119.9, 114.0, 112.9, 55.4, 41.0, 27.0, 25.2, 13.1

IR (neat, cm⁻¹) 3189, 3024, 2927, 1445, 1603, 1445, 1266

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO₂ [M+H]: 280.1; Found: 280.1

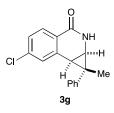
(1*S*,1a*R*,7b*R*)-1-methyl-1-phenyl-6-(trifluoromethyl)-1,1a,2,7b-tetrahydro-3*H*cyclopropa[*c*]isoquinolin-3-one (3f)

General procedure A, *O*-Piv arylhydroxamate **1f** (0.1 mmol, 28.9 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (10.2:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (25.1 mg, 77 % yield).

General procedure B, using *O*-Boc arylhydroxamate **1f**' (0.1 mmol, 30.0 mg) gives the desired dihydroisoquinolone (17:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (21.2 mg, 67% yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.32 (d, J = 8.0 Hz, 1H), 7.70 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.41-7.35 (m, 5H), 7.30-7.27 (m, 1H), 3.56 (dd, J = 8.0, 4.0 Hz, 1H), 2.76 (d, J = 8.0 Hz, 1H), 1.14 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 163.1, 144.1, 140.4, 130.1, 129.4 (q), 128.8, 128.8 (q), 127.5, 126.9, 126.8, 126.3 (q), 125.4 (q), 40.8, 26.4, 25.9, 13.2


¹⁹**F-NMR** (CDCl₃, 386 MHz): δ -63.1

IR (neat, cm⁻¹) 3200, 1560, 1311, 1168, 1127

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₄F₃NO [M+H]: 318.1; Found: 318.1

(1S,1aR,7bR)-6-chloro-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-

cyclopropa[c]isoquinolin-3-one (3g)

General procedure A, *O*-Piv arylhydroxamate 1g (0.1 mmol, 25.6 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (8.5:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (20.8 mg, 73 % yield).

General procedure B, using *O*-Boc arylhydroxamate **1g'** (0.1 mmol, 27.2 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (17.6 mg, 63% yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.11 (d, J = 8.0 Hz), 7.41-7.23 (m, 7H), 6.79 (br. s, 1H), 3.48 (dd, J = 8.0, 4.0 Hz, 1H), 2.64 (d, J = 8 Hz, 1H), 1.11 (s, 3H)


¹³C- NMR (CDCl₃, 100 MHz): δ 163.2, 144.3, 138.7, 138.2, 129.9, 129.3, 128.8, 127.4, 126.9, 126.7, 125.4, 40.7, 26.2, 25.7, 13.3

IR (neat, cm⁻¹) 3173, 2921, 1490, 1596

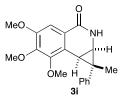
LRMS m/z (ESI+APCI) calcd for C₁₇H₁₄ClNO [M+H]: 284.1; Found: 284.1

(1S,1aR,7bR)-6-bromo-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-

cyclopropa[c]isoquinolin-3-one (3h)

General procedure A, *O*-Piv arylhydroxamate **1h** (0.1 mmol, 30.0 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (11.2:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (27.3 mg, 83 % yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.05 (d, J = 8.0 Hz, 1H), 7.60 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.40-7.30 (m, 4H), 7.27 (t, J = 8.0 Hz, 1H), 6.82 (br. s, 1H), 3.50 (dd, J = 8.0, 4.0 Hz, 1H), 2.66 (d, J = 8.0 Hz, 1H), 1.14 (s, 3H)


¹³C- NMR (CDCl₃, 100 MHz): δ 163.4, 144.3, 138.4, 132.2, 130.4, 130.0, 128.8, 127.3, 126.9, 126.7, 125.8, 40.7, 26.2, 25.7, 13.3

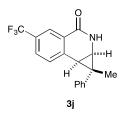
IR (neat, cm⁻¹) 2924, 1668, 1591, 1469, 1444, 1371, 765, 700

LRMS m/z (ESI+APCI) calcd for C₁₇H₁₄BrNO [M+H]: 328.0; Found: 328.0, 330.0

(1S,1aR,7bS)-5,6,7-trimethoxy-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-

cyclopropa[c]isoquinolin-3-one (3i)

General procedure A, *O*-Piv arylhydroxamate **1i** (0.1 mmol, 31.1 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (20.5 mg, 62 % yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 7.55 (s, 1H), 7.42-7.34 (m, 4H), 7.26-7.23 (m, 1H), 6.87 (br. s, 1H), 3.97 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.39 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.87 (d, *J* = 8.0 Hz, 1H), 1.13 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 163.7, 152.3, 151.9, 145.9, 144.9, 128.7, 127.1, 126.5, 123.7, 122.3, 106.7, 61.1, 61.0, 56.1, 40.6, 23.9, 21.2, 13.6

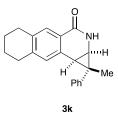
IR (neat, cm⁻¹) 3200, 2937, 1575, 1597, 1576, 1479, 1113

LRMS m/z (ESI+APCI) calcd for C₂₀H₂₁NO₄ [M+H]: 340.2; Found: 340.2

(1*S*,1a*R*,7b*R*)-1-methyl-1-phenyl-5-(trifluoromethyl)-1,1a,2,7b-tetrahydro-3*H*cyclopropa[*c*]isoquinolin-3-one (3j)

General procedure A, *O*-Piv arylhydroxamate **1j** (0.1 mmol, 28.5 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (single regioselectivity, >20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (28.3 mg, 85 % yield).

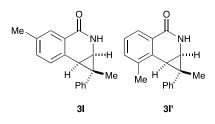
¹**H-NMR** (CDCl₃, 400 MHz): δ 8.50 (s, 1H), 7.80 (br. s, NH), 7.75 (d, J = 8 Hz, 1H), 7.57 (d, J = 8 Hz, 1H), 7.42-7.33 (m, 4H), 7.29 (d, J = 8 Hz, 1H), 3.58 (dd, J = 8.0, 4.0 Hz, 1H), 2.75 (d, J = 8.0 Hz), 1.14 (s, 3H)


¹³C- NMR (CDCl₃, 100 MHz): δ 163.1, 144.1, 140.4, 130.1, 129.4 (q), 128.8, 128.8 (q), 127.5 (q), 126.9 (q), 126.8, 125.4, 123.8, 40.8, 26.4, 25.9, 13.2.

¹⁹**F-NMR** (CDCl₃, 386 MHz): δ -61.8

IR (neat, cm⁻¹) 3193, 3060, 2928, 1669, 1617, 1502, 1167, 1125

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₄F₃NO [M+H]: 318.1; Found: 318.1

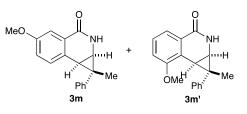

(1*S*,1a*R*,9b*R*)-1-methyl-1-phenyl-1,1a,2,5,6,7,8,9b-octahydro-3*H*-benzo[*g*]cyclopropa[*c*]isoquinolin-3-one (3k)

General procedure A, *O*-Piv arylhydroxamate **1**k (0.1 mmol, 27.5 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (8.5:1 regioselectivity, >20:1 dr of the crude reaction mixture). The mixture of product (8.5:1 regioselectivity, >20:1 dr) was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (28.6 mg, 94 % yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 7.90 (s, 1H), 7.38-7.32 (m, 4H), 7.25-7.22 (m, 1H), 7.11 (s, 1H), 3.45 (dd, J = 8.0, 4.0 Hz, 1H), 2.81 (m, 4H), 2.64 (d, J = 8.0 Hz, 1H), 1.82 (m, 4H), 1.13 (s, 3H) ¹³**C- NMR** (CDCl₃, 100 MHz): δ 164.7, 145.1, 142.4, 136.2, 133.1, 129.9, 128.7, 128.6, 126.8, 126.7, 126.3, 40.7, 29.5, 29.0, 26.5, 24.6, 23.0, 22.9, 13.1 **IR** (neat, cm⁻¹) 3190, 2926, 1660, 1613, 1445, 909, 731 **LRMS** m/z (ESI+APCI) calcd for C₂₁H₂₁NO [M+H]: 303.2; Found: 303.2

31+31'

General procedure A, *O*-Piv arylhydroxamate **11** (0.1 mmol, 23.5 mg) reacted with cyclopropene **2c** (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (3:1 regioselectivity, >20:1 dr of the crude reaction mixture). The mixture of products (3:1 regioselectivity, >20:1 dr) was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (25.5 mg, 92 % yield).


¹H-NMR (CDCl₃, 400 MHz): (See spectra)

¹³C- NMR (CDCl₃, 100 MHz): (See spectra)

IR (neat, cm⁻¹) 3196, 3025, 2923, 1665, 1613, 1500

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO [M+H]: 264.1; Found: 264.1

3m+3m'

General procedure A, *O*-Piv arylhydroxamate 1m (0.1 mmol, 25.1 mg) reacted with cyclopropene 2c (0.11 mmol, 14.3 mg) gives the desired dihydroisoquinolone (1:1 regioselectivity, >20:1 dr of the crude reaction mixture). The mixture of product was obtained

after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (25.1 mg, 86 % yield).

¹H-NMR (CDCl₃, 400 MHz): (See spectra)

¹³C- NMR (CDCl₃, 100 MHz): (See spectra)

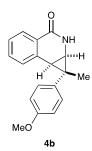
IR (neat, cm⁻¹) 3187, 2932, 1668, 1581, 1494, 1263, 1057, 1032, 752

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO₂ [M+H]: 280.1; Found: 280.1

4.2 Cyclcopropene scope (Table 3)

(1*S*,1a*R*,7b*R*)-1-methyl-1-(*p*-tolyl)-1,1a,2,7b-tetrahydro-3*H*-cyclopropa[*c*]isoquinolin-3-one (4a)

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2d** (0.11 mmol, 15.9 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (15.3 mg, 58 % yield).

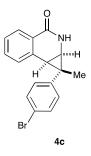

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.24-7.15 (m, 4H), 6.91 (br. s, 1H), 3.45 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.68 (d, *J* = 8.0 Hz, 1H), 2.35 (s, 3H), 1.11 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 164.1, 141.8, 136.5, 136.2, 132.4, 129.44, 129.39, 128.2, 126.87, 126.85, 126.7, 40.6, 26.6, 24.7, 21.0, 13.2

IR (neat, cm⁻¹) 3188, 3028, 2919, 1662, 1597, 1479, 1341, 777

LRMS m/z (ESI+APCI) calcd for $C_{18}H_{17}NO$ [M+H]: 264.1; Found: 264.2

(1*S*,1a*R*,7b*R*)-1-(4-methoxyphenyl)-1-methyl-1,1a,2,7b-tetrahydro-3*H*cvclopropa[*c*]isoquinolin-3-one (4b)


General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2e** (0.11 mmol, 17.6 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (18.7 mg, 67 % yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.19 (d, J = 8 Hz, 1H), 7.50 (t, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.36 (t, J = 8 Hz, 1H), 7.27 (d, J = 8 Hz, 2H), 7.11 (brs, 1H), 6.90 (d, J = 8 Hz, 2H), 3.81 (s, 3H), 3.44 (dd, J = 4, 8 Hz, 1H), 2.65 (d, J = 8 Hz, 1H), 1.09 (s, 3H)

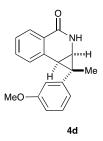
¹³C- NMR (CDCl₃, 100 MHz): δ 164.2, 158.2, 137.0, 136.6, 132.4, 129.4, 128.1, 128.1, 126.8, 114.1, 55.3, 40.5, 26.4, 24.5, 13.6

IR (neat, cm⁻¹) 3196, 3039, 2929, 2830, 1662, 1513, 1240, 1178, 1030, 777, 737 LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO₂ [M+H]: 280.1; Found: 280.1

(1*S*,1a*R*,7b*R*)-1-(4-bromophenyl)-1-methyl-1,1a,2,7b-tetrahydro-3*H*cyclopropa[*c*]isoquinolin-3-one (4c)

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2f** (0.11 mmol, 23.0 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (17.1 mg, 52 % yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.42-7.34 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.10 (br. s, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 3.46 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.67 (d, *J* = 8.0 Hz, 1H), 1.10 (s, 3H)


¹³C- NMR (CDCl₃, 100 MHz): 164.0, 143.9, 136.0, 132.5, 131.8, 129.4, 128.6, 128.2, 127.1, 126.8, 120.3, 40.6, 26.7, 24.6, 13.0

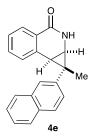
IR (neat, cm⁻¹) 3171, 3028, 2921, 1662, 1490, 1437

LRMS m/z (ESI+APCI) calcd for C₁₇H₁₄BrNO [M+H]: 328.0, 330.0; Found: 328.0, 330.1

(1S,1aR,7bR)-1-(3-methoxyphenyl)-1-methyl-1,1a,2,7b-tetrahydro-3H-

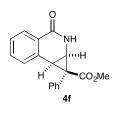
cyclopropa[c]isoquinolin-3-one (4d)

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2g** (0.11 mmol, 17.6 mg) gives the desired dihydroisoquinolone (13.5:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (16.2 mg, 58 % yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 8.20 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 3.84 (s, 3H), 3.45 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.71 (d, *J* = 8.0 Hz, 1H), 1.12 (s, 3H)

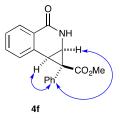
¹³C- NMR (CDCl₃, 100 MHz): δ 164.1, 159.9, 146.5, 136.3, 132.5, 129.7, 129.5, 128.2, 126.95, 126.89, 119.0, 113.2, 111.2, 55.3, 40.8, 26.8, 24.9, 13.0

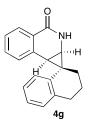
IR (neat, cm⁻¹) 2952, 1633, 1560, 1482, 1341, 1291, 1039, 773, 699


LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO₂ [M+H]: 280.1; Found: 280.1

(1*S*,1a*R*,7b*R*)-1-methyl-1-(naphthalen-2-yl)-1,1a,2,7b-tetrahydro-3*H*cvclopropa[*c*]isoquinolin-3-one (4e)

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2h** (0.11 mmol, 19.8 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (23.3 mg, 78% yield). **¹H-NMR** (CDCl₃, 400 MHz): δ 8.23 (d, J = 8 Hz), 7.87-7.79 (m, 4H), 7.55-7.45 (m, 5H), 7.39 (t, J = 8 Hz, 1H), 6.99 (brs, 1H), 3.61 (dd, J = 4, 8 Hz, 1H), 2.82 (d, J = 8 Hz, 1H), 1.22 (s, 3H) **¹³C- NMR** (CDCl₃, 100 MHz): δ 164.1, 142.1, 136.4, 133.4, 132.5, 132.1, 129.5, 128.6, 128.2, 127.6, 127.0, 126.9, 126.4, 125.8, 125.38, 125.36, 40.5, 26.5, 25.4, 13.4 **IR** (neat, cm⁻¹) 3185, 3042, 2924, 1665, 1600, 777 **LRMS** m/z (ESI+APCI) calcd for C₂₁H₁₇NO [M+H]: 300.1; Found: 300.2


methyl (1*R*,1a*R*,7b*R*)-3-oxo-1-phenyl-1a,2,3,7b-tetrahydro-1*H*-cyclopropa[*c*]isoquinoline-1carboxylate (4f)

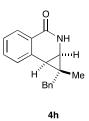

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2b** (0.11 mmol, 19.2 mg) gives the desired dihydroisoquinolone (8:1 dr of the crude reaction mixture). The major diastereomer (>10:1 dr purity) was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (22.0 mg, 75% yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.19 (d, *J* = 8 Hz, 1 Hz), 7.56-7.50 (m, 2H), 7.48-7.30 (m, 5H), 3.48 (dd, *J* = 8.0, 4.0 Hz), 3.36 (s, 3H), 3.11 (d, *J* = 8.0 Hz, 1H)

¹³C- NMR (CDCl₃, 100 MHz): δ 167.5, 163.8, 138.0, 134.2, 133.4, 132.5, 129.2, 129.1, 128.8, 127.9, 127.7, 127.0, 52.2, 41.7, 35.6, 28.2
IR (neat, cm⁻¹) 3057, 2950, 1726, 1670, 1445, 909, 731
LRMS m/z (ESI+APCI) calcd for C₁₈H₁₅NO₃ [M+H]: 293.1; Found: 293.1
NOESY

(1*S*,1a*R*,7b*R*)-1a,3',4',7b-tetrahydro-2'*H*-spiro[cyclopropa[*c*]isoquinoline-1,1'-naphthalen]-3(2*H*)-one (4g)

General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2i** (0.11 mmol, 17.2 mg) gives the desired dihydroisoquinolone (>20:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (19.8 mg, 72% yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.24-7.12 (m, 3H), 6.79 (br. s, NH), 6.68 (d, *J* = 8.0 Hz), 3.50 (dd, *J* = 8.0, 4.0 Hz), 2.83 (t, *J* = 8.0 Hz, 2H), 2.78 (d, *J* = 8.0 Hz, 1H), 1.75-1.55 (m, 2H), 1.35-1.26 (m, 2H)

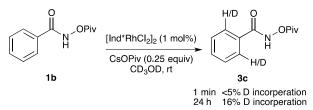
¹³C- NMR (CDCl₃, 100 MHz): δ 164.0, 139.1, 137.9, 136.0, 132.5, 129.5, 129.0, 128.1, 127.04, 127.00, 126.6, 125.3, 119.6, 43.7, 30.7, 30.2, 22.9, 21.6, 21.3

IR (neat, cm⁻¹) 2920, 1657, 1598, 1479, 1344, 751

LRMS m/z (ESI+APCI) calcd for C₁₉H₁₇NO [M+H]: 275.1; Found: 276.1

(1*R*,1a*R*,7b*R*)-1-benzyl-1-methyl-1,1a,2,7b-tetrahydro-3*H*-cyclopropa[*c*]isoquinolin-3-one (4h)

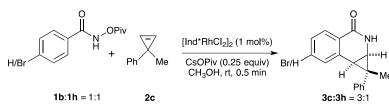
General procedure B, *O*-Boc arylhydroxamate **1d** (0.1 mmol, 23.7 mg) reacted with cyclopropene **2j** (0.11 mmol, 15.9 mg) gives the desired dihydroisoquinolone (2.3:1 dr of the crude reaction mixture). The mixture of product was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (16.8 mg, 64% yield).


¹H-NMR (CDCl₃, 400 MHz): (See spectra)

¹³C- NMR (CDCl₃, 100 MHz): (See spectra)

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₇NO [M+H]: 264.1; Found: 264.1

5. Mechanistic studies


5.1 C-H activation reversibility

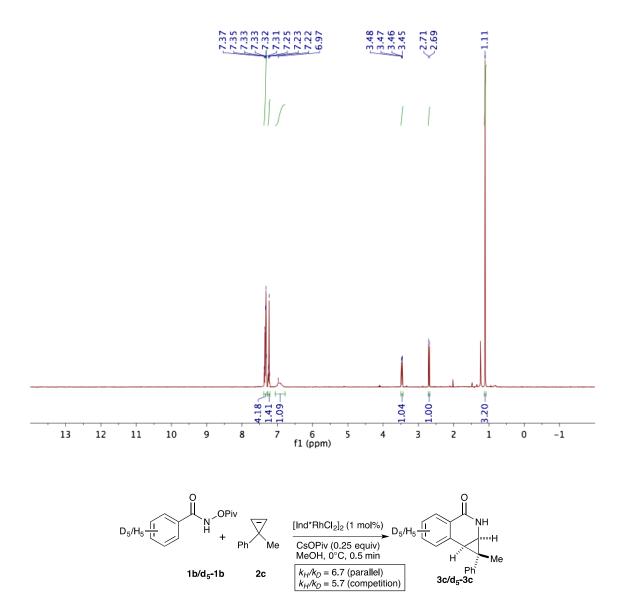
A 1-dram vial was charged with a stir bar, *O*-pivaloyl benzhydroxamate (0.1 mmol, 1 equiv., 22.1 mg), [Ind*RhCl₂]₂ (0.001 mmol, 1 mol%, 0.7 mg) and CsOPiv (0.025 mmol, 0.25 equiv., 5.9 mg) were weighed. The mixture was dissolved in CD₃OD (0.1 M, 1 mL) and stirred for 1 min. The mixture was determined the deuterium incorporation by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Another vial was stirred for 24 h at room temperature.

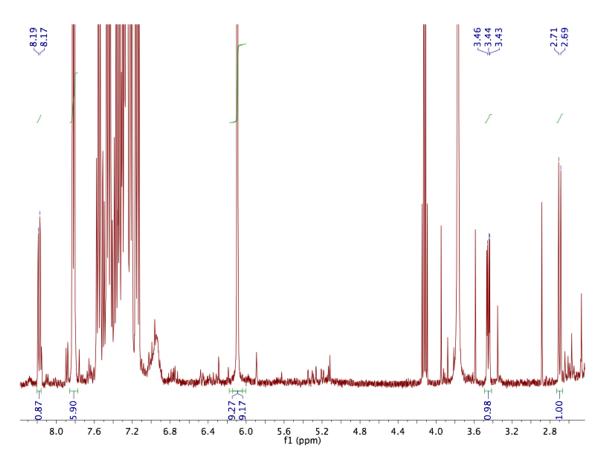
5.2 Electronic preference of the reaction

A 1-dram vial charged with a stir bar, *O*-pivaloyl benzhydroxamate (0.05 mmol, 0.5 equiv., 11.1 mg), *O*-pivaloyl p-bromo benzhydroxamate (0.05 mmol, 0.5 equiv., 15.0 mg), $[Ind*RhCl_2]_2$ (0.001 mmol, 1 mol%, 0.7 mg) and CsOPiv (0.025 mmol, 0.25 equiv., 5.9 mg) were weighed. The mixture was dissolved in CH₃OH and stirred for 30 sec at 0°C. Then, cyclopropene (0.1 mmol, 0.5 equiv., 5.9 mg) was added and stirred for 30 sec at 0°C. The reaction was quenched using satd. NaHCO₃ and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and solvent was evaporated. The crude mixture was characterized by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

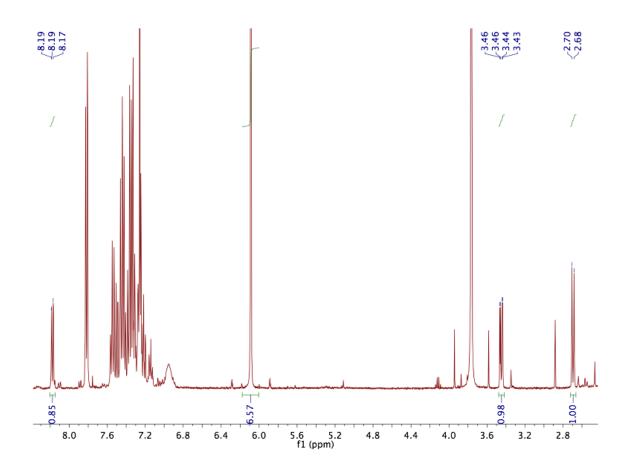
5.3 Kinetic isotope study

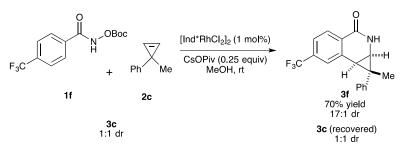

 D_5 -benzoic acid was prepared according to the reported procedure.¹³ Then, *O*-pivaloyl D_5 -benzhydroxamate was prepared.

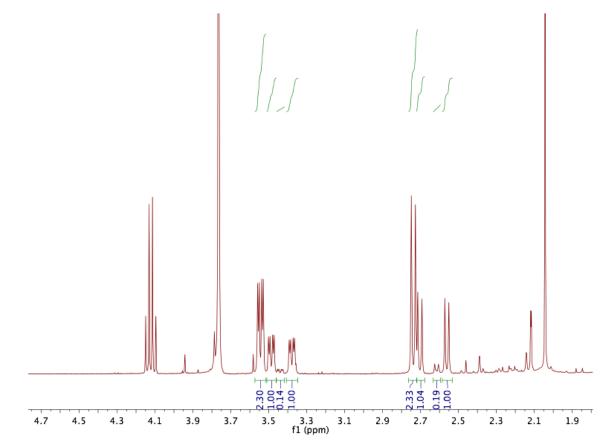
O-pivaloyl D₅-benzhydroxamate (0.1 mmol, 0.1 equiv., 22.6 mg), cyclopropene (0.11 mmol, 0.11 equiv., 14.3 mg), $[Ind*RhCl_2]_2$ (0.001 mmol, 1 mol%, 0.7 mg) and CsOPiv (0.025 mmol, 0.25 equiv., 5.9 mg) were weighed in a dram vial. The reaction mixture was stirred at room temperature for 16 h. The major diastereomer was obtained after purification by column chromatography using 1/3 to 2/1 EtOAc/hexane as an off-white solid (82% yield, >20:1 dr).


¹**H-NMR** (CDCl₃, 400 MHz): δ 7.37-7.31 (m, 4H), 7.23 (t, *J* = 8.0 Hz, 1H), 3.45 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.70 (d, *J* = 8.0 Hz), 1.11 (s, 3H)

LRMS m/z (ESI+APCI) calcd for C₁₇H₁₁D₄NO [M+H]: 254.1; Found: 254.1

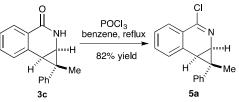

¹³ Chioung, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc., 2007, 129, 9879


<u>Parallel experiment:</u> Two 1-dram vials were charged with a stir bar, proteo- and deuterobenzamide substrate (0.1 mmol, 1 equiv), [Ind*RhCl₂]₂ (1 mol%) and CsOPiv (0.25 equiv) were weighed. The mixture was dissolved in CD₃OD (0.1 M, 1 mL) and stirred for 30 sec at 0°C. Then, cyclopropene (0.1 mmol, 0.5 equiv., 5.9 mg) was added and stirred for 30 sec. The reaction was quenched using satd. NaHCO₃ and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and solvent was evaporated. The crude mixture was characterized by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.


<u>Competition experiment:</u> A 1-dram vial were charged with a stir bar, proteo- and deuterobenzamide substrate (0.05 mmol, 0.5 equiv), [Ind*RhCl₂]₂ (0.001 mmol, 1 mol%, 0.7 mg) and CsOPiv (0.025, 0.25 equiv., 5.9 mg) were weighed. The mixture was dissolved in CD₃OD (0.1 M, 1 mL) and stirred for 30 sec at 0°C. Then, cyclopropene (0.1 mmol, 0.5 equiv., 5.9 mg) was added and stirred for 30 sec. The reaction was quenched using satd. NaHCO₃ and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and solvent was evaporated. The crude mixture was characterized by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

5.4 Epimerization study

A diastereomeric mixture of dihydroisoquinolone **3c** (1:1 dr), substrate **1e** (0.1 mmol, 1 equiv., 30.2 mg), $[ind*RhCl_2]_2$ (0.001, 1 mol%, 0.8 mg) CsOPiv (0.025 mmol, 0.25 equiv., 5.9 mg) were weighed in a dram vial charged with a stir bar. MeOH (1mL, 0.1 M) was added and the mixture was stirred for 30 seconds and cyclopropene **2c** (0.11 mmol, 14.9 µL, 1.1 equiv to **1e**) was then added. The reaction was stirred at room temperature for 16 hours and the starting material **1e** was monitored that it was consumed monitoring by TLC. The reaction was quenched using satd. NaHCO₃ and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and the solvent was evaporated. The crude mixture was characterized by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

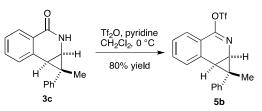


5.5 The role of an acyl directing group

6. Derivatizations of dihydroisoquinolone products

(1*S*,1a*R*,7b*R*)-3-chloro-1-methyl-1-phenyl-1a,7b-dihydro-1*H*-cyclopropa[*c*]isoquinoline (5a)

To a flamed dried round-bottom flask equipped with a stir bar and reflux condenser, dihydroisoquinolone (0.39 mmol, 97 mg), dry benzene and POCl₃ were added. The reaction mixture was refluxed for 6 h. After the completion, the reaction mixture was evaporated under reduced pressure at 60°C and treated with 5% Et_3N/Et_2O at -30°C. After stirring for 10 minutes, the crude was passed through alumina column chromatography using 1:1 Et_2O /hexane as an eluent to give a crude imidoyl chloride as a white solid (85 mg, 82% yield).


¹**H-NMR** (CDCl₃, 400 MHz): δ 7.99 (d, J = 8.0 Hz, 1H), 7.55-7.45 (m, 4H), 7.42-7.36 (m, 3H), 7.28 (t, J = 8.0 Hz, 1H), 4.08 (d, J = 8.0 Hz, 1H), 2.75 (d, J = 8.0 Hz, 1H), 0.93 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 151.9, 145.3, 136.2, 132.5, 129.2, 128.8, 127.9, 127.8, 127.0, 126.8, 125.0, 50.7, 31.4, 22.2, 13.4

IR (neat, cm⁻¹) 3024, 1614, 1599, 1567, 1218

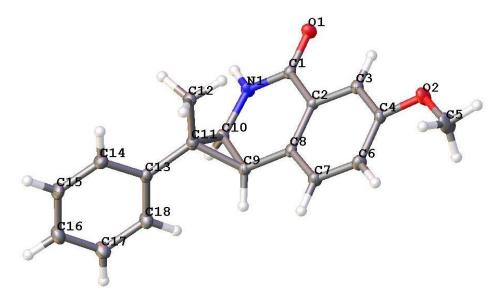
LRMS m/z (ESI+APCI) calcd for C₁₇H₁₄ClN [M+H]: 268.1; Found: 268.1

(1*S*,1a*R*,7b*R*)-1-methyl-1-phenyl-1a,7b-dihydro-1*H*-cyclopropa[*c*]isoquinolin-3-yl trifluoromethanesulfonate (5b)

To a flamed-dried round equipped with a stir bar, dihydroisoquinolone (0.5 mmol, 125 mg) in CH_2Cl_2 (5 mL) was added. The reaction mixture was cooled at -0°C. Then, Tf_2O (0.77 mmol, 0.13 mL) and pyridine (0.765 mmol, 61 µL) was slowly added to the reaction mixture which was then stirred at the same temperature for 10 mins. The reaction was diluted with CH_2Cl_2 and washed with satd. NaHCO₃. The combined organic extracts were dried over MgSO₄ and concentrated to give a crude product. The crude was purified by alumina column chromatography using EtOAc as an eluent to give the desired product as a purple solid (152 mg, 80% yield).

¹**H-NMR** (CDCl₃, 400 MHz): δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8 Hz, 3H), 7.47-7.38 (m, 3H), 7.30 (t, *J* = 8.0 Hz, 1H), 4.05 (d, *J* = 8.0 Hz, 1H), 2.86 (d, *J* = 8.0 Hz, 1H), 1.23 (s, 3H)

¹³C- NMR (CDCl₃, 100 MHz): δ 161.7, 143.4, 136.1, 134.8, 129.8, 129.7, 129.0, 128.0, 127.9, 127.5, 125.4, 121.2 (q), 44.7, 29.2, 25.9, 15.5


¹⁹F- NMR (CDCl₃, 381 MHz): 72.3

IR (neat, cm⁻¹) 3061, 1078, 1603, 1492, 1466, 1291, 1093, 792, 720, 688

LRMS m/z (ESI+APCI) calcd for C₁₈H₁₄F₃NO₃S [M+H]: 382.1; Found: 382.1

7. X-ray Structure of 3m

Rovis227-1 (CCDC 1472771)

Table 1 Crystal data and	structure refinement	for Rovis227-1.
--------------------------	----------------------	-----------------

Identification code	Rovis227-1
Empirical formula	$C_{18}H_{17}NO_2$
Formula weight	279.32
Temperature/K	99.77
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.5035(2)
b/Å	7.1303(2)
c/Å	23.6793(6)
α/°	90
β/°	95.7420(12)
$\gamma/^{\circ}$	90
Volume/Å ³	1428.53(6)
Z	4
$\rho_{calc}g/cm^3$	1.299
μ/mm^{-1}	0.085
F(000)	592.0

Crystal size/mm ³	$0.25\times0.124\times0.107$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.97 to 66.776
Index ranges	-13 \leq h \leq 12, -7 \leq k \leq 10, -36 \leq l \leq 36
Reflections collected	30307
Independent reflections	5464 [$R_{int} = 0.0926$, $R_{sigma} = 0.0945$]
Data/restraints/parameters	5464/0/192
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0685, wR_2 = 0.1558$
Final R indexes [all data]	$R_1 = 0.1350, wR_2 = 0.1811$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.29

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Rovis227-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
01	6707.2(13)	3443.8(17)	54.8(5)	18.0(3)
02	9731.6(14)	-2398.8(19)	511.4(6)	23.2(3)
N3	4408.4(16)	3146(2)	448.1(6)	15.5(3)
C4	7791.1(18)	-66(2)	452.3(7)	15.0(3)
C5	6334.4(18)	637(2)	575.3(6)	13.0(3)
C6	5347.7(18)	-415(2)	898.4(6)	13.7(3)
C7	3777.6(18)	313(2)	1014.8(6)	13.6(3)
C8	3308.6(18)	2188(2)	768.8(7)	14.4(3)
C9	5837.4(18)	2508(2)	341.3(7)	13.5(3)
C10	8283.4(19)	-1830(2)	653.3(7)	15.8(3)
C11	3616.3(18)	2012(2)	1415.3(7)	14.6(3)
C12	2168.9(18)	2069(2)	1732.1(7)	14.2(3)
C13	7307.4(19)	-2900(3)	968.6(7)	17.5(3)
C14	5853.7(19)	-2186(2)	1085.9(7)	16.7(3)
C15	5107.6(19)	2856(3)	1709.6(7)	17.1(3)

C16	765.3(19)	1151(3)	1531.6(7)	18.4(4)
C17	2171(2)	3097(3)	2237.5(8)	19.7(4)
C18	-578(2)	1240(3)	1825.7(8)	23.0(4)
C19	-552(2)	2286(3)	2321.1(8)	24.0(4)
C20	826(2)	3196(3)	2525.4(8)	23.1(4)
C21	10328(2)	-4149(3)	736.9(10)	31.4(5)
C20	826(2)	3196(3)	2525.4(8)	23.1(4)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Rovis227-1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	18.0(6)	14.9(6)	21.8(6)	4.6(5)	5.8(5)	2.3(5)
O2	19.8(6)	20.0(7)	31.6(7)	5.7(5)	10.4(5)	7.9(5)
N3	17.4(6)	12.7(7)	16.8(7)	6.0(5)	4.3(5)	4.8(5)
C4	14.7(7)	14.6(8)	16.0(7)	-1.0(6)	2.9(6)	0.7(6)
C5	15.9(7)	10.4(8)	12.8(7)	0.5(6)	1.5(6)	1.2(6)
C6	15.9(7)	12.2(8)	13.1(7)	-2.1(6)	2.0(6)	1.0(6)
C7	14.0(7)	13.2(8)	13.8(7)	0.3(6)	2.4(6)	1.0(6)
C8	14.7(7)	14.4(8)	14.3(7)	2.5(6)	3.5(5)	2.7(6)
C9	16.1(7)	10.8(8)	13.6(7)	-0.8(6)	1.8(6)	1.1(6)
C10	14.7(7)	15.7(9)	17.2(8)	-2.0(6)	2.8(6)	3.3(6)
C11	16.3(7)	14.5(8)	13.3(7)	0.7(6)	2.9(6)	1.9(6)
C12	16.9(7)	11.9(8)	14.1(7)	0.6(6)	2.7(6)	2.1(6)
C13	19.9(8)	13.8(8)	19.1(8)	2.6(7)	3.0(6)	3.2(7)
C14	19.1(7)	14.1(8)	17.5(8)	2.2(6)	5.0(6)	1.6(6)
C15	17.1(7)	17.8(9)	16.5(8)	-2.5(7)	2.9(6)	-0.7(7)
C16	18.0(8)	22.7(10)	14.7(8)	-2.7(7)	1.9(6)	1.2(7)
C17	19.7(8)	18.4(9)	21.5(8)	-4.2(7)	4.5(6)	-2.4(7)
C18	16.5(8)	29.6(11)	23.1(9)	-3.8(8)	2.4(7)	-0.6(7)
C19	20.8(8)	29.1(11)	23.4(9)	-2.4(8)	8.5(7)	1.6(8)
C20	26.5(9)	23.8(10)	20.4(9)	-7.9(7)	8.9(7)	-2.8(7)

Atom	Atom	Length/Å
01	C9	1.2461(19)
O2	C10	1.3700(19)
O2	C21	1.430(2)
N3	C8	1.435(2)
N3	C9	1.345(2)
C4	C5	1.394(2)
C4	C10	1.394(2)
C5	C6	1.407(2)
C5	C9	1.489(2)
C6	C7	1.484(2)
C6	C14	1.392(2)
C7	C8	1.497(2)

Table 4 Bond Lengths for Rovis227-1.

Table 5 Bond Angles for Rovis227-1.	
--	--

	0	
Atom	Atom	Angle/°
02	C21	117.45(13)
N3	C8	125.98(14)
C4	C5	119.75(15)
C5	C6	120.82(15)
C5	С9	118.01(14)
C5	С9	121.15(14)
C6	C7	120.72(15)
C6	C5	118.35(14)
C6	C7	120.88(14)
C7	C8	116.74(13)
C7	C11	121.50(14)
C7	C11	60.29(11)
	O2 N3 C4 C5 C5 C5 C6 C6 C6 C6 C7 C7	O2 C21 N3 C8 C4 C5 C5 C6 C5 C9 C6 C7 C6 C7 C6 C7 C7 C8 C7 C11

Atom	Atom	Length/Å
C7	C11	1.553(2)
C8	C11	1.532(2)
C10	C13	1.398(2)
C11	C12	1.505(2)
C11	C15	1.510(2)
C12	C16	1.402(2)
C12	C17	1.403(2)
C13	C14	1.390(2)
C16	C18	1.397(2)
C17	C20	1.391(2)
C18	C19	1.388(3)
C19	C20	1.384(3)

Atom	Atom	Atom	Angle/°
02	C10	C13	124.44(15)
C4	C10	C13	120.07(14)
C8	C11	C7	58.03(10)
C12	C11	C7	116.89(14)
C12	C11	C8	115.43(13)
C12	C11	C15	116.76(14)
C15	C11	C7	118.13(13)
C15	C11	C8	118.68(14)
C16	C12	C11	121.99(15)
C16	C12	C17	117.46(15)
C17	C12	C11	120.53(15)
C14	C13	C10	119.60(16)

N3	C8	C7	117.95(13)	C13	C14	C6	121.41(15)
N3	C8	C11	120.84(14)	C18	C16	C12	121.38(16)
C7	C8	C11	61.67(11)	C20	C17	C12	120.91(16)
01	C9	N3	121.19(15)	C19	C18	C16	120.08(17)
01	C9	C5	121.36(14)	C20	C19	C18	119.22(16)
N3	C9	C5	117.45(14)	C19	C20	C17	120.94(17)
O2	C10	C4	115.48(14)				

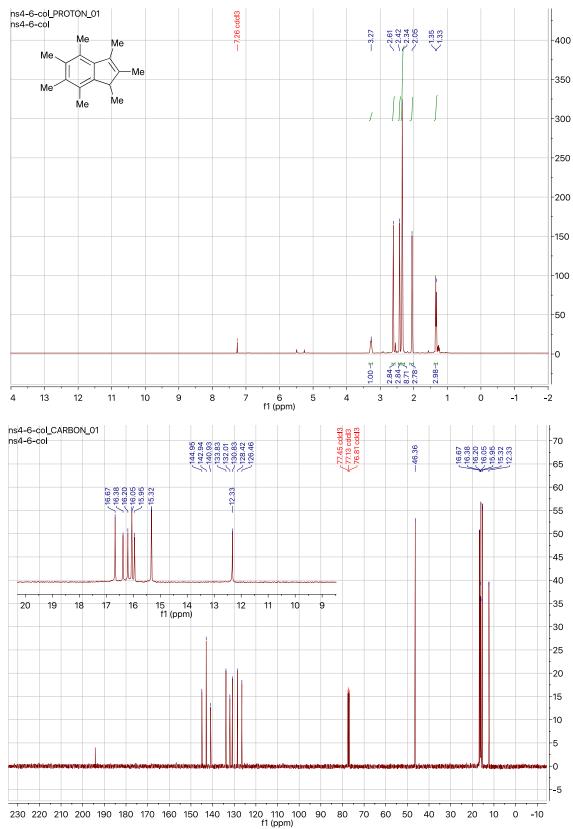
Table 6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Rovis227-1.

Atom	x	У	z	U(eq)
H3	4122	4252	309	19
H4	8446	653	232	18
H7	2913	-640	1006	16
H8	2172	2310	618	17
H13	7635	-4109	1102	21
H14	5192	-2922	1299	20
H15A	5395	2196	2068	26
H15B	4930	4186	1787	26
H15C	5966	2735	1465	26
H16	726	455	1189	22
H17	3104	3734	2385	24
H18	-1509	584	1687	28
H19	-1470	2376	2518	29
H20	854	3899	2867	28
H21A	11371	-4387	609	47
H21B	9603	-5160	604	47
H21C	10420	-4100	1153	47

Experimental

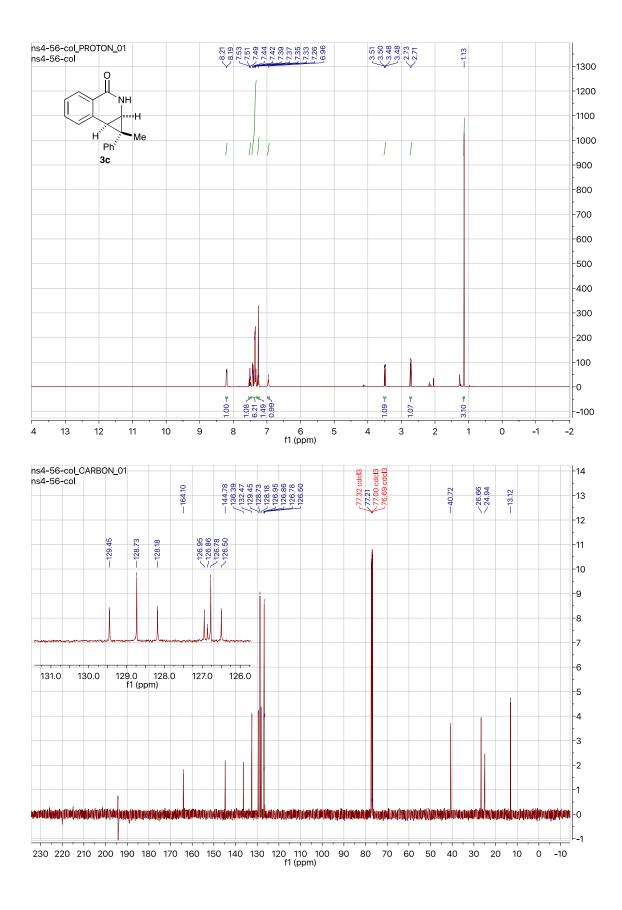
Single crystals of $C_{18}H_{17}NO_2$ were obtained by the vapor diffusion method using CH₃Cl and pentane. A suitable crystal was selected and collected on a Bruker APEX-II CCD diffractometer. The crystal was kept at 99.77 K during data collection. Using Olex2¹⁴, the structure was solved with the XS¹⁵ structure solution program using Direct Methods and refined with the XL¹⁶ refinement package using Least Squares minimisation.

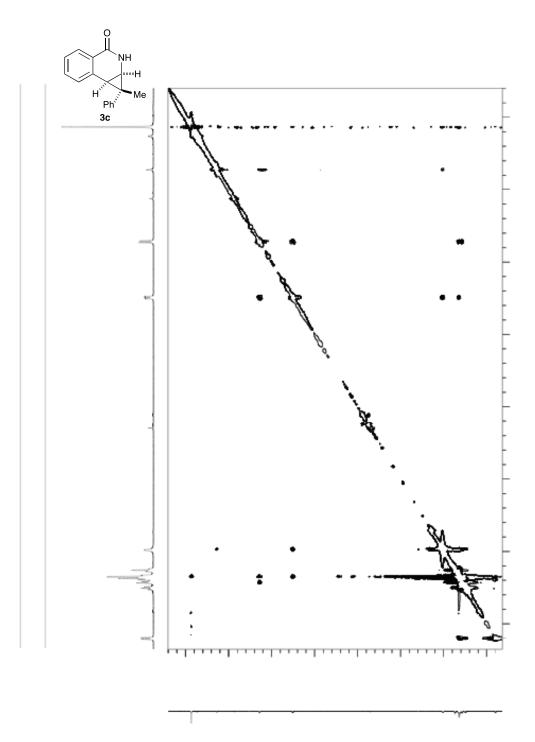
Crystal structure determination of [Rovis227-1]

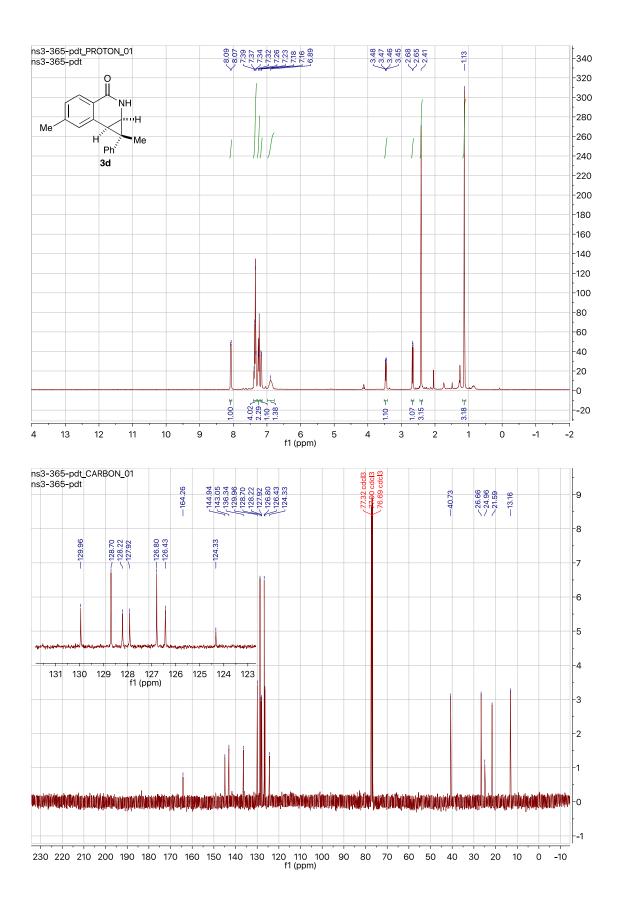

Crystal Data for C₁₈H₁₇NO₂ (M =279.32 g/mol): monoclinic, space group P2₁/n (no. 14), a = 8.5035(2) Å, b = 7.1303(2) Å, c = 23.6793(6) Å, $\beta = 95.7420(12)^{\circ}$, V = 1428.53(6) Å³, Z = 4, T = 99.77 K, μ (MoK α) = 0.085 mm⁻¹, *Dcalc* = 1.299 g/cm³, 30307 reflections measured (5.97° $\leq 2\Theta \leq 66.776^{\circ}$), 5464 unique ($R_{int} = 0.0926$, $R_{sigma} = 0.0945$) which were used in all calculations. The final R_1 was 0.0685 (I > 2 σ (I)) and wR_2 was 0.1811 (all data).

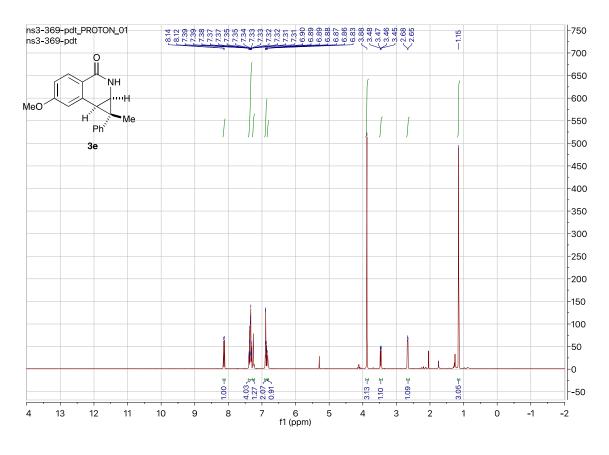
¹⁴ Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339

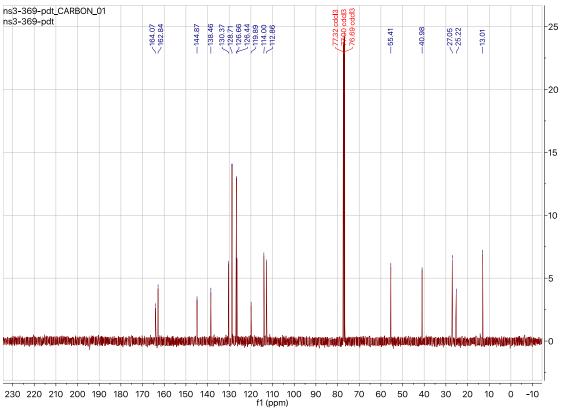
¹⁵ Sheldrick, G.M. Acta Cryst. 2008, A64, 112

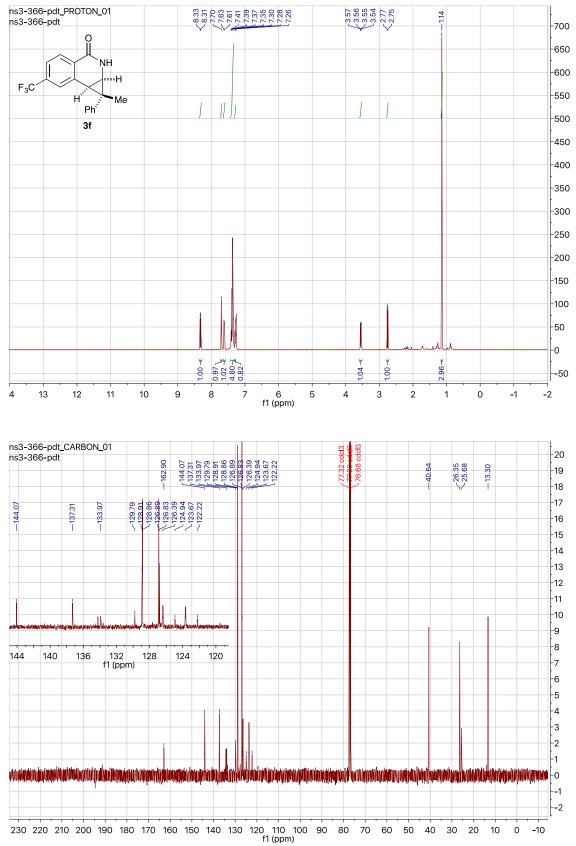

¹⁶ Sheldrick, G.M. Acta Cryst. 2008, A64, 112

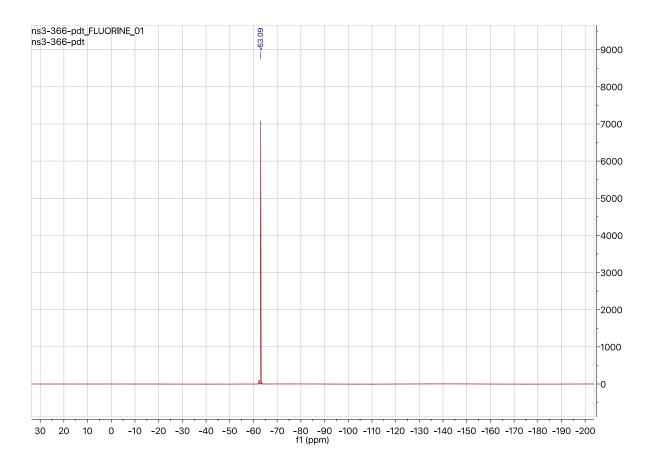

8. Spectra

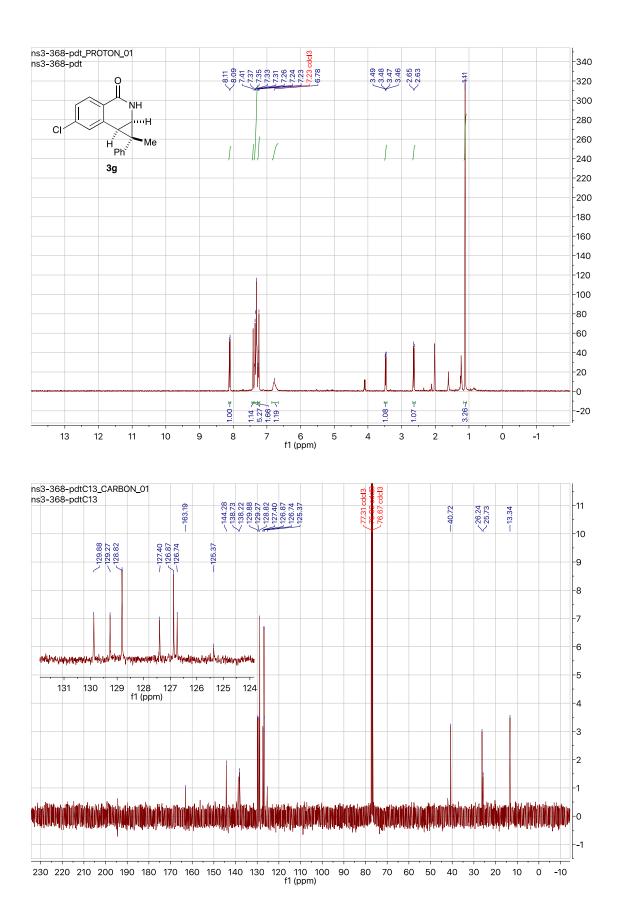

S31

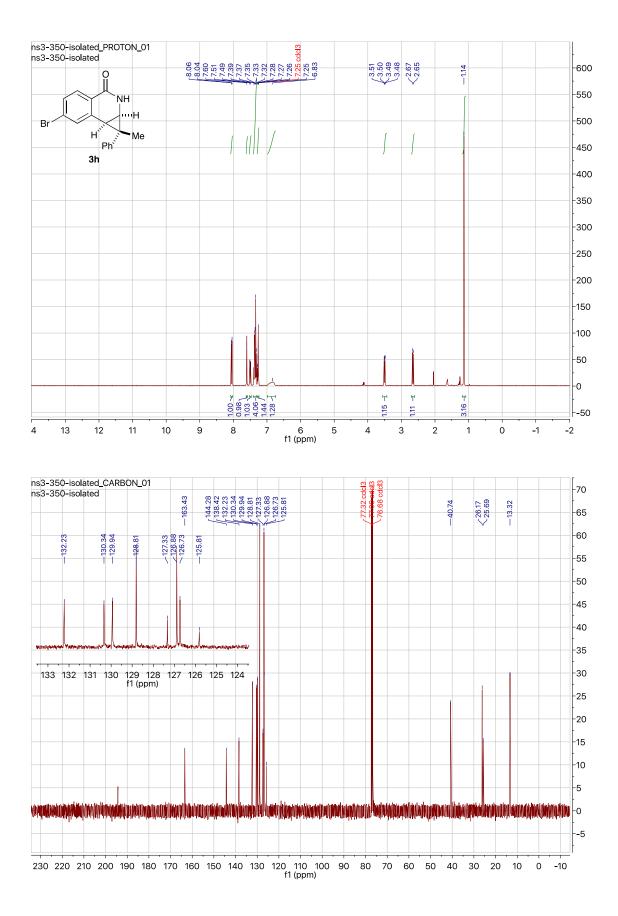


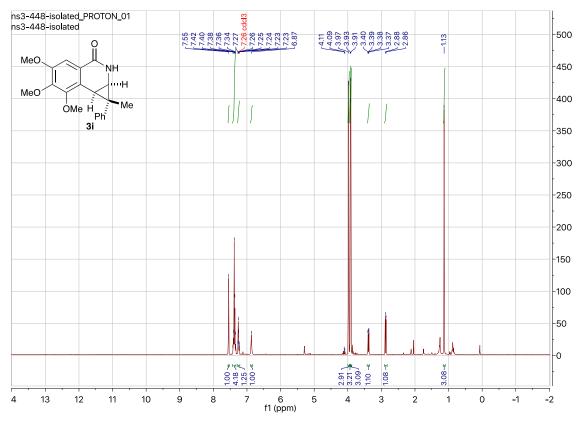


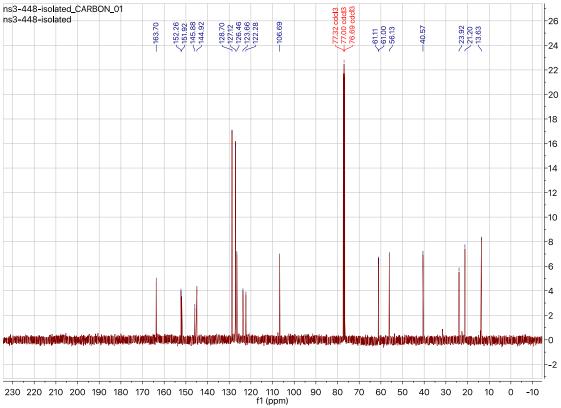


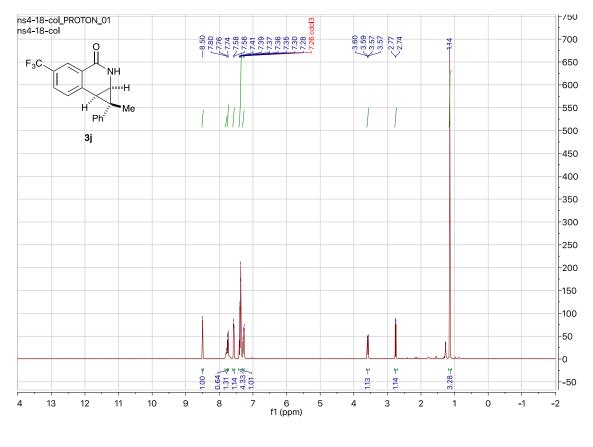


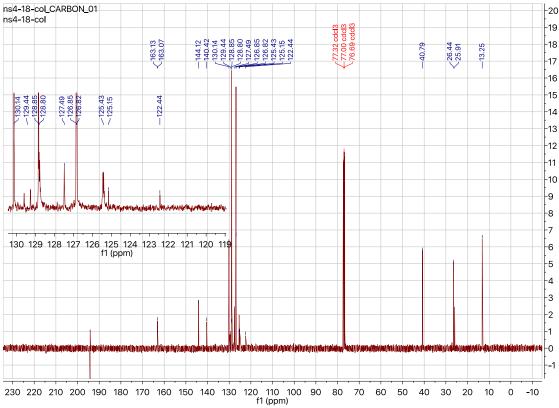


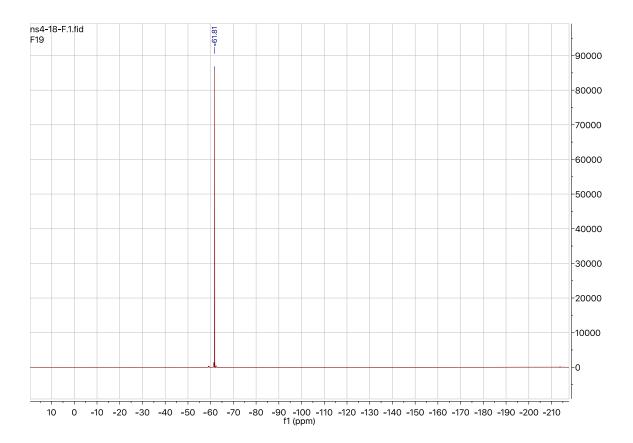


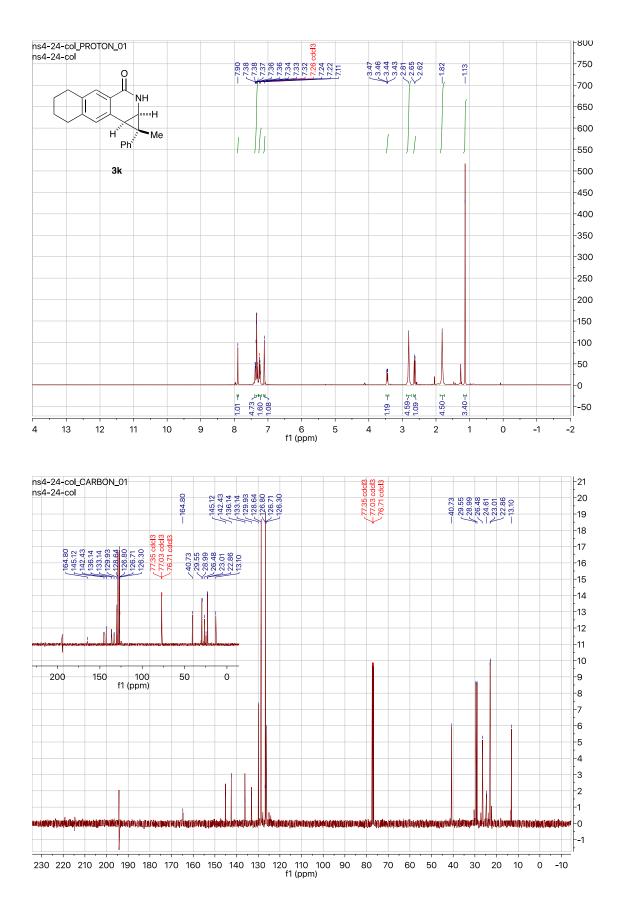


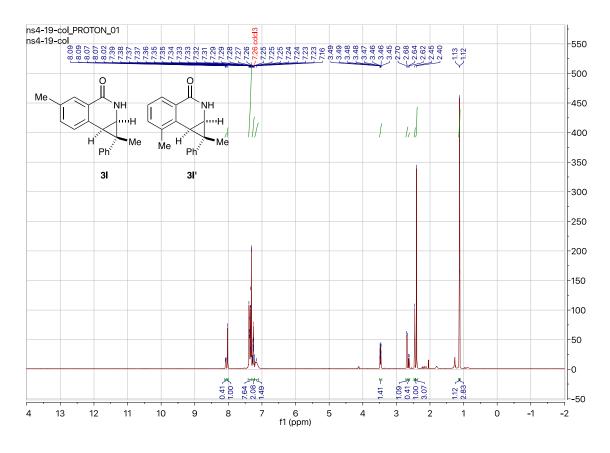


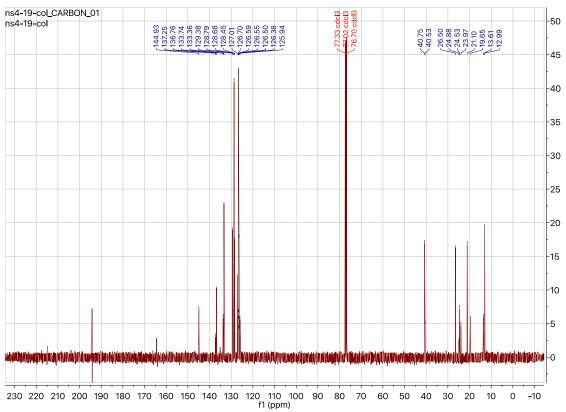


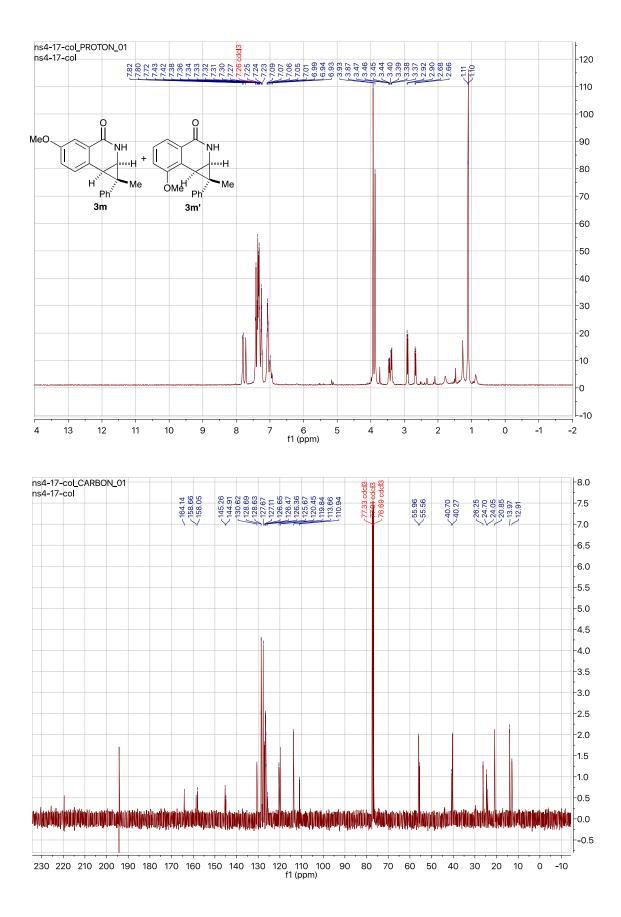


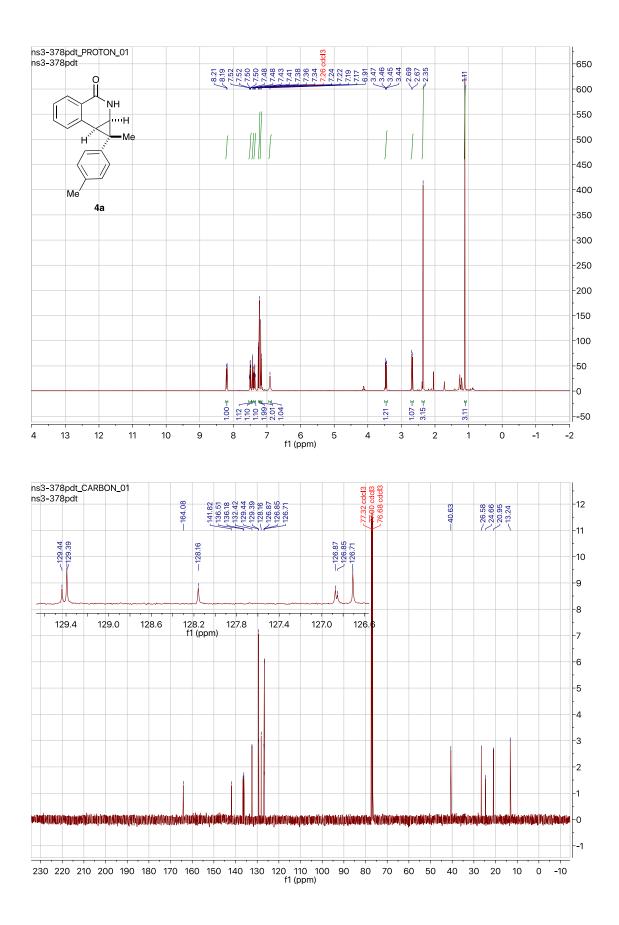


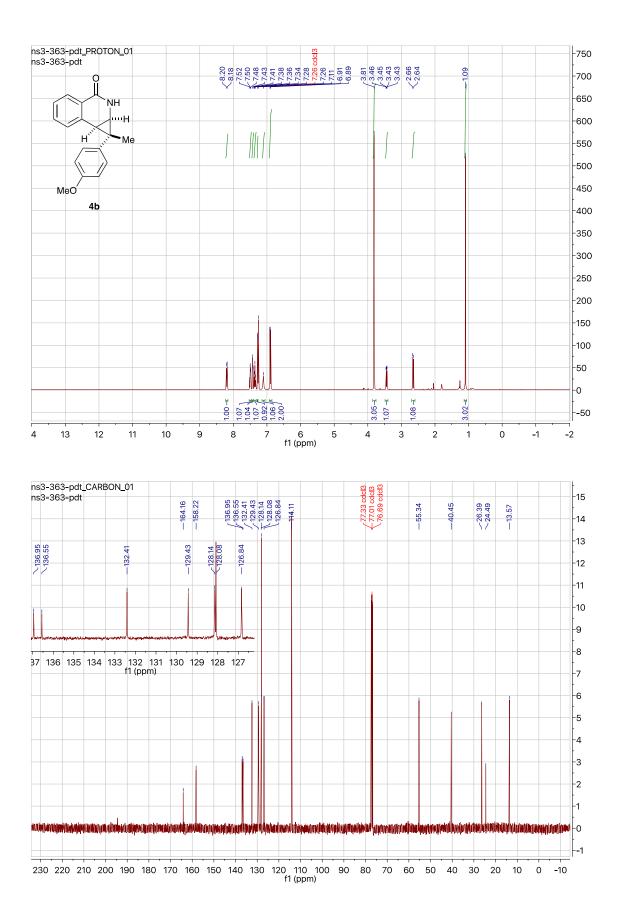


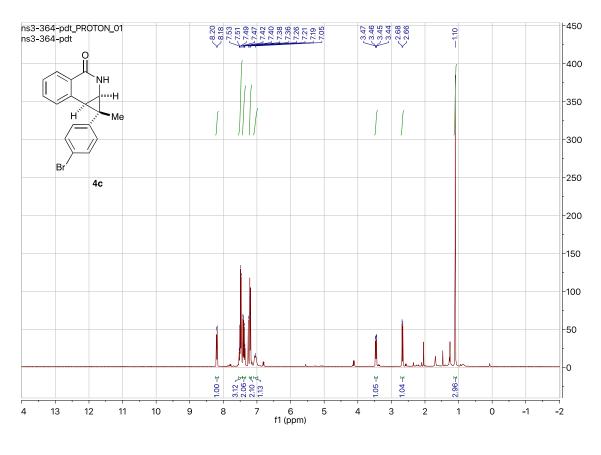


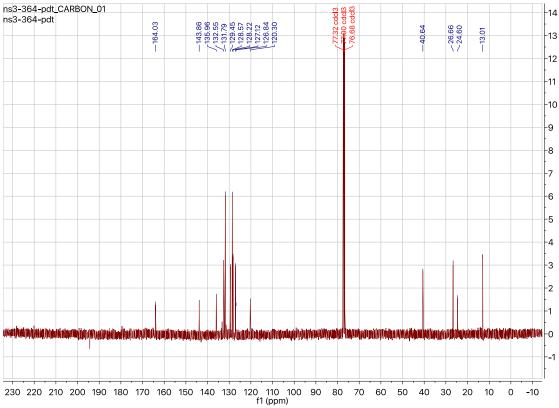


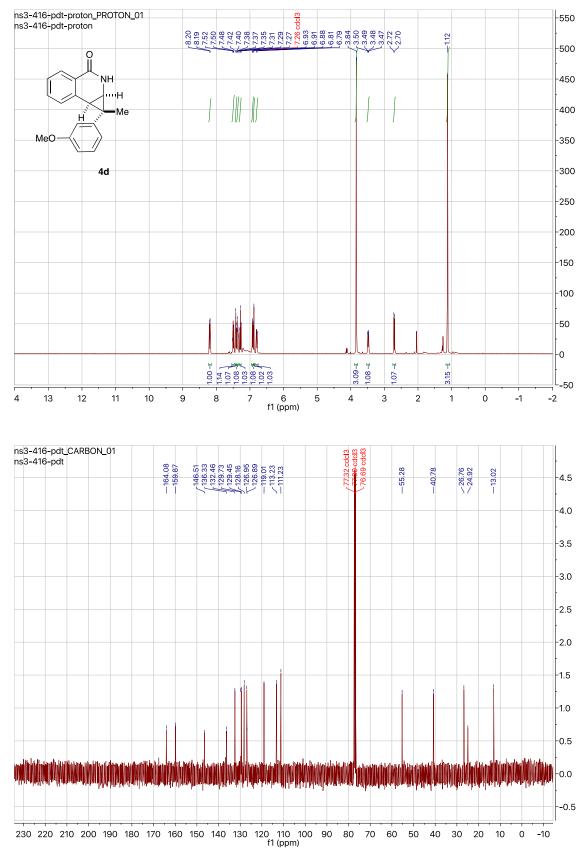


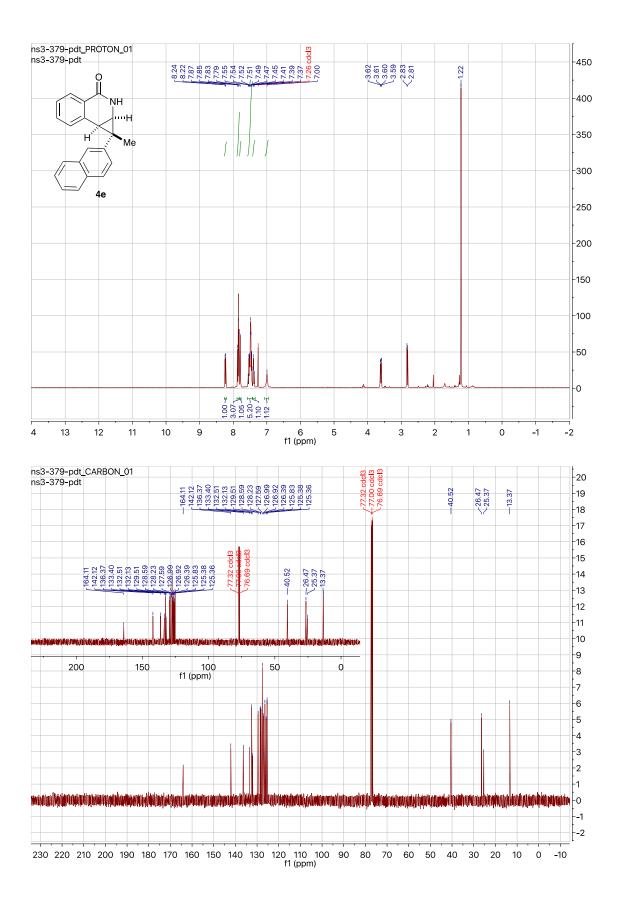


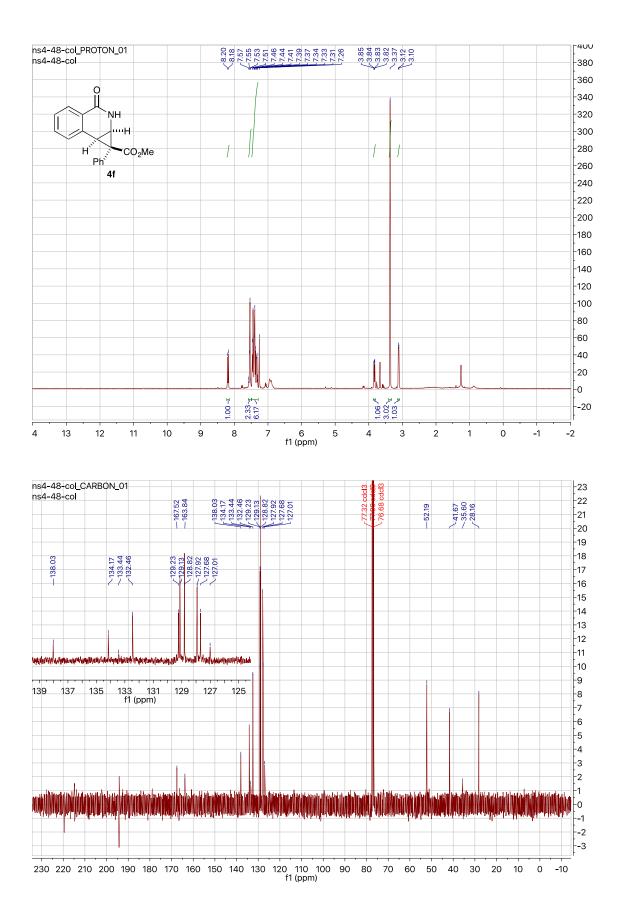


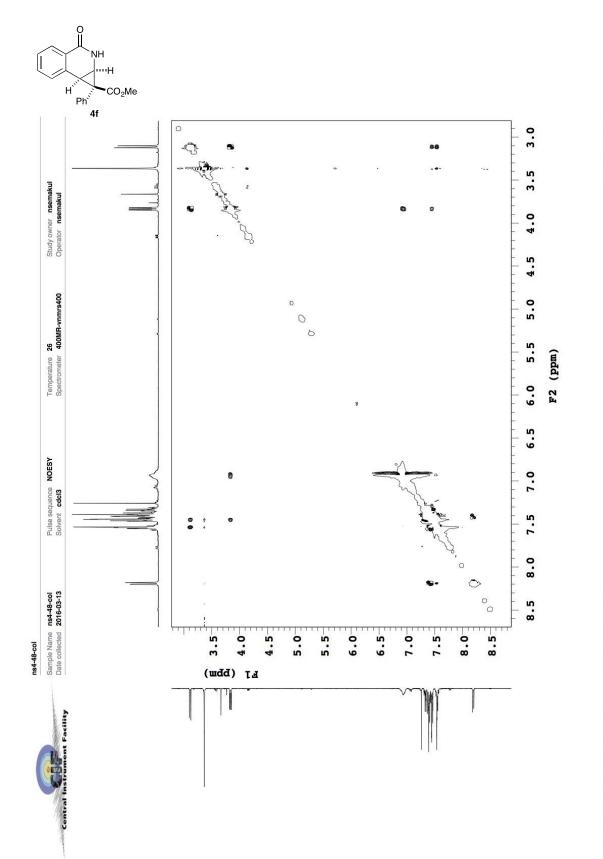


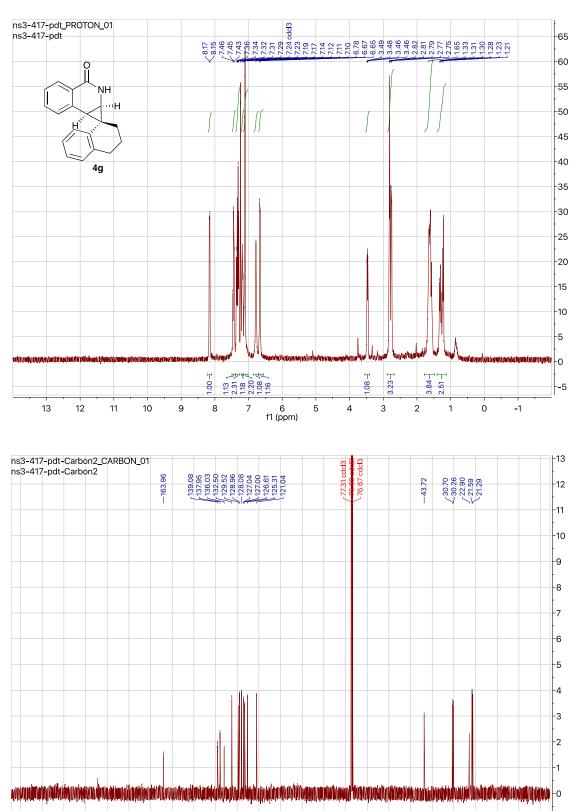


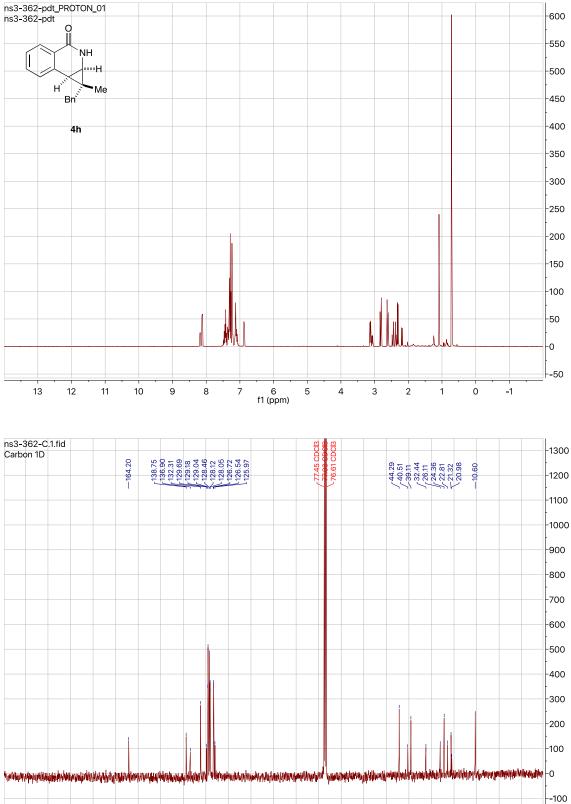


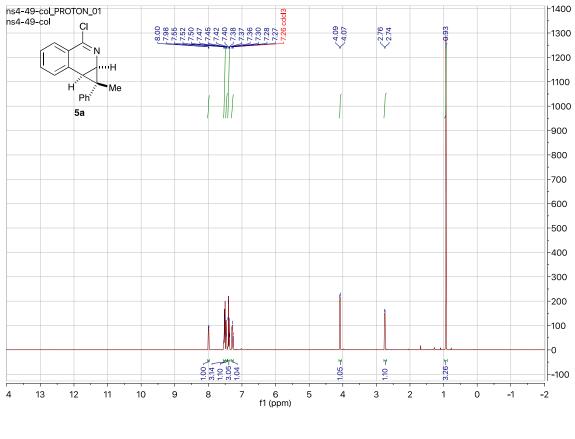


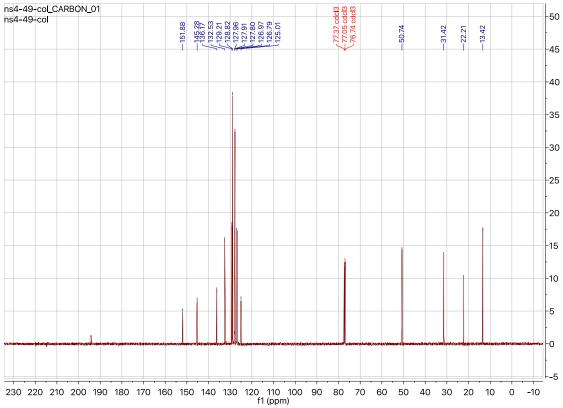


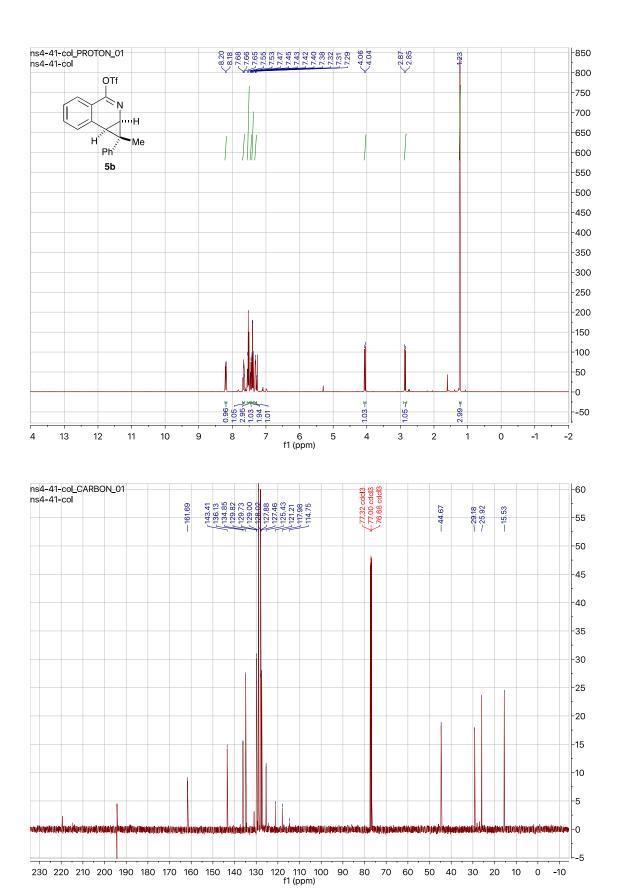




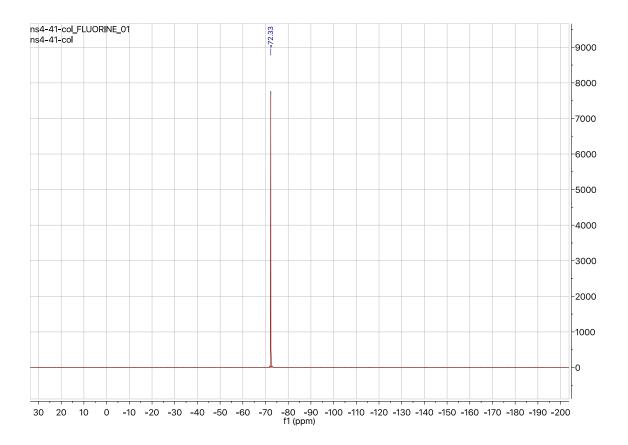







230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-1



S57

