Porous dendritic copper: an electrocatalyst for highly selective CO₂ reduction to formate in water/ionic liquid electrolyte Supplementary Material

Experimental Section

Chemicals

All chemicals including 1-ethyl-3-methylimidazolium tetrafluoroborate (98%), [EMIM](BF₄), tetrabutylammonium tetrafluoroborate, n-Bu₄BF₄, (99%), CuSO₄.5H₂O (99.9%), H₂SO₄ 99.8% and CH₃CN (99.9%) were purchased from Sigma-Aldrich.

Methods

For the construction of the 3D Cu nanodendritic porous network, a solution of 0.2 M CuSO₄, 1.5 M H_2SO_4 was initially prepared. Then, a Cu plate electrode (1 cm²) was immersed into the solution and a current of 0.5 A was applied using a galvanostat. Under these conditions, intense H_2 bubbles were generated resulting in Cu deposition in the form of a porous structure.^{1,2,3}

Electrochemical measurements were performed in a three-electrode two-compartment cell using a Bio-logic SP300 potentiostat. Ag/AgCl/3M KCl (hereafter abbreviated as Ag/AgCl) was used as the reference electrode and placed in the same compartment as the working electrode. A platinum counter electrode was placed in a separate compartment connected by a glass-frit and filled with the electrolytic solution. The surface of the working electrode was 1 cm². All potential values are given versus the potential of the Fc⁺/Fc couple added as an internal standard to the solution after measurement. In MeCN (8% H₂O, 0.1M n-Bu₄BF₄): $E_{1/2}$ (Fc⁺/Fc) = 0.42 V vs Ag/AgCl. In [EMIM](BF₄)/H₂O (92/8 v/v): $E_{1/2}$ (Fc⁺/Fc) = 0.37V vs Ag/AgCl.

 H_2 measurements were performed by gas chromatography on a Shimadzu GC-2014 equipped with a Quadrex column, a Thermal Conductivity Detector and using N2 as a carrier gas. Carbon monoxide, methane and other volatile hydrocarbons from the gas phase were analyzed using a gas chromatograph (Shimadzu GC-2010) equipped with a methanizer, a flame induction detector (FID) and a shincarbon ST (Restek) column. Methanol was assayed by gas chromatography (Shimadzu GC 2010) using an Rtx-1 column (Restek) and a flame induction detector (FID). Formate, oxalate and glyoxylate concentrations were determined by ionic exchange chromatography (883 Basic IC, Metrohm).

¹³C-formic acid analysis was carried out by ¹³C-NMR spectroscopy. Electrolysis using a modified Cu electrode was carried out in [EMIM](BF₄)/H₂O (92/8% v/v) under ¹³CO₂ saturation. After 2 h, formic acid was analyzed by ¹³C-NMR spectroscopy after addition of 0.2 ml of CD₃CN to 0.8 ml of the electrolysis solution. A blank experiment with ¹²CO₂ was also carried out. For analysis of ¹³CO a mass spectrometer was directly connected to the electrochemical cell during standard bulk electrolysis under ¹³CO₂ saturation. The gas reference was Argon (MW = 40). Gaseous products were then analyzed by mass spectrometry every third minute. Control experiments were also run: (i) electrolysis with an Argon-saturated solution; (ii) electrolysis saturation of non-labelled CO₂.

SEM images were acquired using a Hitachi S-4800 scanning electron microscope. TEM and HRTEM images were obtained on a JEM-2100F transmission electron microscope (JEOL, Japan) with an accelerating voltage of 200 kV.

The X-ray powder diffraction (XRD) patterns were recorded using an X'Pert Pro P analytical diffractometer equipped with either a Cu–K α radiation source ($\lambda_{K\alpha 1} = 1.540598$ Å, $\lambda_{K\alpha 2} = 1.544426$ Å) or a Co–K α radiation source ($\lambda_{K\alpha 1} = 1.78897$ Å, $\lambda_{K\alpha 2} = 1.79285$ Å) with an X'Celerator detector. Rietveld refinements²³ were performed with the Full Prof suite of programs.

Electrochemical diffusion surface area (A_{diff})

The Randles-Sevcik equation served to calculate A_{diff} , the diffusion surface area:¹

$$i_p = 2.69 \times 10^5 \, n^{3/2} D^{1/2} A_{\rm diff} C \, v^{1/2} \tag{1}$$

Here, i_p is the peak current corresponding to the reduction of redox species (Fe³⁺/Fe²⁺), obtained by CV of a K₃[Fe(CN)₆] solution, *n* is the number of exchanged electrons, *D* is the diffusion coefficient of the analyte (7.5×10⁻⁶ cm² s⁻¹),¹ A_{diff} is the diffusional surface area, *C* (mol.cm⁻³) is the molar concentration of the analyte and v is the scan rate (V s⁻¹).

CV was recorded using either a Cu plate or a modified Cu electrode in 0.1M phosphate buffer pH 7.0 containing 5mM K₃[Fe(CN)₆] (scan rate 50mV.s⁻¹). Using the experimental i_p value from the CV, application of the equation above allowed the determination of the A*diff* value.

Determination of the standard potential of the CO₂/HCOOH couple in CH₃CN

The method used below is directly taken from references ⁴ and ⁵ but we reproduce it in full for the sake of clarity. Of note however is the fact that we do not include the inter-liquid junction potential in the value of the standard potential of the $CO_2/HCOOH$ couple versus NHE while we do it in a second stage when we refer it to the reference system used to measure electrochemical potentials.

We first determine the standard potential of the $CO_2/HCOOH$ couple in a solvent S and in the presence of a weak acid AH referred to the aqueous normal hydrogen electrode (NHE). The redox half-reaction reads as follows:

Scheme S1

We use the thermodynamic cycle shown in Scheme S1 and derive the following equation $E^{0}_{s}(CO_{2}/HCOOH,AH)=E^{0}_{aq}(CO_{2}/HCOOH)-$

$$\frac{RTln10}{F}pKa_{(s)}(AH) - \frac{RT}{2F} \ln\left(\frac{K_{h, CO_2, aq \to g}}{K_{h, CO_2, S \to g}}\right) - \frac{2\Delta G_{t, H}^{0} - \Delta G_{t, HCOOH, S \to aq}}{2F}$$

with

 $E_{aq}^{0}(CO_{2}/HCOOH) = -0.11 V vs NHE at pH 0^{6}$

$$\Delta G_{t, H^+, DMF \to aq}^{0} = -46 \, kJ/mol_{\gamma}$$

$$\Delta G_{t, HCOOH, DMF \to aq} = -24 \, kJ/mol_{5}$$

$$P_{CO} \neq 0$$

$$K_{h, CO_2, S \to g} = \frac{\frac{CO_2}{P^0}}{[CO_2]_{(S)}/C^0}$$

 $/C^{0}$, with $[CO_{2}]_{(S)}$ the solubility if CO_{2} in the solvent of interest under $P_{CO2} = 10^{5}$ Pa; $P^{0} = 10^{5}$ Pa and $C^{0} = 1$ mol.L⁻¹

 $[CO_2]_{CH3CN} \!\!\!= 0.28 mol. L^{-1.8}$ and $[CO_2]_{aq} \!\!\!= 0.038 \; mol. L^{-1.9}$

We obtain $E^{0}_{CH3CN}(CO_{2}/HCOOH, AH) = 0.216 \text{ V vs NHE} - \frac{RT ln 10}{F} pKa_{(S)}(AH)$

Considering now that H_2CO_3 formed by hydration of CO_2 is the strongest acid in the CO_2 -saturated CH_3CN and using the pKa value of 17.03 previously determined for this couple in CH_3CN ,⁴ we finally obtain $E^0_{CH3CN}(CO_2/HCOOH, H_2CO_3) = -0.79$ V vs NHE.

To refer this potential versus the Fc⁺/Fc couple, we use the experimentally determined value of $E(Fc^+/Fc) = 0.42 \text{ V vs Ag/AgCl/KCl 3 mol.L}^{-1}(E_{Ag/AgCl} = 0.210 \text{ V vs NHE})$ and correct it with the inter-liquid potential (0.100 V)¹ between the aqueous electrolyte of the Ag/AgCl electrode and the CH₃CN solution containing n-Bu₄BF₄ (0.1 mol.L⁻¹). This yields $E_{CH3CN}(Fc^+/Fc) = 0.53 \text{ V vs NHE}.$

Thus $E_{CH3CN}^{0}(CO_{2}/HCOOH, H_{2}CO_{3}) = -1.32 \text{ V vs }Fc^{+}/Fc$

Supporting Figures

Figure S1: ¹³C-NMR spectrum of an electrolytic solution using ¹³CO2 reduction as the substrate in [EMIM](BF₄)/H₂O (92/8 v/v) (0.8ml solution + 0.2ml CD₃CN). ¹³C-formate is observed at 165 ppm.

Figure S2: CPE at -1.55V vs Fc⁺/Fc in [EMIM](BF₄)/H₂O (92/8 v/v) at CO₂ saturation using the modified Cu electrode obtained after different electrodeposition times: 40s (red), 80s (blue), 120s (green). The modified Cu electrode (80s electrodeposition) was also used under N₂ (black).

Figure S3: A) Cyclic voltamograms and B) current intensities during CPE using modified Cu electrodes obtained after different electrodeposition times (red: 40s; blue: 80s) in $[EMIM](BF_4)/H_2O$ (85/15 v/v).

Figure S4: Catalytic current density during 8 h electro-reduction of CO_2 at -1.55 V vs Fc⁺/Fc in [EMIM](BF₄)/H₂O (92/8% v/v) solution using a modified Cu electrode (80s electrodeposition).

Figure S5: A) Cyclic voltammograms in H₂SO₄ 0.5M using a Cu plate (black) or a modified Cu electrode (1 cm²) obtained after 40s (red), 80s (blue) and 120s (green) electrodeposition. For sake of clarity the data for electrodes obtained after 20, 60 and 100 s are not shown. B) Surface concentration of active Cu calculated from the reduction peak in (A). From each CV total charge Q is calculated, and the amount of active Cu = $Q/(2x1.6x10^{-19}x6.02 x10^{23})$.

Figure S6: CVs of the Cu plate and the modified Cu electrode (80s deposition) in 0.1M phosphate buffer pH 7.0 containing 5mM K_3 [Fe(CN)₆] (scan rate 50mV.s⁻¹).

Figure S7: A) LSV of the modified Cu electrode (80s deposition) in MeCN/H₂O (92/8 v/v) + 0.1M n-Bu₄BF₄ under N₂- (red) and CO₂- (black) saturation conditions.

Figure S8: SEM images of the modified Cu electrodes obtained after 20s (A), 40s (B), 60s (C), 80s (D), 120s (E) and 160s (F) electrodeposition.

Figure S9: SEM image of the modified Cu electrode (80s electrodeposition) after long-term (8 h) electrolysis.

Table S1. Products and faradic yields during CPE at -1.55V vs Fc⁺/Fc under CO₂ saturation in [EMIM](BF₄)/H₂O (92/8 v/v) using a modified Cu electrode obtained after different electrodeposition times

Electrodeposition	Charge (C)	H ₂ (%)	Formate (%)	CO (%)
time				
40s	5.8	9	82	5
80s	8.6	8	83	5
120s	9.1	11	79	6

Table S2: Products and faradic yields during CPE at -1.55 V vs Fc⁺/Fc under CO₂ saturation in [EMIM](BF₄)/H₂O (85/15 v/v) using modified Cu electrode obtained after different electrodeposition times.

Electrodeposition	Charge (C)	H ₂ (%)	Formate (%)	CO (%)
time				
40s	10.2	35	50	8
80s	16.8	36	49	9

References:

- T.N. Huan, T.Ganesha, K.S. Kim, S. Kim, S.H. Han, H. Chung. *Biosens*. *Bioelectron*. 2011, 27, 183-186
- 2. H.C. Shin, M. Liu, Chem. Mater. 2004, 16, 5460-5464.
- 3. C. Zhu, D. Du, A. Eychmuller, Y. Lin, Chem. Rev. 2015, 115, 8896-8943.
- 4. C. Costentin, S. Drouet, M. Robert, J.M. Saveant, Science 2012, 338, 90-94.
- T.N. Huan, E.S. Andreiadis, J. Heidkamp, P. Simon, E. Derat, S. Cobo, G. Royal, A. Bergmann, P. Strässer, H. Dau, V. Artero, M. Fontecave, *J. Mater. Chem. A* 2015, *3*, 3901-3907.
- T. Reda, C.M. Plugge, N.J. Abram, J. Hirst, Proc. Natl. Acad. Sci. USA 2008, 105, 10654-10658.
- 7. Y. Marcus, Ion Properties (Marcel Dekker, NY. 1997), p 216.
- 8. A. Gennaro, A.A. Isse, E. Vianello, J. Electroanal. Chem. 1990, 289, 203-215.
- 9. D.R. Lide, P.R. Frederikse, Eds. Handbook of Chemistry and Physics, (CRC Press, Boca Raton, FL, ed 76, 1995).