Photoredox Radical Conjugate Addition of Dithiane-2-carboxylate Promoted by an Iridium(III) Phenyltetrazole Complex: a Formal Radical Methylation of

 Michael Acceptors

 Michael Acceptors}

Andrea Gualandi, ${ }^{\text {a }}$ Elia Matteucci, ${ }^{\text {b }}$ Filippo Monti, ${ }^{\text {c }}$ Andrea Baschieri, ${ }^{a}$ Nicola Armaroli, ${ }^{\text {c* }}$ Letizia Sambri, ${ }^{\text {b* }}$ and Pier Giorgio Cozzia*

a. Dipartimento di Chimica "G. Ciamician", ALMA MATER STUDIORUM Università di Bologna, Via Selmi 2, 40126 Bologna, Italy E-mail: piergiorgio.cozzi@unibo.it
b. Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy E-mail: letizia.sambri@unibo.it

Electronic Supplementary Information

Table of contents:

General methods and materials S3
Optimization of radical conjugate addition of dithiane-2-carboxylate S4
Preparation of the starting Michael acceptors S5
Preparation of 2-substituted 1,3-dithiane-2-carboxylate 4b,c S7
Photoredox radical conjugate addition of carboxylates S8
Characterization data of products 5a-t, 15 and 16 S8
Reductive removal of the dithiane moiety S13
Hydrolysis of the dithiane moiety S14
Reaction in presence of TEMPO S15
Preparation of ammonium salts 17, 18, 19 S16
Photoredox radical conjugate addition of salt 17 S17
Photostability of $\operatorname{Ir}($ III) complex 2 S17
Photophysical and electrochemical data S19
Determination of quantum yield S21
References S21
Copies of NMR spectra S23
Copies of IR spectra S61

General methods and materials. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Gemini 200, Varian Mercury 400. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: $\delta=7.24 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ duplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ double duplet, $\mathrm{dt}=$ double triplet, bs $=$ broad signal, $\mathrm{m}=$ multiplet), coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Gemini 200, Varian MR400 spectrometers. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: $\delta=77.0 \mathrm{ppm}$). GC-MS spectra were taken by EI ionization at 70 eV on a Hewlett-Packard 5971 with GC injection. LC-electrospray ionization mass spectra (ESI-MS) were obtained with Agilent Technologies MSD1100 single-quadrupole mass spectrometer. They are reported as: m / z (rel. intense). IR spectra were recorded using Bruker Alpha FTIR spectrometer equipped with single reflection diamond ATR accessory. Chromatographic purification was done with 240-400 mesh silica gel. Purification on preparative thin layer chromatography was done on Merck TLC silica gel $60 \mathrm{~F}_{254}$.

Materials. If not otherwise stated, all reactions were carried out in flame dried glassware under nitrogen atmosphere. Anhydrous solvents were supplied by Aldrich in Sureseal® bottles and were used as received avoiding further purification.

Reagents were purchased from Aldrich and AlfaAesar, and used without further purification unless otherwise stated. Compounds $\mathbf{3 e}, \mathbf{3 f}, \mathbf{3 h}, \mathbf{3 i}, \mathbf{3 1}, \mathbf{3 m}, \mathbf{3 0}, \mathbf{3 p}, \mathbf{3 q}$ and $\mathbf{2 5}$ were commercially available. 1,3-dithianecarboxylic acid $\mathbf{4 a}$ was prepared according reported procedure. ${ }^{1}$ Iridium complexes $\mathbf{1},{ }^{2}$ $\mathbf{2},{ }^{3} \mathbf{1 9 - 2 0},,^{4} \mathbf{2 1},{ }^{3} \mathbf{2 2},{ }^{2}$ and 23-24 ${ }^{4}$ were prepared according to described procedures.

Optimization of radical conjugate addition of dithiane-2-carboxylate

 ${ }_{8 \mathrm{E}_{4}}$

Table S1. Iridium catalyst screening. ${ }^{\text {a }}$		
Entry	Catalyst	Conversion (\%) $^{\mathbf{b}}$
1	$\mathbf{1}$	93
2	$\mathbf{2}$	97
3	$\mathbf{1 9}$	18
4	$\mathbf{2 0}$	17
5	$\mathbf{2 1}$	72
6	$\mathbf{2 2}$	47
7	$\mathbf{2 3}$	13
8	$\mathbf{2 4}$	13
9	$\mathbf{2 5}$	0

${ }^{\text {a }}$ The reactions were performed at r.t. with 0.1 mmol of $\mathbf{4 a}, 2$ equiv of malonate (3a) and 1 equiv of $\mathrm{K}_{2} \mathrm{HPO}_{4}$, in the presence of $1 \mathrm{~mol} \%$ of photocatalyst and in DMSO (0.2 M), and stopped after $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using internal standard.

Table S2. Solvent screening. ${ }^{\text {a }}$

Entry	Solvent	Conversion (\%) $^{\mathbf{b}}$
1	DMSO	97
2	DMF	53
3	DCE	11
4	EtOH	34
5	EtOH: $\mathrm{H}_{2} \mathrm{O}(8: 2)$	45

${ }^{\text {a }}$ The reactions were performed at r.t. with 0.1 mmol of $\mathbf{4 a}, 2$ equiv of malonate (3a) and 1 equiv of $\mathrm{K}_{2} \mathrm{HPO}_{4}$, in the presence of $1 \mathrm{~mol} \%$ of iridium complex 2 and in reported solvent $(0.2 \mathrm{M})$, and stopped after $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using internal standard.

Table S3. Base screening. ${ }^{\text {a }}$

Entry	Base (equiv.)	Solvent	Conversion (\%)
1	Lutidine (1)	DMSO	65
2	Lutidine (0.5)	DMSO	35
3	-	DMSO	2
4	$\mathrm{~K}_{2} \mathrm{HPO}_{4}(1.5)$	DMSO	75
5	$\mathrm{~K}_{2} \mathrm{HPO}_{4}(1)$	DMSO	97
6	$\mathrm{CsCO}_{3}(1)$	DMSO	0
7	$\mathrm{DBU} \mathrm{(1)}^{\text {D }}$	DMSO	45
8	$\mathrm{CsCO}_{3}(1)$	DMF	0
9	DBU (1)	DMF	30

[^0]Table S4

Entry	Conversion (\%)	Variation from standard conditions
1	97	-
2	0	No Light
3	0	No iridium complex
4	37	$\mathbf{4 a : 3 a} 1.5: 1$
5	42	$\mathbf{4 a}: \mathbf{3 a} 1: 1$
6	60	$\mathbf{4 a}: \mathbf{3 a} 1: 1.5$
7	94	Temperature controlled at $25 \pm 3^{\circ} \mathrm{C}$

${ }^{\text {a }}$ Standard conditions: 0.1 mmol of $\mathbf{4 a}, 2$ equiv of malonate (3a) and 1 equiv of $\mathrm{K}_{2} \mathrm{HPO}_{4}$, in the presence of $1 \mathrm{~mol} \%$ of iridium complex 2 and in DMSO (0.2 M), and stopped after $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using internal standard.

Preparation of starting Michael acceptors

Compounds 3a-d were prepared following reported procedure. ${ }^{5}$ To a solution of proline (1 mmol , 0.115 g) in DMSO (3.3 mL) aldehyde (10 mmol) was added. After 10 min . malonate (10 mmol) was slowly added and the reaction stirred overnight. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ sat. $\operatorname{sln} .(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was concentrated under reduced pressure and the residue was purified by column chromatography on silica (cyclohexane:ethyl acetate from 95:5 to 90:10) to give pure 3a-d as white oils ($65-84 \%$ yields). Spectroscopic data were according to the literature. ${ }^{6}$

To a solution of itaconic acid ($3.9 \mathrm{mmol}, 0.500 \mathrm{~g}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ some drops of concentrated sulfuric acid were added. The reaction was refluxed for 8 hours, cooled at room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with NaHCO_{3} sat. sln. $(2 \times 10 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was concentrated under reduced pressure to give $\mathbf{3 g}(94 \%, 3.7 \mathrm{mmol}, 0.576 \mathrm{~g})$ as colorless oil. The product was used in the next step without purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=6.27(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=171.0,166.5,133.6,128.4,52.0,51.9,37.4$.

Compounds $\mathbf{3 j} \mathbf{j}, \mathbf{k}$ were prepared following reported procedure. ${ }^{7}$ A mixture of ester ($7.0 \mathrm{mmol}, 1.044$ $\mathrm{g}, 1 \mathrm{~mL}$), paraformaldehyde ($10.5 \mathrm{mmol}, 0.313 \mathrm{~g}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.0 \mathrm{mmol}, 0.960 \mathrm{~g})$ in DMF (5 mL) was heated at $100^{\circ} \mathrm{C}$ for 6 h . The mixture was cooled at room temperature, water (20 mL) and $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ were added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The collected organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products. Column chromatography on silica (cyclohexane: $\mathrm{Et}_{2} \mathrm{O}$ from 100:0 to $90: 5$) afforded pure $\mathbf{3 j}, \mathbf{k}$ as colorless oils.

3j: colorless oil; 73% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.45-7.28$ (m,
$5 \mathrm{H}), 6.36(\mathrm{~d}, J=1.2,1 \mathrm{H}), 5.88(\mathrm{~d}, J=1.2,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta=167.2,141.3,136.6,128.2$ (2C), 128.1, 128.0 (2C), 126.8, 52.1.

3k: colorless oil, 85% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.33-7.28(\mathrm{~m}$, 2H), 7.19 - 7.14 (m, 2H), 6.31 (d, $J=1.3,1 \mathrm{H}$), 5.86 (d, $J=1.3,1 \mathrm{H}$), 3.81 (s, 3H), 2.36 $\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \quad(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=167.4,141.1,138.0,133.8,128.8$ (2C), 128.1 (2C), 126.0, 52.1, 21.1.

Compounds 3n were prepared following reported procedure. ${ }^{8}$ A mixture of deoxibenzoin (5.1 $\mathrm{mmol}, 1.0 \mathrm{~g}$), formaldehyde (38% in water, 1.8 mL), piperidine ($0.66 \mathrm{mmol}, 65 \mu \mathrm{~L}$) and acetic acid ($1.1 \mathrm{mmol}, 63 \mu \mathrm{~L}$) in $\mathrm{MeOH}(13 \mathrm{~mL}$) was refluxed for 6 h . The mixture was cooled at room temperature and the volatiles were evaporated under reduced pressure. The residue was dissolved in ethyl acetate $(30 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ sat. sln. $(10 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Column chromatography on silica (cyclohexane:ethyl acetate from 95:5 to 80:20) afforded pure 3 n as colorless oil ($94 \%, 4.8 \mathrm{mmol}, 1.0 \mathrm{~g}$).
(3n): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41$ (m, 4H), $7.41-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=$
$241.8,216.7,167.4,156.2,156.2,152.2,149.1$ (2C), 147.8 (2C), 147.6 (2C), 146.2 (2C), 140.0.

Preparation of 2-substituted 1,3-dithiane-2-carboxylate 4b,c

To a solution of 1,3-dithiane-2carboxylate ($0.95 \mathrm{mmol}, 0.183 \mathrm{~g}, 154 \mu \mathrm{~L}$) in THF (3 mL), NaH (60% suspension in mineral oil, $1.9 \mathrm{mmol}, 0.076 \mathrm{~g}$) was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was gently heated at $70^{\circ} \mathrm{C}$ for 20 min . and cooled at room temperature. Alkylating agent (1.4 mmol) was added and the reaction mixture was stirred overnight. After that, the reaction was cooled at $0^{\circ} \mathrm{C}$, water (10 mL) and ethyl acetate (20 mL) were added and the organic layer was separated. The aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The collected organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude ester product.

The residue was dissolved in $t \mathrm{BuOH}(4 \mathrm{~mL})$ and 1 M KOH aq. $(4 \mathrm{~mL})$ was added. After 24 hours volatiles were evaporated under reduced pressure, water $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL}) .5 \mathrm{M} \mathrm{HCl}$ aq. was slowly added to aqueous layer until $\mathrm{pH}=1$, and they were extracted with $\mathrm{DCM}(4 \times 20$ $\mathrm{mL})$. The collected organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give pure compounds as white solids, that were used in the photocatalytic reaction without further purification.

4b: White solid, 87% yield (two steps); m.p. $=79^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 3.42-3.31(\mathrm{~s}, 2 \mathrm{H}), 3.26$ (ddd, $J=14.8$, 12.8, 2.6, 2H), $2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=176.7$, 134.0, 130.8 (2C), 128.0 (2C), 127.5, 53.2, 44.3, 29.6, 28.0, 24.1; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}: 254.0435$; found: 254.0430.

4c: White solid, 83% yield (two steps); m.p. $=56^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta=11.57(\mathrm{bs}, 1 \mathrm{H}), 5.95-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (ddd, $J=14.1$, $12.9,2.6,2 H$), 2.73 (d, $J=7.1,2 H$), 2.63 (ddd, $J=14.2,4.2,3.1,2 H$), $2.26-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=177.2,131.1,119.9,50.2,42.7$,
27.6 (2C), 24.1; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$: 204.0279; found: 204.0274.

Photoredox radical conjugate addition of carboxylates

General procedure on $0.2 \mathbf{m m o l}$ scale: In a Schlenk tube with rotaflo stopcock under argon atmosphere at r.t., catalyst $\mathbf{2}(1.7 \mathrm{mg}, 0.002 \mathrm{mmol}), 1,3$-dithiane-2-carboxylic acid $\mathbf{4 a}(0.2 \mathrm{mmol}$, 0.032 g) and $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.2 \mathrm{mmol}, 0.034 \mathrm{~g})$, were dissolved in $400 \mu \mathrm{~L}$ DMSO. After 2 min , Michael acceptor $(0.4 \mathrm{mmol})$ was added. The reaction mixture was carefully degassed via freeze-pump thaw (three times), and the vessel refilled with argon. The Schlenk tube was stirred and irradiated with a blu LED positioned approximately at 10 cm distance from the reaction vessel. After 16 h of irradiation, NaHCO_{3} sat. sln. (2 mL) was added and the mixture was extracted with ethyl acetate (4 x 5 mL). The collected organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give crude products. Column chromatography on silica (cyclohexane:ethyl acetate or cyclohexane: $\mathrm{Et}_{2} \mathrm{O}$) afforded pure compounds.
General procedure on $2.4 \mathbf{m m o l}$ scale: The reaction was conducted applying the same protocol used for 0.2 mmol scale but using: catalyst $\mathbf{2}(10.4 \mathrm{mg}, 0.012 \mathrm{mmol}), 1,3$-dithiane-2-carboxylic acid $\mathbf{4 a}(2.4 \mathrm{mmol}, 0.393 \mathrm{~g})$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}(2.4 \mathrm{mmol}, 0.417 \mathrm{~g})$ and Michael acceptor $5 \mathbf{5}(4.8 \mathrm{mmol}, 0.960$ g), were dissolved in 4.8 mL DMSO. Product 5a was obtained in 84% yield.

5a: colorless oil, 86% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.31(\mathrm{~d}$, $J=4.4,1 \mathrm{H}), 3.77(\mathrm{~d}, J=7.0,1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.71(\mathrm{~m}, 4 \mathrm{H})$, $2.71-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.0$, $7.3,5.7,1 \mathrm{H}), 1.59(\mathrm{dt}, J=13.4,6.6,1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5,3 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=169.0,168.9,53.6,52.6,52.4,52.2$, $41.1,38.5,31.0,30.5,26.5,25.9,22.5,22.4$.; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}: 320.1116$; found: 320.1108 .

5b: colorless oil, 87% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.33$ (d, $J=4.3,1 \mathrm{H}), 4.25-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~d}, J=7.0,1 \mathrm{H}), 2.93-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.68-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.26$ (t, $J=7.2,6 \mathrm{H}), 0.88(\mathrm{dd}, J=10.0,6.4,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=$ 168.7, 168.5, 61.5, 61.4, 54.1, 52.4, 40.9, 38.6, 31.1, 30.6, 26.5, 26.0, 22.6, 22.5, 14.0 (2C); EI-MS: $m / z=347$ (2), 303 (10, M-OEt), 257 (26), 188 (76), 145 (100), 119 (65); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}_{2}$: 348.1429; found: 348.1422 .

5c: colorless oil, 85% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.30-7.22$ (m, 2H), $7.21-7.08(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=5.3,1 \mathrm{H}), 3.86(\mathrm{~d}, J=6.8,1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.17-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=169.0,168.8$, 141.7, 128.4 (2C), 128.3 (2C), 125.9, 53.4, 52.7, 52.5, 51.5, 42.7, 34.9, 31.8, 30.7, 30.3, 25.9; EIMS: $m / z=236(56), 145(100), 119(65), 91(45) ; H R M S ~ c a l c d$ for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}: 368.1116$; found: 368.119.

5d: white solid; m.p. $=77^{\circ} \mathrm{C}, 84 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=$ $7.60-6.97(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=6.1,1 \mathrm{H}), 4.21(\mathrm{q}, J=6.9,2 \mathrm{H}), 4.17(\mathrm{~d}, J=10.7,1 \mathrm{H})$, $3.90(\mathrm{dd}, J=10.7,6.1,1 \mathrm{H}), 3.84(\mathrm{q}, J=7.2,2 \mathrm{H}), 2.91-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=6.9,3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta=167.9,167.4,136.7,129.4$ (2C), 127.9 (2C), 127.8, 61.7, 61.3, 54.9, 51.3, 49.4, 30.5, 30.4, 25.6, 14.0, 13.6; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}: 368.1116$; found: 368.1109 .

5e: colorless oil, 91% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.26-4.15$ (m, 3H), $4.15-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.37$ (dddd, $J=9.5,7.1,4.8,0.9,1 \mathrm{H}), 3.01-2.70(\mathrm{~m}$, $6 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=171.6,171.5,61.3,60.8,47.6,46.1,34.1,29.3,29.1,25.3,14.1,14.0$; ESI-MS: $m / z=292$ (53), 263 (2, M-Et), 218 (43), 158 (34), 145 (36), 119 (100); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}$: 292.0803 ; found: 292.0796 .

5f: yellowish oil, 49% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.29(\mathrm{~d}$, $J=5.3,1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 6 \mathrm{H}), 2.74(\mathrm{dd}, J=16.5,5.7$, $1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.4,6.4,1 \mathrm{H}), 2.48(\mathrm{dd}, J=16.5,7.3,1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=172.0(2 \mathrm{C}), 60.6$ (2C), 51.1 (2C), 39.8, 36.0 (2C), 29.9, 25.9, 14.2 (2C); EI-MS: $m / z=306$ (36), 261 (43) 218 (47), 145 874), 119 (100); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}$: 306.0960; found: 306.0955.

5g: colorless oil, 90% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=3.99$ (dd, $J=8.0,6.9,1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.75(\mathrm{~m}$, 4 H), 2.68 (dd, $J=16.5,8.2,1 \mathrm{H}), 2.54$ (dd, $J=16.5,5.7,1 \mathrm{H}), 2.19$ (ddd, $J=14.4$, $7.7,6.9,1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=174.2,171.6$, 52.1, 51.8, 44.4, 38.4, 36.7, 35.6, 29.7, 29.6, 25.7; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{2}: 278.0647$; found:

5h: yellowish oil, 79% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.29-7.11(\mathrm{~m}$, $5 \mathrm{H}), 4.12(\mathrm{~d}, J=8.7,1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=13.4,4.2,1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 2.97$ $-2.87(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=172.6,138.6,128.8$ (2C), 128.4 (2C), 126.5, 52.6, 51.7, 47.6, 36.4, 29.7, 28.9, 25.6; EI-MS: $m / z=282$ (42), 191 (35), 159 (29), 119 (100), 91 (87); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}: 282.0748$; found: 282.0741 .

5i: colorless oil, 39% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.03$ (t, $J=7.0$, $1 \mathrm{H}), 2.88-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{dd}, J=8.0,7.1,2 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=172.8,77.2,46.4$, 32.5, 30.5, 29.9 (2C), 28.1 (3C), 25.8; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}: 248.0905$; found: 248.0901.

5j: yellowish oil; 90% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.36-7.21$ (m, $5 \mathrm{H}), 3.96(\mathrm{t}, J=7.6,1 \mathrm{H}), 3.75(\mathrm{dd}, J=8.7,6.3,1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 4 \mathrm{H})$, 2.55 (ddd, $J=14.2,8.7,7.6,1 \mathrm{H}), 2.21$ (ddd, $J=14.2,8.0,7.6,1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (m, 1H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=173.6,137.9,128.8$ (2C), 128.0 (2C), 127.5, 52.1, 48.1, 44.3, 38.4, 29.6, 29.4, 25.8; ESI-MS: $m / z=251.0[\mathrm{M}-\mathrm{OMe}]^{+}, 283.0[\mathrm{M}+\mathrm{H}]^{+}, 305.0[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$: 282.0748; found: 282.0741 .

5k: yellowish oil, 88% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.21-7.15$ (m, $2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=7.6,1 \mathrm{H}), 3.75(\mathrm{dd}, J=8.7,6.2,1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $2.90-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{ddd}, J=14.1,8.7,7.1,1 \mathrm{H}), 2.19(\mathrm{ddd}, J=14.1,8.1,6.2$, $\left.\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \quad 1 \mathrm{H}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=173.7,137.2,134.9,129.5(2 \mathrm{C}), 127.8$ (2C), 52.1, 47.7, 44.3, 38.4, 29.6, 29.3, 25.8, 21.0; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$: 296.0905; found: 296.0899.

51: sticky solid, 45% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.31-7.15$ (m, $5 \mathrm{H}), 5.32(\mathrm{bs}, 1 \mathrm{H}), 5.24(\mathrm{bs}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.4,1 \mathrm{H}), 3.24(\mathrm{dd}, J=13.5,4.8,1 \mathrm{H})$, $2.99-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.5,8.5,4.7,1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=173.2,138.8,129.0$ (2C), 128.6 (2C), 126.6, $54.0,48.3,36.3,30.3,29.7,25.8$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}_{2}$: 267.0752 ; found: 267.0745 .

5m: sticky solid, 75% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.94-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.0,1 \mathrm{H}), 3.37-3.21(\mathrm{~m}$, $2 \mathrm{H}), 2.90-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.74(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=138.8,133.8,129.4$ (2C), 128.0 (2C), 53.3, 44.9, 29.5 (2C), 28.4, 25.5; EI-MS: $m / z=288$ (64), 146 (100), 119 (76), 77 (87); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{3}$: 288.0312; found: 288.0306.

5n: colorless oil, 85% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.18-7.88$ (m, 2H), $7.63-6.99$ (m, 8H), 4.98 (t, $J=7.2,1 \mathrm{H}$), 3.83 (dd, $J=8.2,6.9,1 \mathrm{H}$), $2.97-2.57$ $(\mathrm{m}, 5 \mathrm{H}), 2.24(\mathrm{dt}, J=14.1,7.2,1 \mathrm{H}), 2.13-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=198.6,138.4,136.4,132.9,129.0$ (2C), 128.8 (2C), 128.5 (2C), 128.3 (2C), 127.3, 50.0, 44.7, 38.8, 29.6, 29.5, 25.9; ESI-MS: $m / z=329.2[\mathrm{M}+\mathrm{H}]^{+}, 351.0[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{OS}_{2}$: 328.0956; found: 328.0947.

5o: colorless oil, 76% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=9.72(\mathrm{~s}, 1 \mathrm{H}), 4.13$
(d, $J=4.4,1 \mathrm{H}), 2.88-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{dd}, J=17.6,7.0,1 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.12-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=201.1,52.0,45.6,39.5$, 30.5, 30.4, 26.0, 24.7, 11.6; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OS}_{2}$: 204.0643; found: 204.0638.

5p: colorless oil, 93% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=9.75(\mathrm{t}, J=1.5,1 \mathrm{H})$, $4.08(\mathrm{~d}, J=4.9,1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{~d}, J=4.9,1 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.44$ (ddd, $J=17.2,8.0,1.9,1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=200.9,53.9,48.0,33.1,30.5,30.3,26.0,17.8 ;$ HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{OS}_{2}$: 190.0486; found: 150.0481 .

5q: colorless oil, 85% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.07$ (d, $J=5.0$, $1 \mathrm{H}), 2.97-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.54$ (ddt, $J=14.2,4.2,2.0,1 \mathrm{H}), 2.48-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.30-$ $2.03(\mathrm{~m}, 5 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta=210.4,53.5,45.2,43.5,41.1,30.7,30.7,28.4,26.1,24.8$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{OS}_{2}$: 216.0643; found: 216.0638.

5r: The product was obtained using general procedure with $\mathbf{4 b}$ instead of $\mathbf{4 a}$; yellowish oil, 89% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.49-6.93$ (m,

10 H), 3.98 (dd, $J=9.1,2.4,1 \mathrm{H}$), 3.63 (s, 3H), 3.24 (dd, $J=14.5,8.7,1 \mathrm{H}$), 3.19 (d, $J=12.8,1 \mathrm{H}$), 3.14 (d, $J=14.2,1 \mathrm{H}), 2.99$ (ddd, $J=14.5,10.3,2.9,1 \mathrm{H}), 2.87$ (ddd, $J=14.2,10.2,3.0,1 \mathrm{H}), 2.77-2.63(\mathrm{~m}$, $2 \mathrm{H}), 2.06(\mathrm{dd}, J=15.0,2.4,1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ $=174.5,139.8,135.1,131.0(2 \mathrm{C}), 128.7$ (2C), 127.9 (2C), 127.8 (2C), 127.2, 127.0, 53.2, 52.3, 48.2, 45.9, 41.6, 26.9, 26.2, 24.4; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$: 372.1218; found: 372.1210.

$\mathbf{5 s}$: The product was obtained using general procedure with $\mathbf{4 b}$ instead of $\mathbf{4 a}$; colorless oil, 87% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.03-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.43$ (m, 1H), $7.41-7.34$ (dd, $J=8.3,6.8,2 H), 7.31-7.20(\mathrm{~m}, 9 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.03$ (dd, $J=9.1,1.7,1 \mathrm{H}), 3.61(\mathrm{dd}, J=14.9,9.1,1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.0,1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.0,1 \mathrm{H}), 3.02-$ $2.82(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (ddd, $J=14.4,6.9,3.1,1 \mathrm{H}), 2.63$ (ddd, $J=14.4,6.8,3.2,1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.9$, $1.7,1 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=198.7$, 139.7, 137.1, 135.4, 132.5, 131.1 (2C), 128.9 (2C), 128.8 (2C), 128.4 (2C), 128.3 (2C), 127.9 (2C), 127.0, 126.9, 53.6, 49.8, 46.8, 42.2, 26.9, 26.3, 24.5; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{OS}_{2}: 418.1425$; found: 418.1416.

5t: The product was obtained using general procedure with $\mathbf{4 c}$ instead of $\mathbf{4 a}$; yellowish oil, 86% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.03-7.93$ (m, $2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.97-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{dd}$, $J=8.9,1.9,1 \mathrm{H}), 3.54(\mathrm{dd}, J=14.9,8.9,1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}$, $3 \mathrm{H}), 2.10(\mathrm{dd}, J=14.9,1.9,1 \mathrm{H}), 1.96-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=198.6,140.0,137.1,132.6,132.4,129.0$ (2C), 128.7 (2C), 128.4 (2C), 128.2 (2C), 127.0, 118.8, 52.6, 49.7, 44.3, 42.2, 26.5, 26.0, 24.7; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{OS}_{2}: 368.1269$; found: 368.1260 .

14: The product was obtained using general procedure with cyclohexylcarboxylic acid instead of $\mathbf{4 a}$ and catalyst 1 replaced $\mathbf{2}$; colorless oil, 46% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=3.69(\mathrm{~d}, J=5.9,6 \mathrm{H}), 3.45(\mathrm{~d}, J=7.5,1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.76$ $-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.01(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{~d}, J=4.0,3 \mathrm{H}), 0.83(\mathrm{~d}$, $J=4.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=170.0,169.9,54.4,52.3,52.1,41.7,40.7,38.2$, 30.5, 29.20, 26.9, 26.8, 26.6, 26.5, 22.8, 22.6.

16: The product was obtained using general procedure with rac-Cbz-proline instead of 4a; sticky solid, 87% yield; The molecules present different diastereoisomer and different conformers, NMR signal appears very broad and some ${ }^{13} \mathrm{C}$ NMR signals were missed. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.56-6.76(\mathrm{~m}, 10 \mathrm{H}), 5.11(\mathrm{bs}, 2 \mathrm{H}), 4.22-$ $3.91(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.50(\mathrm{~m}, 9 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dq}, J=8.5,4.3,1 \mathrm{H}), 2.80-2.37(\mathrm{~m}, 3 \mathrm{H})$, $2.07-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.59(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=169.2,155.6$, $141.8,136.6,128.4$ (2C), 128.3 (2C) 128.2 (2C), 128.1, (2C), 127.9 (2C), 125.8, 66.8, 60.3, 58.7, $52.3,48.2,46.9,40.6,31.9,29.7,27.0$; ESI-MS: $m / z=454.2[\mathrm{M}+\mathrm{H}]^{+}, 476.2[\mathrm{M}+\mathrm{Na}]^{+}$.

Reductive removal of the dithiane moiety

General Procedure: To a solution of $5 \mathbf{5}(0.1 \mathrm{mmol}, 0.032 \mathrm{~g})$ in methanol (2 mL), Ni-Raney (0.450 g , slurry in water) was added and the reaction was keep under H_{2} atmosphere (1 atm). After 3 h the reaction mixture was filtered through a Celite ${ }^{\circledR}$ pad washed with DCM and the organic solvent was removed under reduce pressure. The residue was diluted with ethyl acetate (10 mL), the organic layer was separated, and the aqueous layer was extracted with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The collected organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure.
Flash chromatography (cyclohexane:diethyl ether, 95:5) of the residue give $\mathbf{6}$ in 91% yield (0.091 mmol, 0.02 g$)$.

6: yellowish oil, 90% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=3.71$ (s, 6 H), $3.22(\mathrm{~d}, J=7.8,1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.94$ (d, $J=6.7,3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=169.3(2 \mathrm{C}), 57.8,52.2,52.1,31.4,29.7,25.2,23.7,21.3,16.9 ;$ EI-MS: $m / z=201$ ($6, \mathrm{M}-\mathrm{Me}$), 185 ($10, \mathrm{M}-\mathrm{OMe}$), 132 (100), 100 (56), 83 (45), 69 (50); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}$: 216.1362; found: 216.1351 .

7: yellowish oil, 84% yield; Spectral proprieties were in according with literature. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.24-4.04(\mathrm{~m}, 4 \mathrm{H}), 2.95-2.81(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, J=16.4,8.1,1 \mathrm{H}), 2.37(\mathrm{dd}, J=16.4,6.1,1 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=175.2,171.8,60.5,60.4,37.7,35.8,16.9,14.1,14.0$.
 8: yellowish oil, 88% yield; Spectral proprieties were in according with literature. ${ }^{10}$

9: yellowish oil, 90% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.38-7.23$ $(\mathrm{m}, 4 \mathrm{H}), 7.27-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}$, $J=8.4,1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (ddd, $J=14.5,8.6,6.4,1 \mathrm{H}), 2.34$ (ddd, $J=14.5,8.8,6.9,1 \mathrm{H}$), $1.67-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.24(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=142.7,142.2$, 141.1, 128.8 (2C), 128.6 (2C), 128.3 (2C), 128.2 (2C), 128.1 (2C), 127.8, 127.0, 126.9 (2C), 126.4, 125.5, 78.8, 54.2, 35.6, 29.1; ESI-MS: $m / z=317.1[\mathrm{M}+\mathrm{H}]^{+}, 339.2[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}: 316.1827$; found: 316.1821.

Hydrolysis of the dithiane moiety

$\mathbf{P h I}(\mathbf{O A c})_{2}$ method: ${ }^{11} \mathrm{Bis}\left(\right.$ trifluoroacetoxy) iodobenzene ($52 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a stirred solution of $\mathbf{5 a}$ or $\mathbf{5 t}(0.1 \mathrm{mmol})$, water $(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(9 \mathrm{~mL})$. After it was stirred at room temperature for 30 min , the reaction was quenched with NaHCO_{3} sat. sln. (10 ml) and the volatiles were evaporated. The residue was dissolved in ethyl acetate $(20 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The collected organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Column chromatography on silica (cyclohexane:ethyl acetate from 95:5 to 80:20) afforded pure products.

10: yellowish oil, 76% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=9.77$ (d, $J=1.2,1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=7.8,1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.01(\mathrm{~m}, 1 \mathrm{H})$, $1.62-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.94$ (d, $J=6.3,3 \mathrm{H}), 0.91$ (d, $J=6.2$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=198.0,168.5$ (2C), 52.8, 52.1, 48.3, 36.5, 29.7, 25.9, 22.9, 22.1; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}$: 230.1154; found: 230.1149 .

12: yellowish oil, 91% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.08-7.76$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.21-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=18.0,10.0,1 \mathrm{H}), 3.27-$ 3.13 (m, 2H), 2.76 (dd, $J=18.0,4.0,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=206.7$, 198.8, 138.5, 136.3, 132.9, 130.2, 129.1 (2C), 128.9 (2C), 128.4 (2C), 128.1 (2C), 127.3, 119.0, 48.7, 47.7, 46.8; ESI-MS: $m / z=279.0[\mathrm{M}+\mathrm{H}]^{+}, 301.0[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}: 278.1307$; found: 278.1302.

$\mathbf{H g O} / \mathbf{H B F}_{4}$ method: To a suspension of $\mathrm{HgO}(0.18 \mathrm{mmol}, 0.039 \mathrm{~g})$ in $\mathrm{HBF}_{4}(48 \%$ in water, 0.2 $\mathrm{mL})$ and THF (1 mL) a solution of $\mathbf{5 r}(0.09 \mathrm{mmol}, 0.034 \mathrm{~g})$ in THF $(1 \mathrm{~mL})$ was added. After 2 hours the reaction was quenched adding 10 mL of NaHCO_{3} sat. sln. until basic pH . The mixture was filtered through a Celite ${ }^{\circledR}$ pad washing with ethyl acetate. Water $(10 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The collected organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Column chromatography on silica (cyclohexane:ethyl acetate from 95:5 to 90:10) afforded pure product $\mathbf{1 1}(90 \%, 0.08 \mathrm{mmol}, 0.021 \mathrm{~g})$ as yellowish oil.

11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.49-6.86$ (m, 10H), 4.07 (dd, $J=10.2,4.5,1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=18.0,10.2,1 \mathrm{H}), 2.71$ (dd, $J=18.0,4.5,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=205.9,173.6,138.0,133.7,129.4$ (2C), 128.8 (2C), 128.7 (2C), 127.7 (2C), 127.5, 127.1, 52.3, 50.1, 46.2, 45.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$: 282.1256; found: 282.1251.

Reaction in presence of TEMPO

Evidence of a possible radical mechanism was determinate by performing the reaction in the presence of radical scavengers like TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl).

Two different experiments were conducted in the presence of a catalytic ($20 \mathrm{~mol} \%$) and stoichiometric amount of TEMPO. In both cases no formation of product or adduct between TEMPO and reaction intermediates were observed.

Preparation of ammonium salts $17,18,19$

$$
\mathrm{R}^{-\mathrm{COOH}} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{n \mathrm{Bu}_{4} \mathrm{~N}^{\oplus \Theta} \mathrm{OH}} \mathrm{R}^{-\mathrm{COO}_{n \mathrm{Bu}_{4} \mathrm{~N}^{\oplus}}^{\Theta}}
$$

General procedure: ${ }^{12}$ To a solution of $\mathbf{4 a}(0.3 \mathrm{mmol}, 0.05 \mathrm{~g})$ in water $(5 \mathrm{~mL}) n \mathrm{Bu}_{4} \mathrm{NOH}^{*} 30 \mathrm{H}_{2} \mathrm{O}$ $(0.3 \mathrm{mmol}, 0.240 \mathrm{~g})$ was added and the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 2 hours. Water was evaporated under reduced pressure and the residue was dried under high vacuum for 2 hours to give pure $17(96 \%, 0,29 \mathrm{mmol}, 0.117 \mathrm{~g})$ as white solid.

17: sticky solid, quantitative; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.70$ (s, 1 H), $3.45-3.23$ (m, 8H), 2.99 (ddd, $J=14.0,6.3,3.0,2 \mathrm{H}$), 2.75 (ddd, $J=13.7$, $10.5,2.7,2 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.53-1.33(\mathrm{~m}, 8 \mathrm{H})$, 0.99 (t, $J=7.3,12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=170.6,58.5$ (4C), 52.9, 30.2 (2C), 26.2, 23.9 (4C), 19.6 (4C), 13.6 (4C).

18: sticky solid, quantitative; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): ~ \delta=3.46-3.17$ $(\mathrm{m}, 8 \mathrm{H}), 2.90(\mathrm{bs}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.54(\mathrm{~m}$, $10 \mathrm{H}), 1.51-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.31-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3,12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta=58.9(4 \mathrm{C}), 48.0,31.0(2 \mathrm{C}), 26.6(2 \mathrm{C}), 24.2(4 \mathrm{C}), 19.9,19.8(4 \mathrm{C}), 13.7(4 \mathrm{C})$, carboxylic carbon was not detected also using long acquisition time with 4 s delay.

19: sticky solid, quantitative; The compound is present as two different conformers (A and B). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.42-7.01$ (m, $10 \mathrm{H}, \mathrm{A}+\mathrm{B}), 5.20(\mathrm{~d}, J=13.2,1 \mathrm{H}), 5.11$ (d, $J=12.7,1 \mathrm{H}, \mathrm{B}), 4.99$ (d, $J=13.0,1 \mathrm{H}, \mathrm{B}), 4.27$ (t, $J=5.9$, $1 \mathrm{H}, \mathrm{A}), 4.15$ (dd, $J=7.8,3.1,2 \mathrm{H}, \mathrm{A}), 3.74-3.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}), 3.42(\mathrm{td}, J=17.5,8.1,2 \mathrm{H}, \mathrm{A}), 3.35-$ $3.16(\mathrm{~m}, 8 \mathrm{H}, \mathrm{A}+\mathrm{B}), 2.26-2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{A}+\mathrm{B}), 1.81-1.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{A}+\mathrm{B}), 1.68-1.54(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{A}+\mathrm{B}), 1.47-1.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{A}+\mathrm{B}), 0.96(\mathrm{t}, J=7.3,12 \mathrm{H}, \mathrm{A}+\mathrm{B}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ $=171.2(\mathrm{~A}), 171.1(\mathrm{~B}), 154.7(\mathrm{~A}+\mathrm{B}), 128.4(\mathrm{~B}, 2 \mathrm{C}), 128.3(\mathrm{~A}, 2 \mathrm{C}), 127.9(\mathrm{~A}, 2 \mathrm{C}), 127.6(\mathrm{~B}, 2 \mathrm{C})$, 127.4 (A), 127.2 (B), 66.9 (A), 66.5 (B), 58.8 (A+B, 4C), 46.8 (A), 46.4 (B), 30.6 (B), 29.6 (A), 24.4 (A), 24.1 (B), 24.0 ($\mathrm{A}+\mathrm{B}, 4 \mathrm{C}$), 23.3 (A), 23.2 (B), 23.1 (C), 19.6 ($\mathrm{A}+\mathrm{B}, 4 \mathrm{C}), 13.6$ ($\mathrm{A}+\mathrm{B}, 4 \mathrm{C})$, carboxylic carbon was not detected also using long acquisition time with 4 s delay.

Photoredox radical conjugate addition of salt 17

To determinate if tetrabutylammonium salt $\mathbf{1 7}$ is a suitable substrate for the photoredox radical conjugate addition we tested it in the reaction using general procedure without the presence of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ as base. Product 5a was obtained in 72% of yield, demonstrating the possibility to use tetrabutylammonium carboxylate as substrate.

Photostability of $\operatorname{Ir}($ III) complex 2

In order to test its photostability during the reaction, complex 2 was dissolved in degassed deuterated DMSO and was irradiated using blue light LED for 24 hours in order to replicate the reaction conditions. Any possible photolysis was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. As reported in Figure S1, less than 5\% of complex 2 undergoes to photochemical decomposition after 24 hours of irradiation, revealing its good photostability under reaction conditions, differently from complex 1. ${ }^{13}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra for complex 2 in deuterated DMSO solution irradiated with blue light LED for increasing times. The solution was degassed by nitrogen gas for 15 minutes.

Figure S2. Emission profile of the 24W Blue LED strip used to irradiate the solutions.

Photophysical and electrochemical data

Figure S3. Cyclic voltammograms of the 17 (orange), 18 (black) and 19 (light blue) substrates, together with the one of the Michael acceptor 3a (red) and of the iridium(III) photocatalysts $\mathbf{1}$ (green) and 2 (dark blue). The voltammograms are recorded at a scan rate of $200 \mathrm{mV} \mathrm{s}^{-1}$ in roomtemperature acetonitrile in the presence of $\mathrm{TBAPF}_{6} 0.1 \mathrm{M}$ as supporting electrolyte.

Figure S4. Full lines: corrected and normalized emission spectra of photocatalyst $\mathbf{1}$ (green) and $\mathbf{2}$ (dark blue) in room-temperature acetonitrile solution, reported in relative quanta per energy interval. Dashed lines: integrals of the spectra; the mean photon energy is calculated as the value at which the integral is 50%.

Figure S5. Absorption spectra of photocatalyst $\mathbf{1}$ (green) and $\mathbf{2}$ (dark blue) in room-temperature acetonitrile solution. The lowest-energy electronic transition, attributed to the direct population of the emitting state, is magnified in the inset for each of the two iridium(III) photocatalysts.

Figure S6. Absorption spectra of the $\mathbf{1 7}$ (orange), $\mathbf{1 8}$ (black) and $\mathbf{1 9}$ (light blue) substrates, together with the one of the Michael acceptor 3a (red), in room-temperature acetonitrile solution. The lowest-energy transitions are magnified in the inset for the sake of clarity.

Determination of quantum yield

The reaction was carried out in spectrofluorimetric grade DMSO and placed in a Suprasil® quartz cuvette with a 2.00 mm path length. The cuvette was charged with the ammonium carboxylate $\mathbf{1 7}$ ($81 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv), the Michael acceptor $\mathbf{3 a}$ ($80 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv), the iridium photocatalyst 2 ($1.7 \mathrm{mg}, 0.0020 \mathrm{mmol}$), and $500 \mu \mathrm{l}$ of DMSO. Before irradiating the sample, dissolved oxygen was removed from the cuvette by argon bubbling for 15 minutes. The reaction mixture was excited at 334 nm for exactly 7 hours, using a 100 W Hg lamp equipped with an appropriate dichroic filter. During this process, the solution was stirred and kept at constant temperature.

The photon flux coming from the lamp to the sample in the cuvette was estimated using the ferrioxalate actinometer (photon flux: $1.97 \mathrm{nmol} / \mathrm{s}$). ${ }^{14}$ This experimental value was also confirmed by using a calibrated silicon diode (light power: 0.6 mW , corresponding to a photon flux of 2 $\mathrm{nmol} / \mathrm{s}$ at 334 nm). In our experimental conditions, all the incident light is quantitatively absorbed by the iridium photocatalyst $(\mathrm{A}>3$ at 334 nm$)$.

The product formation was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ based on the relative conversion of the carboxylate derivative.

After irradiation, the estimated conversion was 7%, corresponding to $14 \mu \mathrm{~mol}$ of product formed.

$$
\Phi=\frac{\text { moles of product formed }}{\text { moles of photons absorbed }}=\frac{14 \cdot 10^{-6} \mathrm{~mol}}{1.97 \cdot 10^{-9} \frac{\mathrm{~mol}}{\mathrm{~s}} \cdot 2.5 \cdot 10^{4} \mathrm{~s}}=0.28 \pm 0.05
$$

References

1 E. Massolo, M. Benaglia, A. Genoni, R. Annunziata, G. Celentano and N. Gaggero, Org. Biomol. Chem., 2015, 13, 5591-5596.

2 M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal Jr., G. G. Malliaras and S. Bernhard, Chem. Mater., 2005, 17, 5712-5719.
F. Monti, A. Baschieri, I. Gualandi, J. J. Serrano-Pérez, J. M. Junquera-Hernández, D. Tonelli, A. Mazzanti, S. Muzzioli, S. Stagni, C. Roldan-Carmona, A. Pertegás, H. J. Bolink, E. Ortí, L. Sambri and N. Armaroli, Inorg. Chem., 2014, 53, 7709-7721.
M. Felici, P. Contreras-Carballada, Y. Vida, J. M. M. Smits, R. J. M. Nolte, L. De Cola, R. M. Williams, M. C. Feiters, Chem. Eur. J., 2009, 15, 13124-13134.
G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti and A. Tolomelli, Synth. Comm. 2003, 33, 1587-1594.
a) G. Cardillo, L. Gentilucci, M. Gianotti, R. Perciaccante and A. Tolomelli, J. Org. Chem. 2001, 66, 8657-8660; b) P. Ramesh, B. Shalini and N. W. Fadnavis, RSC Adv., 2014, 4, 7368-7373
a) M. J. Lavecchia, R. Puig de la Bellacasa, J. I. Borrell and C. N. Cavasotto, Biorg. Med. Chem., 2016, 24, 768-778; b) J. Pietruszka and M. Schölzel, Adv. Synth. Catal., 2012, 354, 751-756.
V. Gembus, J.-J. Bonnet, F. Janin, P. Bohn, V. Levacher and J.-F. Briere, Org. Biomol. Chem., 2010, 8, 3287-3293.
Y. Chen, E. Kervio and J. Retey, Helv. Chim. Acta, 2002, 85, 552-558.
K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara and N. Mizuno, Nature Chemistry 2010, 2, 478-483.
Z. Meng and S. Danishefsky, Angew. Chem. Int. Ed., 2005, 44, 1511-1513.
C. R. Allen, P. L. Richard, A. J. Ward, L. G. A. van de Water, A. F. Masters and T. Maschmeyer, Tetrahedron Letters, 2006, 47, 7367-7370
C. Yang, F. Mehmood, T. L. Lam, S. L.-F. Chan, Y. Wu, C.-S. Yeung, X. Guan, K. Li, C. Y.S. Chung, C.-Y. Zhou, T. Zou, and C.-M. Che, Chem. Sci. 2016, 7, 3123-3136.
M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry, Third Edition, CRC Press, 2006, chapter 12.

Copies of NMR spectra

$\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{3 k}$

$\stackrel{\square}{6}$		¢ั\％⿳．	あ
$\stackrel{\square}{\square}$	まi minc m \％	FFo	\％
1	1！＜｜l	\checkmark	｜

220	200	180	160	140	120	100	80	60	40	20	0 ppm

3n

4b

5b

5c

AM.

5e

5g
ন্ত

\qquad

| 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5j

$\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{5 k}$

(

(

	${ }^{\text {F }}$	¢	\%	\% \% \%
- \% \% ํ	\%	¢	$\dot{\square}$	สัส่า

5n

5s

5t

6

220	200	180	160	140	120	100	80	60	40	20	0	ppm

ソí

10
に
$\stackrel{\circ}{\circ}$
\vdots

ppm

11

勞	\％	
®	$\stackrel{\square}{7}$	

ずき	¢下두ํ
今40	¢ision

12

14

\qquad

16

\qquad

Copies of IR spectra (all spectra were recorded neat)

4c

5c

5d

5e

5f

5g

5j

$\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{5 k}$

51

5n

5q

5s

14

[^0]: ${ }^{a}$ The reactions were performed at r.t. with 0.1 mmol of $\mathbf{4 a}, 2$ equiv of malonate (3a) and base, in the presence of $1 \mathrm{~mol} \%$ of iridium complex 2 and in reported solvent (0.2 M), and stopped after $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using internal standard.

