Electronic Supplementary Information (ESI)

MnO₂ Nanosheets Mediated "DD-A" FRET Binary Probes for Sensitive Detection of Intracellular mRNA

Min Ou, Jin Huang*, Xiaohai Yang, Yanjing Yang, Ke Quan, Nuli Xie, Kemin Wang*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry

and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular

Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.

Tel/Fax: +86-731-88821566, *Email: jinhuang@hnu.edu.cn, kmwang@hnu.edu.cn

Supporting tables

Oligo	Sequences(5'-3')
DNA target one-base mismatched target:	CTGGTGATCAAGTATGCCAAAGACACTCGCTACAGC AGCA CTGGTGATAAAGTATGCCAAAGACACTCGCTACAG CAGCA
single labelled-donor probe	FAM-TTGGCATACTTGATCACC
double labelled-donor probe	FAM-TT(-FAM)GGCATACTTGATCACC
single labelled-acceptor probe	TGCTGCTGTAGCGAGTGT-TAMRA
double labelled-acceptor probe	TGCTGCTGTAG GAGT(-TAMRA)GT-TAMRA
TK1 forward	CTCCTACCCACTGGTCTGCTTA
TK1 reverse	CAGGGAGAACAGAAACTCAGCA
GAPDH forward	TGGGTGTGAACCATGAGAAGT
GAPDH reverse	TGAGTCCTTCCACGATACCAA

 Table S1. Oligonucleotide sequences

The part of TK1 mRNA (red part denotes the selected target sequence): AUGAGCUGCAUUAACCUGCCCACUGUGCUGCCUGGCUCCCCAGCAAGACCCGGGG GCAGAUCCAGGUGAUUCUCGGGCCGAUGUUCUCAGGAAAAAGCACAGAGUUGAUG AGACGCGUCCGUCGCUUCCAGAUUGCUCAGUACAAGUGCCUGGUGAUCAAGUAUG CCAAAGACACUCGCUACAGCAGCAGCUUCUGCACACAUGACCGGAACACCAUGGA GGCACUGCCCGCCUGCCUGCUCCGAGACGUGGCCCAGGAGGCCCUGGGCGUGGCUG UCAUAGGCAUCGACGAGGGGCAGUUUUUUCCCUGACAUCGUGGAGUUCUGCGAGGC CAUGGCCAACGCCGGGAAGACCGUAAUUGUGGCUGCACUGGAUGGGACCUUCCAG AGGAAGCCAUUUGGGGCCAUCCUGAACCUGGUGCCGCUGGAGAGCCUUCCAG AGGAAGCCAUUUGGGGCCAUCCUGAACCUGGUGCCGCUGGCCGAGAGCGUGGUGA AGCUGACGGCGGUGUGCAUGGAGUGCUUCCGGGAAGCCGCUAUACCAAGAGGCU CGGCACAGAGAAGGAGGUCGAGGUGAUUGGGGGAGCAGACAAGUACCACUCCGUG UGUCGGCU

Supporting Figures

Figure S1. Transmission electron microscope (TEM) images of MnO_2 nanosheets.

Figure S2.UV-vis adsorption spectrum characterization of MnO_2 nanosheets.

Figure S3.Zata potential analysis characterization of MnO₂ nanosheets.

Figure S4.Dynamic light scattering (DLS) results of MnO_2 nanosheets.

Figure S5.Adsorption of (a) FAM-labelled probes (100 nM) and (b) TAMRA-labelled (100 nM) probes on MnO_2 nanosheets at different concentrations.

Figure S6.UV-vis absorption spectrum response of FAM-labelled probes/ MnO_2 nanosheets to different concentrations of GSH.

Figure S7.Fluorescence spectrum response of FAM-labelled probes/ MnO_2 nanosheets to different concentrations of GSH.

Figure S8.Kinetics of the MnO₂ nanosheets mediated "DD-A" FRET binary probes response to 50 nM target DNA.

Figure S9.A plot of Acceptor-to-Donor ratio of the MnO₂ nanosheets mediated "D-A" FRET binary probes as a function of target concentrations. An estimated detection limit (three times the standard deviation in the blank solution) of the "D-A" model is 9.8 nM.

Figure S10. Selectivity studies of "DD-A" model between matched target and onebase mismatched target (50 nM each). Inset is a comparison histogram of matched target and one-base mismatched target.

Figure S11.Fluorescence images of TK1 mRNA in HepG2 cells incubated with FAM-labelled probes/ MnO_2 nanosheets and free FAM-labelled probes, respectively. Scale bar: 10 μ m.

Figure S12.Cytotoxicity of MnO_2 nanosheets incubated with HepG2 cells at different concentrations.

Figure S13. Flow cytometry analysis of with "D-AA", "D-A", "DD-AA" and "DD-A" models incubated with HepG2 cells, respectively.

Figure S14.Flow cytometry analysis of the "DD-A" models incubated with HepG2 cells and L02 cells, respectively.

Figure S15. Analysis of Tk1 mRNA expressions in HepG2 and L02 cells by qRT-PCR. (a) Real-time fluorescence curves in qRT-PCR analysis. (b) Relative expression levels for Tk1 mRNA in two different cell lines.

(b)

Figure S16. Flow cytometry analysis of the "DD-A" models incubated with different groups of HepG2 cells (untreated, tamoxifen-treated and β -estradiol-treated groups).