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Experimental Details

Materials and Reagents. N,N-Dimethylformamide (DMF, Arkonic Scientific, AR) was
distilled over calcium hydride, and then degassed before use. 1,2-Bis(2,5-dimethylthiophen-3-
yl)ethyne (BDTE) was prepared according to the literature procedure.! All other reagents were
of analytical grade and were used as received.

Physical Measurements and Instrumentation. '"H NMR spectra were recorded on a
Bruker DPX-500 (500 MHz) Fourier transform NMR spectrometer. 2D 'H-'H COSY spectra
were recorded on a Bruker DPX-500 (500 MHz) Fourier transform NMR spectrometer. 3'P{'H}
NMR spectra were recorded on a Bruker AVANCE 400 (162 MHz) Fourier transform NMR
spectrometer. The chemical shifts (5, ppm) of 'H and 3'P{'H} NMR were recorded relative to
tetramethylsilane (Me,Si) and 85% phosphoric acid (H;PO,), respectively. All measurements
were performed at 298 K unless specified otherwise. All electron impact (El) mass spectra were
recorded on a Thermo Scientific DFS High Resolution Magnetic Sector mass spectrometer.
Elemental analyses of the new compounds were performed on a Carlo Erba 1106 elemental
analyzer at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.

UV-Vis absorption spectra were recorded using a Varian Cary 50 UV-vis
spectrophotometer. Photoirradiation was carried out using a 300 W Oriel Corporation Model
60011 Xe (ozone-free) lamp, and monochromatic light was obtained by passing the light
through an Applied Photophysics F 3.4 monochromator. All measurements were conducted at
room temperature. The kinetics experiments of the thermal backward reaction of the closed
form isomer of dithienylethene were measured by using a Varian Cary 50 UV-Vis
spectrophotometer with a single cell peltier thermostat to control the working temperature.

Steady-state emission and excitation spectra at room temperature were recorded on a
Spex Fluorolog-3 Model FL3-211 spectrofluorometer equipped with a R2658P PMT detector.
For solution emission and excitation spectra, samples were degassed on a high-vacuum line
in a degassing cell with a 10-cm? Pyrex round-bottomed flask connected by a side-arm to a 1-
cm quartz fluorescence cuvette and sealed from the atmosphere by a Rotaflo HP6/6 quick
release Teflon stopper. Solutions were rigorously degassed with no fewer than four freeze-
pump-thaw cycles prior to the measurements. Luminescence quantum yield was measured by
the optical dilute method developed by Demas and Crosby.?-3 A solution of quinine sulphate in
0.5 M sulfuric acid (¢um = 0.546, 1ex = 365 nm)?# at 298 K was used as the standard.

Cyclic voltammetric measurements were performed by using a CH Instrument, Inc. model
CHI620 electrochemical analyzer interfaced to a personal computer. The electrolytic cell used
was a conventional two-compartment cell. The reference electrode was separated from the
working electrode compartment by a vycor glass. Electrochemical measurements were
performed in dichloromethane solution with 0.1 mol dm-3 "BusNPF¢ as supporting electrolyte at
room temperature. The reference electrode was a Ag/AgNO; (0.1 M in acetonitrile) electrode,

and the working electrode was a glassy carbon (CH Instrument) electrode with a platinum wire
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as a counter electrode in a compartment separated from the working electrode by a sintered-
glass frit. The ferrocenium/ferrocene couple (FeCp,*°) was used as the internal reference.5 All
solutions for electrochemical studies were deaerated with prepurified argon gas before
measurement.

Chemical actinometry was employed for the photochemical quantum yield
determination.28 Incident light intensities were taken from the average values measured just
before and after each photolysis experiment using ferrioxalate2® actinometry. In the
determination of the photochemical quantum yield, the sample solutions were prepared at
concentrations with absorbance slightly greater than 2.0 at the excitation wavelength.2® The
quantum yield was determined at a small percentage of conversion by monitoring the initial rate
of change of absorbance (AA/At) at the absorption maximum of the closed form in the visible

region.
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Synthesis and structural characterizations.
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Scheme S$1 Synthetic route of photochromic benzo[b]phosphole derivatives 1-8.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-oxide (1)

This was prepared according to modification of a literature procedure for the synthesis of
benzo[b]phosphole oxide derivatives” and the reaction was performed under anhydrous
condition using standard Schlenk technique. Yield: 95.1 mg, 0.21 mmol; 52% '"H NMR (500
MHz, [De]acetone, 298 K): Diastereomeric pair A §1.87 (s, 3H, —CHj3), 1.91 (s, 3H, —-CHj3), 2.27
(s, 3H, —CH3), 2.47 (s, 3H, —CHj3), 6.71 (s, 1H, thienyl), 6.87 (s, 1H, thienyl), 7.32-7.37 (m, 2H,
phenyl), 7.43-7.50 (m, 3H, phenyl), 7.56-7.60 (m, 3H, phenyl), 7.61-7.64 (m, 1H, phenyl).
Diastereomeric pair B 61.80 (s, 3H, —CHj3), 2.13 (s, 3H, —CHj3), 2.23 (s, 3H, —CH3), 2.40 (s, 3H,
—CHa), 6.36 (s, 1H, thienyl), 6.55 (s, 1H, thienyl), 7.40-7.43 (m, 2H, phenyl), 7.48-7.52 (m, 2H,
phenyl), 7.65-7.70 (m, 3H, phenyl), 7.72-7.74 (m, 2H, phenyl)."*C{'H} NMR (150 MHz, CDClj,
298 K): § 14.07, 14.10, 14.26, 14.72, 15.17, 15.28, 123.91, 124.00, 124.07, 125.17, 125.50,
125.79, 125.80, 126.09, 128.60, 128.68, 128.74, 128.81, 128.82, 128.90, 129.00, 129.06,
129.11, 129.13, 129.20, 129.68, 129.87, 130.31, 130.34, 130.42, 130.52, 130.80, 130.87,
130.98, 131.05, 131.57, 131.59, 131.80, 131.97, 131.98, 132.12, 132.14 132.26, 132.28,
132.43, 132.49, 132. 80, 132. 89, 133.13, 135.13, 135.19, 135.43, 135.85, 135.91, 136.00,
136.04, 136.63, 136.90, 137.07, 143.52, 143.70, 143.79, 143.97, 145.35, 145.47, 145.51,
145.63. 3'P{'"H} NMR (162 MHz, CDCls;, 298 K): §35.14, 35.31. Diastereomeric ratio (dr) of A/B
= 1.67. Positive EI-MS, m/z: 446. HRMS (Positive El) calcd for CsH,30P32S,: m/z = 446.0928;
found: 446.0923 [M]*. Elemental analyses, Found (%): C 69.83, H 5.16; Calcd (%) for
C26H230PS,: C 69.93, H 5.19.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole (2)

This was prepared according to modification of a literature procedure for the synthesis of
phosphole derivatives® and the reaction was performed under anhydrous condition using
standard Schlenk technigue. Yield: 55.9 mg, 0.13 mmol; 59%. "H NMR (500 MHz, [Dg]acetone,
298 K): Diastereomer A 6 1.86 (s, 3H, —CHj3), 1.96 (s, 3H, —CHj3), 2.28 (s, 3H, —CHj3), 2.48 (s,
3H, —CHj3), 6.54 (s, 1H, thienyl), 6.85 (s, 1H, thienyl), 7.23-7.26 (m, 2H, phenyl), 7.28-7.34 (m,
5H, phenyl), 7.41-7.45 (m, 2H, phenyl). Diastereomer B 6 1.88 (s, 3H, —CH3), 2.22 (s, 3H,
—CH3), 2.26 (s, 3H, —CHj3), 2.35 (s, 3H, —CHj3), 6.34 (s, 1H, thienyl), 6.41 (s, 1H, thienyl),
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7.28-7.34 (m, 4H, phenyl), 7.41-7.45 (m, 2H, phenyl), 7.66-7.70 (m, 3H, phenyl). 3C{'H} NMR
(150 MHz, CDCl3, 298 K): 6 12.90, 13.18, 13.21, 13.72, 14.12, 14.14, 14.22, 14.32, 122.89,
124.63, 124.68 124.76, 124.81, 125.67, 125.68, 125.88, 126.25, 126.29, 126.79, 126.83,
127.13, 127.16, 127.43, 127.48, 127.54, 127.59, 128.07, 128.20, 128.21, 128.33, 128.35,
131.21, 131.62, 131.75, 131.93, 131.95, 132.07, 132.09, 132.19, 132.22, 132.32, 132.33,
132.43, 132.46, 132.74, 132.85, 133.01, 133.03, 133.72, 133.73, 134.49, 134.76, 139.15,
139.21, 140.46, 140.52, 141.39, 141.73, 141.78, 141.80, 142.12, 142.16, 145.55, 145.58,
146.09, 146.13. 3'P{"H} NMR (162 MHz, CDCls;, 298 K): §3.10, 3.50. Diastereomeric ratio (dr)
of A/B = 1.92. Positive EI-MS, m/z: 430. HRMS (Positive El) calcd for CysH23P32S,: m/z =
430.0979; found: 430.0966 [M]*. Elemental analyses, Found (%): C 69.61, H 5.49; Calcd (%)
for CosH23PS,-H,0: C 69.62, H 5.62.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-sulfide (3)

This was prepared according to modification of a literature procedure for the synthesis of
phosphole sulfide derivatives® and the reaction was performed under anhydrous condition using
standard Schlenk technique. Yield: 64.0 mg, 0.14 mmol; 63%. '"H NMR (500 MHz, CDCl;, 298
K): Diastereomer A 6 1.61 (s, 3H, —CHj3), 1.96 (s, 3H, —CH3), 2.33 (s, 3H, —CHz), 2.44 (s, 3H,
—CHa), 6.64 (s, 1H, thienyl), 7.05 (s, 1H, thienyl), 7.32-7.37 (m, 3H, phenyl), 7.37-7.43 (m, 1H,
phenyl), 7.48-7.51 (m, 3H, phenyl), 7.64-7.72 (m, 2H, phenyl). Diastereomer B 6§1.72 (s, 3H,
—CHa), 2.03 (s, 3H, —CH3), 2.25 (s, 3H, —CH3), 2.42 (s, 3H, —CHj3), 6.22 (s, 1H, thienyl), 6.51 (s,
1H, thienyl), 7.37-7.43 (m, 5H, phenyl), 7.64-7.72 (m, 2H, phenyl), 7.79-7.84 (m, 2H, phenyl).
BC{'H} NMR (150 MHz, CDCl3, 298 K): § 13.90, 13.95, 14.39, 14.70, 15.26, 124.24, 124.31,
124.37, 125.22, 125.65, 125.80, 126.05, 128.26, 128.34, 128.50, 128.58, 128.67, 128.69,
128.73, 128.77, 128.80, 128.87, 128.98, 129.02, 129.05, 129.09, 129.32, 129.34, 129.85,
130.13, 130.23, 130.73, 130.80, 130.83, 130.93, 131.01, 131.78, 131.79, 131.93, 131.95,
132.28, 133.71, 134.23, 134.62, 135.11, 135.14, 135.25, 135.28, 135.31, 135.56, 135.65,
135.70, 135.86, 136.30, 136.36, 136.53, 136.70, 136.80, 143.74, 143.82, 143.90, 143.97,
144.53, 144.63, 144.66, 144.77. 3'P{"H} NMR (162 MHz, CDCl;, 298 K): & 47.29, 47.46.
Diastereomeric ratio (dr) of A/B = 1.16. Positive EI-MS, m/z: 462. HRMS (Positive El) calcd for
Ca6H23P32S3: miz = 462.0699; found: 462.0678 [M]*. Elemental analyses, Found (%): C 67.67,
H 5.04; Calcd (%) for Co6H23PS3: C 67.50, H 5.01.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-selenide (4)

This was prepared according to modification of a literature procedure for the synthesis of
phosphole selenide derivatives® and the reaction was performed under anhydrous condition
using standard Schlenk technique. Yield: 93.5 mg, 0.18 mmol 79%. 'H NMR (500 MHz,
[De]acetone, 298 K): Diastereomer A 6 1.70 (s, 3H, —CH3), 1.97 (s, 3H, —CH3), 2.31 (s, 3H,
—CHa), 2.45 (s, 3H, —CH3), 6.86 (s, 1H, thienyl), 7.22 (s, 1H, thienyl), 7.50-7.54 (m, 5H, phenyl),
7.64-7.68 (m, 2H, phenyl), 7.84-7.86 (m, 2H, phenyl). Diastereomer B 6 1.77 (s, 3H, —CHj3),
2.09 (s, 3H, —CH3), 2.23 (s, 3H, —CHj3), 2.42 (s, 3H, —CH3), 6.28 (s, 1H, thienyl), 6.63 (s, 1H,
thienyl), 7.39-7.46 (m, 4H, phenyl), 7.59-7.65 (m, 3H, phenyl), 7.76-7.81 (m, 2H, pheny).
3C{'H} NMR (150 MHz, CDCl3, 298 K): §13.88, 13.96, 14.42, 14.70, 15.26, 124.48, 124.54,
124.56, 124.62, 125.31, 125.70, 126.02, 126.11, 127.94, 128.09, 128.22, 128.29, 128.39,
128.51, 128.55, 128.59, 128.70, 128.79, 129.04, 129.11, 129.13, 129.26, 129.33, 130.03,
130.12, 130.65, 130.74, 131.20, 131.28, 131.48, 131.56, 131.85, 131.87, 132.02, 132.04,
132.20, 132.98, 133.44, 134.06, 134.52, 134.97, 135.13, 135.33, 135.39, 135.51, 135.54,
135.67, 135.80, 136.46, 136.52, 136.68, 136.90, 143.87, 144.01, 144.42, 144.48, 144.55,
144.61. 3'P{'"H} NMR (162 MHz, [Dg]acetone, 298 K): & 35.29, 36.33. Diastereomeric ratio (dr)
of A/B = 1.22. Positive EI-MS, m/z: 510. HRMS (Positive El) calcd for CosH,3P32S,80Se: m/z =
510.0144; found: 510.0199 [M]*. Elemental analyses, Found (%): C 60.22, H 4.55; Calcd (%)
for CosH23PS,Se-0.5H,0: C 60.23, H 4.67.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-(methylthio)-1-phenyl-1H-benzo[b]phosphol-1-ium
trifluoromethanesulfonate (5)

This was prepared according to modification of a literature procedure for the synthesis of
phospholium derivatives'® and the reaction was performed under anhydrous condition using
standard Schlenk technique. Yield: 117 mg, 0.19 mmol, 86%. "H NMR (500 MHz, [Dg]acetone,
298 K): Diastereomer A 6 1.75 (s, 3H, —CHj3), 2.07 (s, 3H, —CHj3), 2.43 (s, 3H, —CHj3), 2.47 (s,
3H, -CHj3), 2.62 (d, J = 16 MHz, 3H, —SMe), 6.95 (s, 1H, thienyl), 7.07 (s, 1H, thienyl), 7.72-7.80
(m, 3H, phenyl), 7.86-7.94 (m, 2H, phenyl), 8.01-8.03 (m, 3H, phenyl), 8.37-8.40 (m, 1H,
phenyl). Diastereomer B 6 1.83 (s, 3H, —CHj3), 2.11 (s, 3H, —CH3), 2.33 (s, 3H, —CHz), 2.44 (s,
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3H, -CHj3), 2.54 (d, J = 16 MHz, 3H, —SMe), 6.47 (s, 1H, thienyl), 6.84 (s, 1H, thienyl), 7.72-7.80
(m, 2H, phenyl), 7.82-7.90 (m, 5H, phenyl), 7.99-8.01 (m, 1H, phenyl), 8.28-8.32 (m, 1H,
phenyl). 3C{'H} NMR (150 MHz, CDCl3, 298 K): § 11.85, 11.87, 12.50, 12.52, 14.05, 14.17,
15.09, 15.12, 15.23, 15.25, 15.30, 115.56, 115.79, 116.13, 116.34, 117.97, 118.46, 119.16,
119.58, 119.73, 119.88, 120.03, 120.08, 120.60, 122.00, 123.77, 123.90, 124.66, 124.74,
125.05, 125.12, 125.35, 127.34, 127.37, 127.41, 127.45, 128.42, 128.53, 128.58, 128.68,
130.76, 130.86, 131.09, 131.18, 131.98, 132.05, 132.14, 132.22, 132.27, 132.35, 132.41,
132.49, 132.56, 136.26, 136.27, 136.54, 136.56, 136.90, 138.16, 138.23, 138.56, 138.64,
138.67, 138.71, 138.83, 138.96, 139.29, 139.48, 144.75, 144.93, 145.04, 145.22, 153.97,
154.03, 154.13, 154.19. 3'P{'H} NMR (162 MHz, [Dglacetone, 298 K): § 49.43, 49.87.
Diastereomeric ratio (dr) of A/B = 1.45. Positive FAB-MS, m/z: 477.2 [M]*. Elemental analyses,
Found (%): C 51.42, H 4.08; Calcd (%) for CpgH6F304PS3-0.5CH,Cl,: C 51.15, H 4.07.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methoxybenzo[b]phosphole-1-oxide (6)

This was prepared according to modification of a literature procedure for the synthesis of
benzo[b]phosphole oxide derivatives’” and the reaction was performed under anhydrous
condition using standard Schlenk technique. Yield: 10 mg, 0.025 mml; 6.1%. 'H NMR (500
MHz, [De]acetone, 298 K): Diastereomer A 6 1.88 (s, 3H, —CH3), 1.97 (s, 3H, —CH3), 2.37 (s,
3H, —CH3), 2.46 (s, 3H, —CHj3), 3.60 (d, J = 12 Hz, 3H, -OMe), 6.78 (s, 1H, thienyl), 6.81 (s, 1H,
thienyl), 7.27-7.29 (m, 1H, phenyl), 7.47-7.51 (m, 1H, phenyl), 7.55-7.59 (m, 1H, phenyl),
7.71-7.75 (m, 1H, phenyl). Diastereomer B § 1.92 (s, 3H, —-CHj3), 2.07 (s, 3H, —CH3), 2.37 (s,
3H, —CH3), 2.40 (s, 3H, —CHj3), 3.70 (d, J = 12 Hz, 3H, -OMe), 6.54 (s, 1H, thienyl), 6.77 (s, 1H,
thienyl), 7.24-7.27 (m, 1H, phenyl), 7.47-7.51 (m, 1H, phenyl), 7.55-7.59 (m, 1H, phenyl),
7.71-7.75 (m, 1H, phenyl). ®C{'"H} NMR (150 MHz, CDCls;, 298 K): §14.14, 14.21, 14.32, 14.71,
15.21, 15.24, 15.29, 52.34, 52.38, 123.94, 124.03, 125.47, 125.83, 125.84, 125.95, 126.14,
126.29, 126.70, 126.79, 127.00, 127.17, 127.54, 127.62, 127.70, 127.73, 127.75, 127.79,
128.25, 128.31, 128.71, 128.78, 128.95, 129.01, 129.92, 130.04, 130.66, 130.79, 133.08,
135.26, 135.32, 135.69, 135.93, 135.99, 136.33, 136.39, 136.69, 136.89, 136.97, 141.57,
141.79, 142.00, 142.22, 144.23, 144.43, 144.87, 145.07. 3'P{'"H} NMR (162 MHz, [D¢]acetone,
298 K): 544.15, 44.26. Diastereomeric ratio (dr) of A/B = 2.15. Positive EI-MS, m/z: 400. HRMS
(Positive El) calcd for C,1H»10,P32S,: m/z = 400.0721; found: 400.0718 [M]*. Elemental
analyses, Found (%): C 62.66, H 5.37; Calcd (%) for C,1H»,0,PS,: C 62.98, H 5.29.
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2,3-Bis(thiophen-3-yl)-1-phenylbenzo[b]phosphole-1-oxide (7)

This was prepared according to modification of a literature procedure for the synthesis of
benzo[b]phosphole oxide derivatives” and the reaction was performed under anhydrous
condition using standard Schlenk technique. Yield: 35 mg, 0.089 mmol, 21.6%. 'H NMR (400
MHz, CDCl;, 298 K): § 6.70-6.71 (d, J = 4 Hz, 1H, thienyl), 7.06-7.08 (m, 1H, thienyl),
7.08-7.10 (dd, J = 4, 8Hz, 1H, thienyl), 7.23-7.25 (dd, J = 4 , 8Hz, 1H, thienyl), 7.33-7.37 (m,
1H, thienyl), 7.40-7.42 (m, 3H, phenyl), 7.43-7.45 (m, 1H, phenyl), 7.47-7.49 (m, 1H, thienyl),
7.50-7.53 (m, 2H, phenyl), 7.66-7.70 (m, 1H, phenyl), 7.76-7.81 (m, 2H, phenyl). '3C{'H} NMR
(150 MHz, CDCl3, 298 K): 6 123.62, 123.69, 124.99, 125.20, 125.71, 125.75, 126.97, 127.06,
127.11, 128.04, 128.89, 128.93, 128.98, 129.79, 130.44, 130.90, 130.97, 131.07, 131.78,
132.26, 132.27, 132.97, 133.04, 133.12, 134.49, 134.59, 142.94, 143.09, 143.98, 144.16.
3TP{'"H} NMR (162 MHz, CDCls;, 298 K): §38.61. Positive EI-MS, m/z: 864. HRMS (Positive El)
calcd for C,,H150P32S,: m/z = 390.0302; found: 390.0283 [M]*. Elemental analyses, Found (%):
C 67.53, H 3.67; Calcd (%) for C,,H150PS,: C 67.67, H 3.87.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methylbenzo[b]phosphole-1-oxide (1-Me)

This was prepared according to modification of a literature procedure for the synthesis of
phosphine oxide derivatives using Grignard reaction!" and the reaction was performed under
anhydrous condition using standard Schlenk technique. Yield: 60 mg, 0.16 mmol; 63%. "H NMR
(400 MHz, [D¢]acetone, 298 K): Diastereomer A 6 1.54-1.57 (d, J = 12 Hz, 3H, -PMe), 1.89 (s,
3H, -CH3), 1.97 (s, 3H, —CH3), 2.38 (s, 3H, —CHj3), 2.46 (s, 3H, —CH3), 6.76 (s, 1H, thienyl),
6.80 (s, 1H, thienyl), 7.28-7.31 (m, 1H, phenyl), 7.46-7.51 (m, 1H, phenyl), 7.53-7.57 (m, 1H,
phenyl), 7.82-7.86 (m, 1H, phenyl). Diastereomer B 61.70-1.74 (d, J = 16 Hz, 3H, -PMe), 1.93
(s, 3H, —CH3), 2.14 (s, 3H, —CH3), 2.38 (s, 3H, —CH3), 2.39 (s, 3H, —CH3), 6.43 (s, 1H, thienyl),
6.83 (s, 1H, thienyl), 7.22-7.25 (m, 1H, phenyl), 7.46-7.51 (m, 1H, phenyl), 7.53-7.57 (m, 1H,
phenyl), 7.82-7.86 (m, 1H, phenyl). 3C{'H} NMR (150 MHz, CDCl3, 298 K): 5 14.07, 14.09,
14.14,14.27, 14.60, 14.88, 14.92, 15.20, 15.24, 15.28, 15.34, 123.93, 123.95, 124.00, 124.02,
125.33, 125.48, 125.85, 125.86, 126.34, 128.13, 128.19, 128.23, 128.49, 128.56, 128.63,
129.24, 129.30, 130.14 130.24, 131.07, 131.17, 131.37, 131.43, 131.45, 132.04, 132.07
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132.10, 132.17, 132.66, 132.80, 134.86, 135.05, 135.10, 135.67, 135.72, 136.39, 136.44,
136.52, 136.95, 137.09, 142.03, 142.20, 142.83, 143.01, 143.61, 143.77, 144.55, 144.70.
STP{'H} NMR (162 MHz, [Dg]acetone, 298 K): 5§40.59, 40.69. Diastereomeric ratio (dr) of A/B =
1.88. Positive EI-MS, m/z: 384. HRMS (Positive El) calcd for Cy4H,1OP32S,: m/z = 384.0771;
found: 384.0762 [M]*.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methylbenzo[b]phosphole (2-Me)

This was prepared according to modification of a literature procedure for the synthesis of
phosphole derivatives® and the reaction was performed under anhydrous condition using
standard Schlenk technique. Yield: 48 mg, 0.13 mmol; 81.5%. "H NMR (400 MHz, [Dg]acetone,
298 K): Diastereomer A §1.27 (d, J = 1.4 Hz, 3H, -PMe), 1.83 (s, 3H, —CHj3), 2.03 (s, 3H,
—CH3), 2.35 (s, 3H, —CHj3), 2.46 (s, 3H, —CHj3), 6.52 (s, 1H, thienyl), 6.78 (s, 1H, thienyl),
7.21-7.28 (m, 1H, phenyl), 7.29-7.33 (m, 1H, phenyl), 7.38-7.39 (m, 1H, phenyl), 7.77-7.80
(m, 1H, phenyl). Diastereomer B §1.37-1.38 (d, J = 1.4 Hz, 3H, —-PMe), 1.99 (s, 3H, —CHa),
2.18 (s, 3H, —CH3), 2.33 (s, 3H, —CHj3), 2.36 (s, 3H, —CH3), 6.28 (s, 1H, thienyl), 6.59 (s, 1H,
thienyl), 7.29-7.33 (m, 1H, phenyl), 7.38-7.39 (m, 2H, phenyl), 7.77-7.80 (m, 1H, phenyl).
BC{'H} NMR (150 MHz, CDCl3, 298 K): 6 10.49, 10.63, 11.12, 11.26, 13.84, 14.01, 14.03,
14.27, 14.31, 14.78, 15.16, 15.20, 15.22, 15.36, 123.88, 123.94, 125.05, 125.10, 125.14,
125.19, 126.57, 126.59, 127.19, 127.45, 127.49, 127.71. 127.76, 127.84, 127.88, 128.40,
128.53, 132.43, 132.68 132.70, 132.86, 132.98, 133.16, 133.25, 133.28, 133.59, 133.61,
134.69, 134.94, 134.98, 135.34, 135.71, 138.68, 138.74, 140.24, 140.29, 144.71, 145.16,
145.21, 145.84, 145.88, 145.95, 145.98, 146.92, 146.95. 3'P{'H} NMR (162 MHz, [D¢]acetone,
298 K): 5§ -10.94, —10.90. Diastereomeric ratio (dr) of A/B = 2.22. Positive EI-MS, m/z: 368.
HRMS (Positive El) calcd for C,1H21P32S,: m/z = 368.0822; found: 368.0816 [M]*.

2,3-Bis(2,5-dimethylthiophen-3-yl)-1,1-dimethyl-1H-benzo[b]phosphol-1-ium
hexafluorophosphate (8)

This was prepared according to modification of a literature procedure for the synthesis of
phospholium derivatives'? and the reaction was performed under anhydrous condition using
standard Schlenk technique. Yield: 40 mg, 0.076 mmol, 54%. "H NMR (400 MHz, CDCl3, 298
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K): §1.83 (s, 3H, -CHj3), 2.00 (s, 3H, —CH3), 2.12-2.15 (d, J = 12 Hz 3H, PMe), 2.35-2.39 (d,
J =12 Hz, 3H, PMe), 2.45 (s, 3H, —-CH3), 2.47 (s, 3H, —CH3), 6.54 (s, 1H, thienyl), 6.57 (s, 1H,
thienyl), 7.52-7.55 (m, 1H, phenyl), 7.65-7.70 (m, 1H, phenyl), 7.73-7.77 (m, 1H, phenyl),
8.34-8.38 (m, 1H, phenyl). "®F{"H} NMR (377 MHz, CDCl3, 298 K): §-71.56 (d, Jp_r = 710 Hz,
PFs). 3C{'H} NMR (150 MHz, CDCl;, 298 K): 6 6.73, 7.07, 7.66, 7.99, 14.05, 14.75, 15.24,
120.98, 121.50, 122.09, 123.61, 124.96, 125.00, 125.03, 126.31, 126.38, 128.46, 128.56,
130.98, 131.05, 131.98, 132.04, 135.53, 135.54, 137.77, 137.83, 138.15, 138.44, 139.62,
145.09, 145.25, 152.70, 152.84. 3'P{'H} NMR (162 MHz, CDCl3, 298 K): §-144.08 (m, Jp_¢ =
710 Hz, PFg7), 33.15 (s, PMe;*). Positive FAB-MS, m/z: 382.9 [M]*. Elemental analyses, Found
(%): C 49.05, H 4.79; Calcd (%) for CyoHosFsP2S,+0.5H,0: C 49.16, H 4.69.
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Table S1 Electrochemical data

Oxidation®.°] Reductionl@b!
E, [/ Vvs SCE
Compound Ey./V vs SCE [ Eil®1] Vvs SCE ]
(AE, / mVv)(l
1 +1.50 -1.93
2 +1.34, +1.56, —ldl
3 +1.45 -1.99
4 +1.40 -1.88
5 +1.72 -0.91, [-1.81] (108)
6 +1.46 -1.85

[a] In CH,CI, with 0.1 M "BusNPF¢ as supporting electrolyte.

[b] Working electrode, glassy carbon; scan rate, 100 mVs-'.

[c] Epais reported for irreversible oxidation wave.

[d] Egcis reported for irreversible reduction wave.

el Ein=(Epa+ Epc) !/ 2; Epa and E,¢ are anodic and cathodic peak potentials, respectively.
[l AE,= (Epa— Eso).

[9] No reduction wave was observed.
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Table S2 Crystal and structure determination data of 1

empirical formula
formula weight
temp, K
wavelength, A
crystal system
space group
a, A

b, A

c, A

a, deg

B, deg

7, deg
Volume, A3

z

Density (calcd), gcm3
Crystal size

Index ranges

reflections collected
Independent reflection
GOF on F?

Final R indices [/ > 2o (/)]
Largest diff. peak and

hole, eA-3

Ca6H230PS,

446.53

296 (2)

0.71073

Triclinic

P1

8.4616(4)

11.5086(5)

12.4957(6)

83.4270(10)

77.3210(10)

83.7100(10)

1174.89 (9)

2

1.262

0.50 mm x 0.40 mm x 0.30 mm
-10<h<10,-13<k<13,-14</s14
16694

4226 [R(int) = 0.0284]
1.025

R =0.0443, wR, = 0.1143

0.400 and -0.428

Table S3 Selected bond lengths [A] and angles [deg] for 1 with estimated standard deviations

(esds) given in parentheses

Bond Lengths / A Bond Angles / deg

P(1)-0(1) 1.4830(15) O(1)-P(1)-C(21) 113.36(10)
P(1)-C(21) 1.799(2) O(1)-P(1)-C(20) 118.27(10)
P(1)-C(20) 1.803(2) C(21)-P(1)-C(20) 107.94(10)
P(1)-C(14) 1.819(2) O(1)-P(1)-C(14) 116.24(10)
C(13)-C(14) 1.359(3) C(20)-P(1)-C(14) 92.37(10)
C(13)-C(15) 1.493(3) C(21)-P(1)-C(14) 106.33(10)
C(15)-C(20) 1.403(3)
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Fig. S1 Electronic absorption spectra of the open forms of 1-8 in benzene solution at 298 K.
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Fig. S2 Normalized emission spectra of the degassed benzene solution of the open forms of

1-2 and 5-8 at 298 K; asterisk represents an instrumental artifact.
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Fig. S3 Normalized emission spectra of the open form of 1 in various solvents at 298 K;

asterisk represents an instrumental artifact.
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Fig. S4 A plot of emission energy of the open form of 1 in different solvents versus the

Dimroth’s E solvent parameter and its linear least-squares fit ().
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Fig. S5 UV-Vis absorption spectral changes of 2 in degassed benzene solution upon

UV excitation at 360 nm.
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Fig. S6 UV-Vis absorption spectral changes of 3 in degassed benzene solution upon

UV excitation at 360 nm.
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Fig. S7 UV-Vis absorption spectral changes of 4 in degassed benzene solution upon

UV excitation at 360 nm.
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Fig. S8 UV-Vis absorption spectral changes of 5 in degassed benzene solution upon

UV excitation at 360 nm.
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Fig. S9 UV-Vis absorption spectral changes of 6 in degassed benzene solution upon

UV excitation at 360 nm.
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Fig. S10 UV—Vis absorption spectral changes of 7 in degassed benzene solution upon
UV excitation at 360 nm.
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Fig. S11 UV-Vis absorption spectral changes of 8 in degassed benzene solution upon
UV excitation at 360 nm.
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Fig. S12 Electronic absorption spectra of the closed forms of 1-8 in degassed benzene
solution at 298 K.
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Fig. S13 UV-Vis absorbance changes of 1 at 500 nm on alternate excitation at 360 nm and

500 nm over seven cycles in degassed benzene solution at 298 K.
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Fig. S14 UV-Vis absorbance changes of 2 at 500 nm on alternate excitation at 360 nm and

500 nm over seven cycles in degassed benzene solution at 298 K.
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Fig. S15 A plot of In(A/A,) versus time for the absorbance decay at 500 nm of the closed form
isomer of 1 at 25 and 100 °C in nitrogen-flushed 1,2-dichlorobenzene solution. A, and
A; denote initial absorbance and absorbance at time t, respectively; solid lines

represent theoretical linear fits. Inset shows the expanded thermal decay plot at 100

°C.
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Fig. S16 UV-Vis absorption spectral changes of 1 on PMMA thin film upon UV excitation at
360 nm.
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Fig. S17 UV-Vis absorbance changes of 1 at 500 nm on alternate excitation at 360 nm and

500 nm over seven cycles in non-degassed benzene solution at 298 K.
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Fig. S42 'H NMR spectrum of 2-Me in [D¢]acetone.

6¥°01
€901
41
9Ll

¥8'€l
Loyl
€0yl
Lyl
LEvL
8L'vl
91'Gl
0z'GlL
[2 412
9€°Gl

88'€zl
v6'€TL
50'szL
0L'szl
yl'szl
61'52L
15924
65'921
61221
St'Lzl
6221
V222h
9,121 1
8221
88,21
0’8zl
€582 +
£YZEL
89°Z€1
02°2€1
98'Z€1
86'ZEL
9L°€€l 4
Gz'eel
8z €€l 4
65°€€l 4
19°¢€l
69'7€l
v6'vEl
86'v€l |
ve'sel
L2geL
89'8¢
vL8el
vz ovl |
62071
LIl
9lL'gyl
LZ'sL
v8'SYL
88'GYL
S6'SYL
86'GYL
26'97L

S6°971L

40 30 20 10

50

180 170 160 150 140 130 120 110 100 90 80 70 60
ppm

190

220 210 200

Fig. S43 3C{'H} NMR spectrum of 2-Me in CDCl.
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Fig. S45 "H NMR spectrum of 8 in CDCls.

8§33



€L°9
L0°L
9°L 7
mm.h\
SOVl —
SLvl
6l

86021 1
051211
60221 |
19621 {
96421 1
00521 4
€05z |
19z} |
8e°9z1
9v'8z1 |
95821
86051
50'LEl
86°LEL
YO'ZEL
£5°EL 1
vG'GEL -
10180
ga el
sLgel -\
vi8EL —=
zo6eL 7
60°GHL
szer, /.
04251
pazsL

220 210 200

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 0
ppm

190

Fig. S46 3C{'H} NMR spectrum of 8 in CDCls.
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