Understanding and predicting the potency of ROS-based enzyme inhibitors, exemplified by naphthoquinones and ubiquitin specific protease-2

Pushparathinam Gopinath, \# Atif Mahammed, \# Shimrit Ohayon, Zeev Gross* and Ashraf Brik*

Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008 (Israel)
chr10zg@tx.technion.ac.il
abrik@technion.ac.il
\# these authors contributed equally

Materials and methods

General methods ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using CDCl_{3} and DMSO-d ${ }_{6}$ as a solvents. Chemical shifts were reported in δ units (ppm) with reference to TMS as an internal standard, and J values are given in $\mathrm{Hz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker AMX-400 MHz spectrometer. Mass determination of the materials was carried out using an LCQ Fleet Ion Trap (Thermo Scientific). Flash column chromatography was carried out with silica gel (220-440 mesh). The reactions were carried out in oven-dried glassware under nitrogen. Chemicals and compounds $\mathbf{1}, \mathbf{6}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}, 19,20,21,22,23,24$ were purchased from Aldrich, Fluka and Alfa Aesar. Commercial reagents were used without further purification. Analytical thin-layer chromatography (TLC) was performed on pre-coated plates (0.25 mm , silica gel 60 F254). Compound spots were visualized by UV light (254 nm).

Cyclic voltammetry (CV)

A WaveNow USB potentiostat Galvanostat (Pine Research Instrumentation) was utilized, using Pine After-Math Data Organizer software. A three electrode system was used, consisting of a mini glassy carbon electrode (diameter of the active zone: 2.8 mm ; Metrohm) working electrode, a platinum wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. The CV measurements in organic solvent were performed in acetonitrile solutions which contained 0.1 M in tetrabutylammonium perchlorate (TBAP, Fluka, recrystallized twice from methanol) and 0.4 mM substrate under N_{2} atmosphere at ambient temperature. The $\mathrm{E}_{1 / 2}$ value for the Ferrocene/Ferrocenium couple under these conditions was 0.47 V . The CV measurements in aqua solutions were performed in Tris buffer, pH 7.5 which contained 10% DMSO (for solubilizing the substrates) and 0.4 mM substrate under N_{2} and O_{2} atmosphere at ambient temperature. Scan rates of $10-1000 \mathrm{mV} / \mathrm{s}$ were applied.

Procedure for the preparation of compound 2:

To a stirred suspension of $\mathbf{1}(250 \mathrm{mg}, 1.58 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.30 \mathrm{~g}, 9.49 \mathrm{mmol})$ in DMF (10 mL), methyl 3-mercaptopropionate ($175 \mu \mathrm{l}, 1.58 \mathrm{mmol}$) was added at room temperature and allowed to stir for 3 h at $50^{\circ} \mathrm{C}$. TLC showed the complete disappearance of starting material. The reaction was quenched with water, extracted with EtOAc and purified by column using $\mathrm{CHCl}_{3^{-}}$ EtOAc as eluents to give product 2, as a dark red solid ($312 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 8.09 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.45,176.37,171.15,158.89,135.19,133.55,131.42,130.58,129.50,125.31$, 119.76, 52.40, 32.28, 26.45. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$277.0501, found $[\mathrm{M}+\mathrm{H}]^{+}$277.0501.

Compound $\mathbf{3}$ ($152 \mathrm{mg}, 37 \%$ yield) was prepared starting from $\mathbf{1}(250 \mathrm{mg}, 1.58 \mathrm{mmol})$ according to the procedure described above, which was isolated as a red solid. ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 12.85-$ 12.35 (bs, 1H), $8.05-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (s, $1 \mathrm{H}), 3.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta 178.71,175.74$, $172.30,156.73,135.07,133.09,131.15,130.57,128.31,124.92,120.16,32.10,25.99$. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 285.0198$, found $[\mathrm{M}+\mathrm{H}]^{+} 285.0138$.

Compound 4 ($280 \mathrm{mg}, 53 \%$ yield) was prepared starting from $1(250 \mathrm{mg}, 1.58 \mathrm{mmol}$) according to the procedure described above, which was isolated as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 8.16 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=12.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.39,176.27,158.97,155.74,135.05,133.55,131.25,130.43$, 129.33, 125.27, 119.82, 80.10, 38.55, 31.79, 28.37(3C). HRMS (ESI) exact mass calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 334.1113$, found $[\mathrm{M}+\mathrm{H}]^{+} 334.1102$.

Compound 5 ($480 \mathrm{mg}, 88 \%$ yield) was prepared starting from $1(500 \mathrm{mg}, 3.16 \mathrm{mmol}$) according to the literature procedure, which was isolated as red solid. ${ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.4-8.25$ (bs, $1 \mathrm{H}), 8.22-8.09(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta 182.16,174.62$, 157.96, 134.21, 131.61, 131.59, 130.45, 127.73, 123.94, 100.99. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 174.0555$, found $[\mathrm{M}+\mathrm{H}]^{+} 174.0505$.

General procedure for the synthesis of 4-methoxy 1,2 naphthoquinone derivatives ${ }^{2}$

1,2 naphthoquinone $\mathbf{1}(200 \mathrm{mg}, 1.26 \mathrm{mmol})$ was dissolved in 5 ml of MeOH , in which to it was added $\mathrm{NaIO}_{3}(250 \mathrm{mg}, 1.26 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(470 \mathrm{mg}, 1.26 \mathrm{mmol})$ in one portion and stirred vigorously at room temperature. After $20-30 \mathrm{~min}$, the reaction solvent was evaporated under reduced pressure and water and EtOAc were added. The aqueous layer was extracted twice with EtOAc and the combined layers were washed with saturated ammonium chloride. The crude material was purified using column chromatography with Hexanes-EtOAc as eluents to obtain the
product 7 as a yellow solid $\left(160 \mathrm{mg}, 67 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.65,179.55,168.83,135.11,132.12,131.67$, $130.51,129.20,124.89,103.21,56.96$. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 189.0552, found [M+H] 189.0550 .

General procedure for the synthesis of $\mathbf{1 , 2}$ naphthoquinone derivatives ${ }^{3}$

5-methoxy tetralone ($100 \mathrm{mg}, 0.567 \mathrm{mmol}$) was dissolved in DMSO (10 mL) and IBX (635 mg , 2.27 mmol) was added and heated at $80^{\circ} \mathrm{C}$ for $10-12 \mathrm{hr}$ until the TLC showed the complete disappearance of the starting material. The reaction mixture was then quenched with water and extracted with EtOAc and the combined organic layers were washed with saturated sodium carbonate solution and purified by column using Hexanes-EtOAc as eluents to obtain product $\mathbf{8}$ as a red solid ($69 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 181.14,179.55,156.82,139.44,132.97,132.34,126.17,123.20,122.43,118.24$, 56.34. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 189.0552$, found $[\mathrm{M}+\mathrm{H}]^{+} 189.0550$.

Compound 9 ($80 \mathrm{mg}, 75 \%$ yield) was prepared starting from 6-methoxy tetralone ($100 \mathrm{mg}, 0.567$ mmol) according to the procedure described above to give the desired product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 181.67, 177.43, 165.84, 144.93, 137.07, 133.37, 128.76, 125.15, 116.09, 114.90, 56.07. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 189.0552$, found [M+H]+ 189.0578 .

Compound 10 ($73 \mathrm{mg}, 68 \%$ yield) was prepared starting from 7-methoxy tetralone ($100 \mathrm{mg}, 0.567$ mmol) according to the procedure described above give the desired product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (dd, $J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 181.09$, 179.12, 162.00, 145.70, 133.29, 131.70, 128.05, 125.28, 121.81, 114.87, 56.03. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 189.0552$, found $[\mathrm{M}+\mathrm{H}]^{+} 189.0550$.

General procedure for the synthesis of di-substituted $\mathbf{1 , 2}$ naphthoquinones

6-methoxy tetralone ($100 \mathrm{mg}, 0.567 \mathrm{mmol}$) was dissolved in DMSO (10 mL) and IBX (635 mg , 2.27 mmol) was added and heated at $80^{\circ} \mathrm{C}$ for $10-12 \mathrm{~h}$ until the TLC showed the complete
disappearance of starting material. The reaction mixture was then quenched with water and extracted with EtOAc and the combined organic layers were washed with saturated sodium carbonate solution. The crude material was then dissolved in 5 ml of MeOH and $\mathrm{NaIO}_{3}(112 \mathrm{mg}$, $0.567 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(470 \mathrm{mg}, 0.567 \mathrm{mmol})$ were added in one portion and stirred vigorously at room temperature. After 20-30 minutes, solvent was evaporated under reduced pressure followed by the addition of water and EtOAc. The crude material was purified using $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$ as eluents to give as $\mathbf{1 2}$ as a yellow solid ($43 \mathrm{mg}, 35 \%$ yield over two steps). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 180.24,178.12,168.05,165.25$, 134.40, 132.06, 123.92, 116.24, 110.64, 103.55, 56.87, 56.05. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$219.0657, found $[\mathrm{M}+\mathrm{H}]^{+} 219.0629$.

Compound $\mathbf{1 3}$ ($38 \mathrm{mg}, 31 \%$ yield over two steps) was prepared starting from 7-methoxy tetralone ($100 \mathrm{mg}, 0.567 \mathrm{mmol}$) according to the procedure described above which was obtained as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.7,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.80,179.76,169.60$, $162.47,132.20,126.74,124.88,121.34,113.22,101.29,56.86,56.02$. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 219.0657$, found $[\mathrm{M}+\mathrm{H}]^{+} 219.0617$.

Compound 14 ($43 \mathrm{mg}, 38 \%$ yield over two steps) was prepared starting from 6-OTosyl tetralone ($100 \mathrm{mg}, 0.316 \mathrm{mmol}$) according to the procedure described above as yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.01,178.28,167.22,154.60,146.35,134.35,132.06,131.16,130.24(2 \mathrm{C}), 128.83$, 128.63 (2C), 124.80, 119.38, 104.05, 57.15, 21.92. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 359.0589$, found $[\mathrm{M}+\mathrm{H}]^{+} 359.0549$.

Synthesis of 3-hydroxy lapachone (25) ${ }^{4}$

Compound 25 was prepared according to the literature procedure: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J$ $=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=17.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=17.7,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.66,178.88,161.67$, 135.02, 132.22, 131.07, 130.20, 128.88, 124.51, 110.56, 81.62, 68.42, 25.52, 25.23, 22.23. HRMS (ESI) exact mass calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 259.0970$, found $[\mathrm{M}+\mathrm{H}]^{+} 259.0954$.

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & \mathbf{6 0} & \mathbf{5 0} & \mathbf{4 0} & \mathbf{3 0} & 20 & 10 & 0 & \mathbf{- 1 0}\end{array}$

	ä $\stackrel{\omega}{\oplus}$ $\stackrel{1}{1}$			+	¢

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

	$\begin{gathered} \mathscr{\infty} \\ \stackrel{\infty}{\infty} \\ \end{gathered}$	 - $\mathrm{F}=\mathrm{F}$		Nin in in in in

Figure 1: Mass spectrometry (ESI-MS) of USP2 treated with a) DMSO (Observed mass - 41133
Da) and b) Compound $\mathbf{1 2}$ for 15 mts (Observed mass - 41165 Da).

Cell culture:

DU-145 cells were grown in EMEM medium supplemented with 10% fetal bovine serum, 100 units $/ \mathrm{ml}$ penicillin and $100 \mathrm{mg} / \mathrm{ml}$ streptomycin in $37{ }^{\circ} \mathrm{C}$ humidified incubator with a $5 \% \mathrm{CO}_{2}$, 95\% air atmosphere.

Apoptosis studies:

Induction of apoptosis in DU-145 cell line by treatment with 7, 9, 12 and $\mathbf{1 8}$ were determined after 2 h incubation in a dose dependent manner, using annexin V-FITC apoptosis detection kit
(BD Biosciences) according to the manufacturer's protocol and monitored via flow-cytometry (fluorescence-activated cell sorting, FACS). Briefly, 2×10^{5} cells/well were seeded in 6 -well plates and treated with inhibitor for 2 hr in a dose dependent manner. The cells were then harvested and washed with PBS. Next, the cells were re-suspended with $85 \mu \mathrm{~L}$ binding buffer and stained with $10 \mu \mathrm{~L}$ annexin V-FITC reagent and $5 \mu \mathrm{~L}$ propidium iodide (PI) for 15 min in the dark. The increase in fluorescence, which indicates the apoptosis level in the treated cells, were monitored using flow cytometry and compared to untreated cells containing DMSO as a control.

References:

1. L. F. Fieser and J. L. Hartwell, J. Am. Chem. Soc., 1935, 57, 1482-1484.
2. A. Takuwa, O. Soga, H. Iwamoto and K. Maruyama, Bull. Chem. Soc. Jpn., 1986, 59, 2959-2961.
3. J. Ren, L. Lu, J. Xu, T. Yu and B.-B. Zeng, Synthesis, 2015, 47, 2270-2280.
4. J. S. Sun, A. H. Geiser and B. Frydman, Tetrahedron Lett., 1998, 39, 8221-8224.
