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Experimental Details

Materials and Reagents. N,N-Dimethylformamide (DMF, Arkonic Scientific, AR) was 

distilled over calcium hydride, and then degassed before use. 1,2-Bis(2,5-dimethylthiophen-3-

yl)ethyne (BDTE) was prepared according to the literature procedure.1 All other reagents were 

of analytical grade and were used as received.

Physical Measurements and Instrumentation. 1H NMR spectra were recorded on a 

Bruker DPX-500 (500 MHz) Fourier transform NMR spectrometer. 2D 1H1H COSY spectra 

were recorded on a Bruker DPX-500 (500 MHz) Fourier transform NMR spectrometer. 31P{1H} 

NMR spectra were recorded on a Bruker AVANCE 400 (162 MHz) Fourier transform NMR 

spectrometer. The chemical shifts (, ppm) of 1H and 31P{1H} NMR were recorded relative to 

tetramethylsilane (Me4Si) and 85% phosphoric acid (H3PO4), respectively. All measurements 

were performed at 298 K unless specified otherwise. All electron impact (EI) mass spectra were 

recorded on a Thermo Scientific DFS High Resolution Magnetic Sector mass spectrometer. 

Elemental analyses of the new compounds were performed on a Carlo Erba 1106 elemental 

analyzer at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.

UVVis absorption spectra were recorded using a Varian Cary 50 UVvis 

spectrophotometer. Photoirradiation was carried out using a 300 W Oriel Corporation Model 

60011 Xe (ozone-free) lamp, and monochromatic light was obtained by passing the light 

through an Applied Photophysics F 3.4 monochromator. All measurements were conducted at 

room temperature. The kinetics experiments of the thermal backward reaction of the closed 

form isomer of dithienylethene were measured by using a Varian Cary 50 UV-Vis 

spectrophotometer with a single cell peltier thermostat to control the working temperature.

Steady-state emission and excitation spectra at room temperature were recorded on a 

Spex Fluorolog-3 Model FL3-211 spectrofluorometer equipped with a R2658P PMT detector. 

For solution emission and excitation spectra, samples were degassed on a high-vacuum line 

in a degassing cell with a 10-cm3 Pyrex round-bottomed flask connected by a side-arm to a 1-

cm quartz fluorescence cuvette and sealed from the atmosphere by a Rotaflo HP6/6 quick 

release Teflon stopper. Solutions were rigorously degassed with no fewer than four freeze-

pump-thaw cycles prior to the measurements. Luminescence quantum yield was measured by 

the optical dilute method developed by Demas and Crosby.23 A solution of quinine sulphate in 

0.5 M sulfuric acid (lum = 0.546, ex = 365 nm)2,4 at 298 K was used as the standard.

Cyclic voltammetric measurements were performed by using a CH Instrument, Inc. model 

CHI620 electrochemical analyzer interfaced to a personal computer. The electrolytic cell used 

was a conventional two-compartment cell. The reference electrode was separated from the 

working electrode compartment by a vycor glass. Electrochemical measurements were 

performed in dichloromethane solution with 0.1 mol dm3 nBu4NPF6 as supporting electrolyte at 

room temperature. The reference electrode was a Ag/AgNO3 (0.1 M in acetonitrile) electrode, 

and the working electrode was a glassy carbon (CH Instrument) electrode with a platinum wire 
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as a counter electrode in a compartment separated from the working electrode by a sintered-

glass frit. The ferrocenium/ferrocene couple (FeCp2
+/0) was used as the internal reference.5 All 

solutions for electrochemical studies were deaerated with prepurified argon gas before 

measurement.

Chemical actinometry was employed for the photochemical quantum yield 

determination.2,6 Incident light intensities were taken from the average values measured just 

before and after each photolysis experiment using ferrioxalate2,6 actinometry. In the 

determination of the photochemical quantum yield, the sample solutions were prepared at 

concentrations with absorbance slightly greater than 2.0 at the excitation wavelength.2,6 The 

quantum yield was determined at a small percentage of conversion by monitoring the initial rate 

of change of absorbance (A/t) at the absorption maximum of the closed form in the visible 

region.
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Synthesis and structural characterizations.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-oxide (1)

This was prepared according to modification of a literature procedure for the synthesis of 

benzo[b]phosphole oxide derivatives7 and the reaction was performed under anhydrous 

condition using standard Schlenk technique. Yield: 95.1 mg, 0.21 mmol; 52% 1H NMR (500 

MHz, [D6]acetone, 298 K): Diastereomeric pair A  1.87 (s, 3H, CH3), 1.91 (s, 3H, CH3), 2.27 

(s, 3H, CH3), 2.47 (s, 3H, CH3), 6.71 (s, 1H, thienyl), 6.87 (s, 1H, thienyl), 7.327.37 (m, 2H, 

phenyl), 7.437.50 (m, 3H, phenyl), 7.567.60 (m, 3H, phenyl), 7.617.64 (m, 1H, phenyl). 

Diastereomeric pair B 1.80 (s, 3H, CH3), 2.13 (s, 3H, CH3), 2.23 (s, 3H, CH3), 2.40 (s, 3H, 

CH3), 6.36 (s, 1H, thienyl), 6.55 (s, 1H, thienyl), 7.407.43 (m, 2H, phenyl), 7.487.52 (m, 2H, 

phenyl), 7.657.70 (m, 3H, phenyl), 7.727.74 (m, 2H, phenyl).13C{1H} NMR (150 MHz, CDCl3, 

298 K):  14.07, 14.10, 14.26, 14.72, 15.17, 15.28, 123.91, 124.00, 124.07, 125.17, 125.50, 

125.79, 125.80, 126.09, 128.60, 128.68, 128.74, 128.81, 128.82, 128.90, 129.00, 129.06, 

129.11, 129.13, 129.20, 129.68, 129.87, 130.31, 130.34, 130.42, 130.52, 130.80, 130.87, 

130.98, 131.05, 131.57, 131.59, 131.80, 131.97, 131.98, 132.12, 132.14 132.26, 132.28, 

132.43, 132.49, 132. 80, 132. 89, 133.13, 135.13, 135.19, 135.43, 135.85, 135.91, 136.00, 

136.04, 136.63, 136.90, 137.07, 143.52, 143.70, 143.79, 143.97, 145.35, 145.47, 145.51, 

145.63. 31P{1H} NMR (162 MHz, CDCl3, 298 K):  35.14, 35.31. Diastereomeric ratio (dr) of A/B 

= 1.67. Positive EI-MS, m/z: 446. HRMS (Positive EI) calcd for C26H23OP32S2: m/z = 446.0928; 

found: 446.0923 [M]. Elemental analyses, Found (%): C 69.83, H 5.16; Calcd (%) for 

C26H23OPS2: C 69.93, H 5.19.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole (2)

This was prepared according to modification of a literature procedure for the synthesis of 

phosphole derivatives8 and the reaction was performed under anhydrous condition using 

standard Schlenk technique. Yield: 55.9 mg, 0.13 mmol; 59%. 1H NMR (500 MHz, [D6]acetone, 

298 K): Diastereomer A  1.86 (s, 3H, CH3), 1.96 (s, 3H, CH3), 2.28 (s, 3H, CH3), 2.48 (s, 

3H, CH3), 6.54 (s, 1H, thienyl), 6.85 (s, 1H, thienyl), 7.237.26 (m, 2H, phenyl), 7.287.34 (m, 

5H, phenyl), 7.417.45 (m, 2H, phenyl). Diastereomer B  1.88 (s, 3H, CH3), 2.22 (s, 3H, 

CH3), 2.26 (s, 3H, CH3), 2.35 (s, 3H, CH3), 6.34 (s, 1H, thienyl), 6.41 (s, 1H, thienyl), 
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7.287.34 (m, 4H, phenyl), 7.417.45 (m, 2H, phenyl), 7.667.70 (m, 3H, phenyl). 13C{1H} NMR 

(150 MHz, CDCl3, 298 K):  12.90, 13.18, 13.21, 13.72, 14.12, 14.14, 14.22, 14.32, 122.89, 

124.63, 124.68 124.76, 124.81, 125.67, 125.68, 125.88, 126.25, 126.29, 126.79, 126.83, 

127.13, 127.16, 127.43, 127.48, 127.54, 127.59, 128.07, 128.20, 128.21, 128.33, 128.35, 

131.21, 131.62, 131.75, 131.93, 131.95, 132.07, 132.09, 132.19, 132.22, 132.32, 132.33, 

132.43, 132.46, 132.74, 132.85, 133.01, 133.03, 133.72, 133.73, 134.49, 134.76, 139.15, 

139.21, 140.46, 140.52, 141.39, 141.73, 141.78, 141.80, 142.12, 142.16, 145.55, 145.58, 

146.09, 146.13. 31P{1H} NMR (162 MHz, CDCl3, 298 K):  3.10, 3.50. Diastereomeric ratio (dr) 

of A/B = 1.92. Positive EI-MS, m/z: 430. HRMS (Positive EI) calcd for C26H23P32S2: m/z = 

430.0979; found: 430.0966 [M]. Elemental analyses, Found (%): C 69.61, H 5.49; Calcd (%) 

for C26H23PS2･H2O: C 69.62, H 5.62.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-sulfide (3) 

This was prepared according to modification of a literature procedure for the synthesis of 

phosphole sulfide derivatives8 and the reaction was performed under anhydrous condition using 

standard Schlenk technique. Yield: 64.0 mg, 0.14 mmol; 63%. 1H NMR (500 MHz, CDCl3, 298 

K): Diastereomer A  1.61 (s, 3H, CH3), 1.96 (s, 3H, CH3), 2.33 (s, 3H, CH3), 2.44 (s, 3H, 

CH3), 6.64 (s, 1H, thienyl), 7.05 (s, 1H, thienyl), 7.327.37 (m, 3H, phenyl), 7.377.43 (m, 1H, 

phenyl), 7.487.51 (m, 3H, phenyl), 7.647.72 (m, 2H, phenyl). Diastereomer B 1.72 (s, 3H, 

CH3), 2.03 (s, 3H, CH3), 2.25 (s, 3H, CH3), 2.42 (s, 3H, CH3), 6.22 (s, 1H, thienyl), 6.51 (s, 

1H, thienyl), 7.377.43 (m, 5H, phenyl), 7.647.72 (m, 2H, phenyl), 7.797.84 (m, 2H, phenyl). 

13C{1H} NMR (150 MHz, CDCl3, 298 K):  13.90, 13.95, 14.39, 14.70, 15.26, 124.24, 124.31, 

124.37, 125.22, 125.65, 125.80, 126.05, 128.26, 128.34, 128.50, 128.58, 128.67, 128.69, 

128.73, 128.77, 128.80, 128.87, 128.98, 129.02, 129.05, 129.09, 129.32, 129.34, 129.85, 

130.13, 130.23, 130.73, 130.80, 130.83, 130.93, 131.01, 131.78, 131.79, 131.93, 131.95, 

132.28, 133.71, 134.23, 134.62, 135.11, 135.14, 135.25, 135.28, 135.31, 135.56, 135.65, 

135.70, 135.86, 136.30, 136.36, 136.53, 136.70, 136.80, 143.74, 143.82, 143.90, 143.97, 

144.53, 144.63, 144.66, 144.77. 31P{1H} NMR (162 MHz, CDCl3, 298 K):  47.29, 47.46. 

Diastereomeric ratio (dr) of A/B = 1.16. Positive EI-MS, m/z: 462. HRMS (Positive EI) calcd for 

C26H23P32S3: m/z = 462.0699; found: 462.0678 [M]. Elemental analyses, Found (%): C 67.67, 

H 5.04; Calcd (%) for C26H23PS3: C 67.50, H 5.01.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-phenylbenzo[b]phosphole-1-selenide (4) 

This was prepared according to modification of a literature procedure for the synthesis of 

phosphole selenide derivatives9 and the reaction was performed under anhydrous condition 

using standard Schlenk technique. Yield: 93.5 mg, 0.18 mmol 79%. 1H NMR (500 MHz, 

[D6]acetone, 298 K): Diastereomer A  1.70 (s, 3H, CH3), 1.97 (s, 3H, CH3), 2.31 (s, 3H, 

CH3), 2.45 (s, 3H, CH3), 6.86 (s, 1H, thienyl), 7.22 (s, 1H, thienyl), 7.507.54 (m, 5H, phenyl), 

7.647.68 (m, 2H, phenyl), 7.847.86 (m, 2H, phenyl). Diastereomer B 1.77 (s, 3H, CH3), 

2.09 (s, 3H, CH3), 2.23 (s, 3H, CH3), 2.42 (s, 3H, CH3), 6.28 (s, 1H, thienyl), 6.63 (s, 1H, 

thienyl), 7.397.46 (m, 4H, phenyl), 7.597.65 (m, 3H, phenyl), 7.767.81 (m, 2H, pheny). 
13C{1H} NMR (150 MHz, CDCl3, 298 K):  13.88, 13.96, 14.42, 14.70, 15.26, 124.48, 124.54, 

124.56, 124.62, 125.31, 125.70, 126.02, 126.11, 127.94, 128.09, 128.22, 128.29, 128.39, 

128.51, 128.55, 128.59, 128.70, 128.79, 129.04, 129.11, 129.13, 129.26, 129.33, 130.03, 

130.12, 130.65, 130.74, 131.20, 131.28, 131.48, 131.56, 131.85, 131.87, 132.02, 132.04, 

132.20, 132.98, 133.44, 134.06, 134.52, 134.97, 135.13, 135.33, 135.39, 135.51, 135.54, 

135.67, 135.80, 136.46, 136.52, 136.68, 136.90, 143.87, 144.01, 144.42, 144.48, 144.55, 

144.61. 31P{1H} NMR (162 MHz, [D6]acetone, 298 K):  35.29, 36.33. Diastereomeric ratio (dr) 

of A/B = 1.22. Positive EI-MS, m/z: 510. HRMS (Positive EI) calcd for C26H23P32S2
80Se: m/z = 

510.0144; found: 510.0199 [M]. Elemental analyses, Found (%): C 60.22, H 4.55; Calcd (%) 

for C26H23PS2Se･0.5H2O: C 60.23, H 4.67.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-(methylthio)-1-phenyl-1H-benzo[b]phosphol-1-ium 

trifluoromethanesulfonate (5)

This was prepared according to modification of a literature procedure for the synthesis of 

phospholium derivatives10 and the reaction was performed under anhydrous condition using 

standard Schlenk technique. Yield: 117 mg, 0.19 mmol, 86%. 1H NMR (500 MHz, [D6]acetone, 

298 K): Diastereomer A  1.75 (s, 3H, CH3), 2.07 (s, 3H, CH3), 2.43 (s, 3H, CH3), 2.47 (s, 

3H, CH3), 2.62 (d, J = 16 MHz, 3H, SMe), 6.95 (s, 1H, thienyl), 7.07 (s, 1H, thienyl), 7.727.80 

(m, 3H, phenyl), 7.867.94 (m, 2H, phenyl), 8.018.03 (m, 3H, phenyl), 8.378.40 (m, 1H, 

phenyl). Diastereomer B  1.83 (s, 3H, CH3), 2.11 (s, 3H, CH3), 2.33 (s, 3H, CH3), 2.44 (s, 
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3H, CH3), 2.54 (d, J = 16 MHz, 3H, SMe), 6.47 (s, 1H, thienyl), 6.84 (s, 1H, thienyl), 7.727.80 

(m, 2H, phenyl), 7.827.90 (m, 5H, phenyl), 7.998.01 (m, 1H, phenyl), 8.288.32 (m, 1H, 

phenyl). 13C{1H} NMR (150 MHz, CDCl3, 298 K):  11.85, 11.87, 12.50, 12.52, 14.05, 14.17, 

15.09, 15.12, 15.23, 15.25, 15.30, 115.56, 115.79, 116.13, 116.34, 117.97, 118.46, 119.16, 

119.58, 119.73, 119.88, 120.03, 120.08, 120.60, 122.00, 123.77, 123.90, 124.66, 124.74, 

125.05, 125.12, 125.35, 127.34, 127.37, 127.41, 127.45, 128.42, 128.53, 128.58, 128.68, 

130.76, 130.86, 131.09, 131.18, 131.98, 132.05, 132.14, 132.22, 132.27, 132.35, 132.41, 

132.49, 132.56, 136.26, 136.27, 136.54, 136.56, 136.90, 138.16, 138.23, 138.56, 138.64, 

138.67, 138.71, 138.83, 138.96, 139.29, 139.48, 144.75, 144.93, 145.04, 145.22, 153.97, 

154.03, 154.13, 154.19. 31P{1H} NMR (162 MHz, [D6]acetone, 298 K):  49.43, 49.87. 

Diastereomeric ratio (dr) of A/B = 1.45. Positive FAB-MS, m/z: 477.2 [M]. Elemental analyses, 

Found (%): C 51.42, H 4.08; Calcd (%) for C28H26F3O4PS3･0.5CH2Cl2: C 51.15, H 4.07.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methoxybenzo[b]phosphole-1-oxide (6) 

This was prepared according to modification of a literature procedure for the synthesis of 

benzo[b]phosphole oxide derivatives7 and the reaction was performed under anhydrous 

condition using standard Schlenk technique. Yield: 10 mg, 0.025 mml; 6.1%. 1H NMR (500 

MHz, [D6]acetone, 298 K): Diastereomer A  1.88 (s, 3H, CH3), 1.97 (s, 3H, CH3), 2.37 (s, 

3H, CH3), 2.46 (s, 3H, CH3), 3.60 (d, J = 12 Hz, 3H, OMe), 6.78 (s, 1H, thienyl), 6.81 (s, 1H, 

thienyl), 7.277.29 (m, 1H, phenyl), 7.477.51 (m, 1H, phenyl), 7.557.59 (m, 1H, phenyl), 

7.717.75 (m, 1H, phenyl). Diastereomer B  1.92 (s, 3H, CH3), 2.07 (s, 3H, CH3), 2.37 (s, 

3H, CH3), 2.40 (s, 3H, CH3), 3.70 (d, J = 12 Hz, 3H, OMe), 6.54 (s, 1H, thienyl), 6.77 (s, 1H, 

thienyl), 7.247.27 (m, 1H, phenyl), 7.477.51 (m, 1H, phenyl), 7.557.59 (m, 1H, phenyl), 

7.717.75 (m, 1H, phenyl). 13C{1H} NMR (150 MHz, CDCl3, 298 K):  14.14, 14.21, 14.32, 14.71, 

15.21, 15.24, 15.29, 52.34, 52.38, 123.94, 124.03, 125.47, 125.83, 125.84, 125.95, 126.14, 

126.29, 126.70, 126.79, 127.00, 127.17, 127.54, 127.62, 127.70, 127.73, 127.75, 127.79, 

128.25, 128.31, 128.71, 128.78, 128.95, 129.01, 129.92, 130.04, 130.66, 130.79, 133.08, 

135.26, 135.32, 135.69, 135.93, 135.99, 136.33, 136.39, 136.69, 136.89, 136.97, 141.57, 

141.79, 142.00, 142.22, 144.23, 144.43, 144.87, 145.07. 31P{1H} NMR (162 MHz, [D6]acetone, 

298 K):  44.15, 44.26. Diastereomeric ratio (dr) of A/B = 2.15. Positive EI-MS, m/z: 400. HRMS 

(Positive EI) calcd for C21H21O2P32S2: m/z = 400.0721; found: 400.0718 [M]. Elemental 

analyses, Found (%): C 62.66, H 5.37; Calcd (%) for C21H21O2PS2: C 62.98, H 5.29.
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2,3-Bis(thiophen-3-yl)-1-phenylbenzo[b]phosphole-1-oxide (7) 

This was prepared according to modification of a literature procedure for the synthesis of 

benzo[b]phosphole oxide derivatives7 and the reaction was performed under anhydrous 

condition using standard Schlenk technique. Yield: 35 mg, 0.089 mmol, 21.6%. 1H NMR (400 

MHz, CDCl3, 298 K):  6.706.71 (d, J = 4 Hz, 1H, thienyl), 7.067.08 (m, 1H, thienyl), 

7.087.10 (dd, J = 4 , 8Hz, 1H, thienyl), 7.237.25 (dd, J = 4 , 8Hz, 1H, thienyl), 7.337.37 (m, 

1H, thienyl), 7.407.42 (m, 3H, phenyl), 7.437.45 (m, 1H, phenyl), 7.477.49 (m, 1H, thienyl), 

7.507.53 (m, 2H, phenyl), 7.667.70 (m, 1H, phenyl), 7.767.81 (m, 2H, phenyl). 13C{1H} NMR 

(150 MHz, CDCl3, 298 K):  123.62, 123.69, 124.99, 125.20, 125.71, 125.75, 126.97, 127.06, 

127.11, 128.04, 128.89, 128.93, 128.98, 129.79, 130.44, 130.90, 130.97, 131.07, 131.78, 

132.26, 132.27, 132.97, 133.04, 133.12, 134.49, 134.59, 142.94, 143.09, 143.98, 144.16. 
31P{1H} NMR (162 MHz, CDCl3, 298 K):  38.61. Positive EI-MS, m/z: 864. HRMS (Positive EI) 

calcd for C22H15OP32S2: m/z = 390.0302; found: 390.0283 [M]. Elemental analyses, Found (%): 

C 67.53, H 3.67; Calcd (%) for C22H15OPS2: C 67.67, H 3.87.
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2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methylbenzo[b]phosphole-1-oxide (1-Me)

This was prepared according to modification of a literature procedure for the synthesis of 

phosphine oxide derivatives using Grignard reaction11 and the reaction was performed under 

anhydrous condition using standard Schlenk technique. Yield: 60 mg, 0.16 mmol; 63%. 1H NMR 

(400 MHz, [D6]acetone, 298 K): Diastereomer A  1.541.57 (d, J = 12 Hz, 3H, PMe), 1.89 (s, 

3H, CH3), 1.97 (s, 3H, CH3), 2.38 (s, 3H, CH3), 2.46 (s, 3H, CH3), 6.76 (s, 1H, thienyl), 

6.80 (s, 1H, thienyl), 7.287.31 (m, 1H, phenyl), 7.467.51 (m, 1H, phenyl), 7.537.57 (m, 1H, 

phenyl), 7.827.86 (m, 1H, phenyl). Diastereomer B 1.701.74 (d, J = 16 Hz, 3H, PMe), 1.93 

(s, 3H, CH3), 2.14 (s, 3H, CH3), 2.38 (s, 3H, CH3), 2.39 (s, 3H, CH3), 6.43 (s, 1H, thienyl), 

6.83 (s, 1H, thienyl), 7.227.25 (m, 1H, phenyl), 7.467.51 (m, 1H, phenyl), 7.537.57 (m, 1H, 

phenyl), 7.827.86 (m, 1H, phenyl). 13C{1H} NMR (150 MHz, CDCl3, 298 K):  14.07, 14.09, 

14.14, 14.27, 14.60, 14.88, 14.92, 15.20, 15.24, 15.28, 15.34, 123.93, 123.95, 124.00, 124.02, 

125.33, 125.48, 125.85, 125.86, 126.34, 128.13, 128.19, 128.23, 128.49, 128.56, 128.63, 

129.24, 129.30, 130.14 130.24, 131.07, 131.17, 131.37, 131.43, 131.45, 132.04, 132.07 
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132.10, 132.17, 132.66, 132.80, 134.86, 135.05, 135.10, 135.67, 135.72, 136.39, 136.44, 

136.52, 136.95, 137.09, 142.03, 142.20, 142.83, 143.01, 143.61, 143.77, 144.55, 144.70. 
31P{1H} NMR (162 MHz, [D6]acetone, 298 K):  40.59, 40.69. Diastereomeric ratio (dr) of A/B = 

1.88. Positive EI-MS, m/z: 384. HRMS (Positive EI) calcd for C21H21OP32S2: m/z = 384.0771; 

found: 384.0762 [M]

P S

S

Me

2,3-Bis(2,5-dimethylthiophen-3-yl)-1-methylbenzo[b]phosphole (2-Me)

This was prepared according to modification of a literature procedure for the synthesis of 

phosphole derivatives8 and the reaction was performed under anhydrous condition using 

standard Schlenk technique. Yield: 48 mg, 0.13 mmol; 81.5%. 1H NMR (400 MHz, [D6]acetone, 

298 K): Diastereomer A 1.27 (d, J = 1.4 Hz, 3H, PMe), 1.83 (s, 3H, CH3), 2.03 (s, 3H, 

CH3), 2.35 (s, 3H, CH3), 2.46 (s, 3H, CH3), 6.52 (s, 1H, thienyl), 6.78 (s, 1H, thienyl), 

7.217.28 (m, 1H, phenyl), 7.297.33 (m, 1H, phenyl), 7.387.39 (m, 1H, phenyl), 7.777.80 

(m, 1H, phenyl). Diastereomer B 1.371.38 (d, J = 1.4 Hz, 3H, PMe), 1.99 (s, 3H, CH3), 

2.18 (s, 3H, CH3), 2.33 (s, 3H, CH3), 2.36 (s, 3H, CH3), 6.28 (s, 1H, thienyl), 6.59 (s, 1H, 

thienyl), 7.297.33 (m, 1H, phenyl), 7.387.39 (m, 2H, phenyl), 7.777.80 (m, 1H, phenyl). 
13C{1H} NMR (150 MHz, CDCl3, 298 K):  10.49, 10.63, 11.12, 11.26, 13.84, 14.01, 14.03, 

14.27, 14.31, 14.78, 15.16, 15.20, 15.22, 15.36, 123.88, 123.94, 125.05, 125.10, 125.14, 

125.19, 126.57, 126.59, 127.19, 127.45, 127.49, 127.71. 127.76, 127.84, 127.88, 128.40, 

128.53, 132.43, 132.68 132.70, 132.86, 132.98, 133.16, 133.25, 133.28, 133.59, 133.61, 

134.69, 134.94, 134.98, 135.34, 135.71, 138.68, 138.74, 140.24, 140.29, 144.71, 145.16, 

145.21, 145.84, 145.88, 145.95, 145.98, 146.92, 146.95. 31P{1H} NMR (162 MHz, [D6]acetone, 

298 K):  10.94, 10.90. Diastereomeric ratio (dr) of A/B = 2.22. Positive EI-MS, m/z: 368. 

HRMS (Positive EI) calcd for C21H21P32S2: m/z = 368.0822; found: 368.0816 [M].

P

S

S

PF6

2,3-Bis(2,5-dimethylthiophen-3-yl)-1,1-dimethyl-1H-benzo[b]phosphol-1-ium 

hexafluorophosphate (8)

This was prepared according to modification of a literature procedure for the synthesis of 

phospholium derivatives12 and the reaction was performed under anhydrous condition using 

standard Schlenk technique. Yield: 40 mg, 0.076 mmol, 54%. 1H NMR (400 MHz, CDCl3, 298 
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K):  1.83 (s, 3H, CH3), 2.00 (s, 3H, CH3), 2.122.15 (d, J = 12 Hz 3H, PMe), 2.352.39 (d, 

J = 12 Hz, 3H, PMe), 2.45 (s, 3H, CH3), 2.47 (s, 3H, CH3), 6.54 (s, 1H, thienyl), 6.57 (s, 1H, 

thienyl), 7.527.55 (m, 1H, phenyl), 7.657.70 (m, 1H, phenyl), 7.737.77 (m, 1H, phenyl), 

8.348.38 (m, 1H, phenyl). 19F{1H} NMR (377 MHz, CDCl3, 298 K):  71.56 (d, JPF = 710 Hz, 

PF6
). 13C{1H} NMR (150 MHz, CDCl3, 298 K):  6.73, 7.07, 7.66, 7.99, 14.05, 14.75, 15.24, 

120.98, 121.50, 122.09, 123.61, 124.96, 125.00, 125.03, 126.31, 126.38, 128.46, 128.56, 

130.98, 131.05, 131.98, 132.04, 135.53, 135.54, 137.77, 137.83, 138.15, 138.44, 139.62, 

145.09, 145.25, 152.70, 152.84. 31P{1H} NMR (162 MHz, CDCl3, 298 K):  144.08 (m, JPF = 

710 Hz, PF6
), 33.15 (s, PMe2

). Positive FAB-MS, m/z: 382.9 [M]. Elemental analyses, Found 

(%): C 49.05, H 4.79; Calcd (%) for C22H24F6P2S2･0.5H2O: C 49.16, H 4.69.
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Table S1 Electrochemical data

Oxidation[a,b] Reduction[a,b]

Compound Epa[c] / V vs SCE

Epc[d] / V vs SCE

[ E1/2[e] / V vs SCE ]

( Ep / mV) [f]

1 1.50 1.93

2 1.34, 1.56, [g]

3 1.45 1.99

4 1.40 1.88

5 1.72 0.91, [1.81] (108)

6 1.46 1.85

[a] In CH2Cl2 with 0.1 M nBu4NPF6 as supporting electrolyte.

[b] Working electrode, glassy carbon; scan rate, 100 mVs1.

[c] Epa is reported for irreversible oxidation wave.

[d] Epc is reported for irreversible reduction wave.

[e] E1/2  (Epa  Epc) / 2; Epa and Epc are anodic and cathodic peak potentials, respectively.

[f] Ep  (Epa  Epc).

[g] No reduction wave was observed.
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Table S2 Crystal and structure determination data of 1

empirical formula C26H23OPS2

formula weight 446.53

temp, K 296 (2)

wavelength, Å 0.71073

crystal system Triclinic

space group  P 1

a, Å 8.4616(4)

b, Å 11.5086(5)

c, Å 12.4957(6)

, deg 83.4270(10)

, deg 77.3210(10)

, deg 83.7100(10)

Volume, Å3 1174.89 (9)

Z 2

Density (calcd), gcm3 1.262

Crystal size 0.50 mm x 0.40 mm x 0.30 mm

Index ranges 10 ≤ h ≤ 10, 13 ≤ k ≤ 13, 14 ≤ l ≤ 14

reflections collected 16694

Independent reflection 4226 [R(int) = 0.0284]

GOF on F2 1.025

Final R indices [I > 2 (l)] R1 = 0.0443, wR2 = 0.1143

Largest diff. peak and 

hole, eÅ3
0.400 and 0.428

Table S3 Selected bond lengths [Å] and angles [deg] for 1 with estimated standard deviations 

(esds) given in parentheses

Bond Lengths / Å Bond Angles / deg

P(1)-O(1) 1.4830(15) O(1)-P(1)-C(21) 113.36(10)

P(1)-C(21) 1.799(2) O(1)-P(1)-C(20) 118.27(10)

P(1)-C(20) 1.803(2) C(21)-P(1)-C(20) 107.94(10)

P(1)-C(14) 1.819(2) O(1)-P(1)-C(14) 116.24(10)

C(13)-C(14) 1.359(3) C(20)-P(1)-C(14) 92.37(10)

C(13)-C(15) 1.493(3) C(21)-P(1)-C(14) 106.33(10)

C(15)-C(20) 1.403(3)
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Fig. S1 Electronic absorption spectra of the open forms of 18 in benzene solution at 298 K.
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Fig. S2 Normalized emission spectra of the degassed benzene solution of the open forms of 

12 and 58 at 298 K; asterisk represents an instrumental artifact.
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Fig. S3 Normalized emission spectra of the open form of 1 in various solvents at 298 K; 

asterisk represents an instrumental artifact.
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Fig. S4 A plot of emission energy of the open form of 1 in different solvents versus the 

Dimroth’s E solvent parameter and its linear least-squares fit (). 

300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

 

 

Ab
so

rb
an

ce

Wavelength / nm

Fig. S5 UVVis absorption spectral changes of 2 in degassed benzene solution upon 

UV excitation at 360 nm. 
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Fig. S6 UVVis absorption spectral changes of 3 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S7 UVVis absorption spectral changes of 4 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S8 UVVis absorption spectral changes of 5 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S9 UVVis absorption spectral changes of 6 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S10 UVVis absorption spectral changes of 7 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S11 UVVis absorption spectral changes of 8 in degassed benzene solution upon 

UV excitation at 360 nm.
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Fig. S12 Electronic absorption spectra of the closed forms of 18 in degassed benzene 

solution at 298 K.
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Fig. S13 UVVis absorbance changes of 1 at 500 nm on alternate excitation at 360 nm and 

500 nm over seven cycles in degassed benzene solution at 298 K.
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Fig. S14 UVVis absorbance changes of 2 at 500 nm on alternate excitation at 360 nm and 

500 nm over seven cycles in degassed benzene solution at 298 K.
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Fig. S15 A plot of ln(At/A) versus time for the absorbance decay at 500 nm of the closed form 

isomer of 1 at 25 and 100 C in nitrogen-flushed 1,2-dichlorobenzene solution. A0 and 

At denote initial absorbance and absorbance at time t, respectively; solid lines 

represent theoretical linear fits. Inset shows the expanded thermal decay plot at 100 
C.
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Fig. S16 UVVis absorption spectral changes of 1 on PMMA thin film upon UV excitation at 

360 nm.
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Fig. S17 UVVis absorbance changes of 1 at 500 nm on alternate excitation at 360 nm and 

500 nm over seven cycles in non-degassed benzene solution at 298 K.
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Fig. S18 1H NMR spectrum of 1 in [D6]acetone.

0102030405060708090100110120130140150160170180190200210220
ppm

14
.0

7
14

.1
0

14
.2

6
14

.7
2

15
.1

7
15

.2
8

12
3.

91
12

4.
00

12
4.

07
12

5.
17

12
5.

50
12

5.
79

12
5.

80
12

6.
09

12
8.

60
12

8.
68

12
8.

74
12

8.
81

12
8.

82
12

8.
90

12
9.

00
12

9.
06

12
9.

11
12

9.
13

13
0.

80
13

0.
87

13
0.

98
13

1.
05

13
1.

57
13

1.
97

13
1.

98
13

2.
12

13
2.

14
13

2.
26

13
2.

80
13

2.
89

13
5.

43
13

6.
00

13
6.

04
13

6.
63

13
6.

90
13

7.
07

14
3.

52
14

3.
70

14
3.

79
14

3.
97

14
5.

35
14

5.
47

14
5.

51
14

5.
63

P

S

S

O

Fig. S19 13C{1H} NMR spectrum of 1 in CDCl3.
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Fig. S27 1H NMR spectrum of 4 in [D6]acetone.
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