Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

SC-EDG-08-2016-003445

Enhancement of the physicochemical properties of [Pt(dien)(nucleobase)]²⁺ for HIVNCp7 Targeting.

S.D. Tsotsoros^a, P. B. Lutz^{b,c}. A.G. Daniel^a, E. J. Peterson^{a,d}, R. E. F. da Paiva^a, Y. Qu, C. A. Bayse^{c*} and N. P. Farrell^{a,d*}

^aDepartment of Chemistry, Virginia Commonwealth University, Richmond, VA 23284 USA.
^bDepartment of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
^cDepartment of Science, Technology and Mathematics, Regents University, Virginia Beach, VA 23464, USA
^dMassey Cancer Center, Virginia Commonwealth University, Richmond, VA 23529 USA.

Email: <u>npfarrell@vcu.edu</u> Fax: 1-804-828-8599; Tel: 1-804-828-6320

1. Synthesis and Characterization

Materials and reagents

The complex [PtCl(dien)]Cl (dien = diethylenetriamine) was prepared by literature methods. ¹ Purity was confirmed by ¹H and ¹⁹⁵Pt NMR Spectroscopy, and Elemental Analysis (performed by QTI Laboratory, USA). All reagents were purchased from Sigma Aldrich, USA and used without further purification. The NCp7 C-terminal peptide sequence (KGCWKCGKQEHQMKDCTER) was purchased from GenScript Corporation. The "full" 1-55bp HIVNCp7 peptide was a gracious gift of R.J. Gorelick, National Institutes of Health

NMR Spectroscopy. ¹H and ¹⁹⁵Pt NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer. ¹H NMR spectra are reported with reference to solvent

resonances of D₂O at δ 4.79 and then adjusted for TMS = 0.00 ppm. The ¹⁹⁵Pt{¹H} NMR spectra were obtained in D₂O with 40 mM solutions, at an operating frequency of 85.80 MHz, range of -1900 to -3500 ppm and 5000 scans. The spectra were referenced externally using standards of Na₂PtCl₆ in D₂O (δ = 0 ppm).

Fluorescence spectroscopy. Fluorescence studies were recorded on a Varian Cary Eclipse fluorometer with a single-cell Peltier accessory. Samples were irradiated with 280 nm light and spectra were recorded from 300 to 450 nm with a scan rate of 600 nm/min at 25°C. The experiments were carried out in 20 mM Tris buffer with 50 mM NaCl at pH 7.4. 5 μ M N-acetyl tryptophan or zinc finger was titrated with [M(dien)L]ⁿ⁺ at molar ratios of drug from 10 to 100 for all complexes. The absorbance for all compounds at 100 molar equivalents was < 0.05; therefore, the inner filter effect was disregarded. The emission maximum (362 nm) was measured after each titration. The Ka was determined from Eadie-Hofstee plots from an average of 3 trials using the equation: $\Delta F = (K_a)^{-1} * \Delta F/[quencher] + \Delta F_c$.

Circular Dichroism: Methods were adapted from those previously published.²

Synthesis of PtN₄ complexes

[Pt(dien)(9-EtGua)](NO₃)₂ - [PtCl(dien)]Cl was dissolved in H₂O and 9-Ethylguanine (1 mol eq.) and AgNO₃ (1.98 mol eq.) were added. The solution was heated at 50°C in the dark for 24 hours. The solution was cooled to room temperature and filtered through celite to remove the precipitated AgCl. The solution was evaporated to dryness and acetone was added to precipitate the final product. The product may be recrystallized from H₂O/acetone. The solid was dried *in vacuo*. Anal. Calcd for C₁₁H₂₂N₁₀O₇Pt: C 21.97; H, 3.69; N, 23.20. Found: C, 21.19; H, 3.39; N, 22.86. ¹H NMR (D₂O): 1.44 (3H, t), 3.00 (8H, m), 4.14 (2H, q), 8.19 (1H, s). ¹⁹⁵Pt NMR: -2850 ppm.

[Pt(dien)(Guo)]NO₃ Cl $0.8H_2O$ – [Pt(dien)(Guo)]NO₃ Cl was synthesized in a similar manner as [Pt(dien)(9EtG)](NO₃)₂. Briefly, [PtCl(dien)]Cl was dissolved in H₂O and 9-ethylguanine (1 mol eq.) and AgNO₃ (0.98 mol eq.) were added. The solution was heated at 50°C in the dark for 24 hours. The solution was cooled to room temperature and filtered through celite to remove the precipitated AgCl. The solution was evaporated to dryness and acetone was added to precipitate the final product. The solid was dried *in vacuo*. Anal. Calcd for C₁₄H_{27.6}N₉ClO_{8.8}Pt: C 24.25; H, 4.01; N, 18.18. Found: C, 24.62; H, 3.99; N, 17.80. ¹H NMR (D₂O): 3.00 (8H, m), 3.78 (2H, m), 4.26 (1H, t), 4.39 (2H, m), 5.95 (1H, d), 8.42 (1H, s). ¹⁹⁵Pt NMR: -2857 ppm.

 $[Pt(dien)(Ino)](NO_3)_2$ - $[Pt(dien)(Ino)](NO_3)_2$ was synthesized in a similar manner as $[Pt(dien)(9-EtGua)](NO_3)_2$. Anal. Calcd for $C_{14}H_{24}N_9O_{11}$.Pt: C 24.38; H, 3.48; N, 18.28.

Found: C, 24.65; H, 3.47; N, 18.35. ¹H NMR (D₂O): 3.00 (8H, m), 3.90 (2H, m), 4.41 (1H, t), 4.73 (2H, m), 6.14 (1H, s), 8.32 (1H, s), 8.81 (1H, s). ¹⁹⁵Pt NMR: -2854 ppm.

[Pt(dien)(Xan)](NO₃)₂ 2H₂O- [Pt(dien)(Xan)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for $C_{14}H_{29}N_9O_{14}Pt$: C 22.65; H, 3.94; N, 16.98. Found: C, 22.35; H, 3.24; N, 16.73. ¹H NMR (D₂O): 3.00 (8H, m), 3.93 (2H, m), 4.37 (2H, m), 4.56 (2H, m), 5.93 (1H, s), 8.43 (1H, s). ¹⁹⁵Pt NMR: -2849 ppm.

 $[Pt(dien)(7-MeGua)](NO_3)_2 - [Pt(dien)(7-MeGua)](NO_3)_2$ was synthesized in a similar manner as $[Pt(dien)(9EtG)](NO_3)_2$. Anal. Calcd for $C_{14.18}H_{25.36}N_9O_{11.06}Pt$: C 24.54; H, 3.68; N, 18.17. Found: C, 24.65; H, 3.47; N, 17.35. ¹H NMR (D₂O): 3.00 (8H, m), 3.99 (3H, s), 8.12 (1H, s). ¹⁹⁵Pt NMR: -2890 ppm.

[PtCl(N-Medien)]Cl $0.5H_2O$ - [Pt(NMedien)Cl]Cl was prepared in the same manner as [PtCl(dien)]Cl¹. Anal. Calcd for C₅H₁₅N₃Cl₂Pt: C 15.31; H, 4.11; N, 10.71. Found: C, 15.49; H, 4.00; N, 10.19. ¹H NMR (D₂O): 3.03 (11H, m). ¹⁹⁵Pt NMR: -2598 ppm.

[Pt(N-Medien)(9-EtGua)](NO₃)₂ - [Pt(N-Medien)(9-EtGua)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(-9EtGua)](NO₃)₂. Anal. Calcd for $C_{12}H_{24}N_{10}O_7Pt$: C 23.42; H, 3.93; N, 22.76. Found: C, 23.16; H, 3.35; N, 22.20. ¹H NMR (D₂O): 1.44 (3H, t), 3.03 (11H, m), 4.14 (2H, q), 8.18 (1H, s). ¹⁹⁵Pt NMR: -2725 ppm.

[Pt(N-Medien)(Guo)](NO₃)₂. 0.75H₂O- [Pt(N-Medien)(Guo)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for $C_{15}H_{29.5}N_{10}O_{11.75}Pt$: C 24.58; H, 4.06; N, 19.11. Found: C, 24.11; H, 3.48; N, 19.04. ¹H NMR (D₂O): 3.03 (11H, m), 3.89 (2H, m), 4.26 (1H, t), 4.40 (2H, t), 4.72 (1H, t), 5.97 (1H, d), 8.42 (1H, s). ¹⁹⁵Pt NMR: -2729 ppm.

[Pt(N-Medien)(Xan)](NO₃)₂. 2.5H₂O- [Pt(N-Medien)(Xan)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for $C_{15}H_{325}N_9O_{14.5}Pt$: C 23.53; H, 4.21 N, 16.47. Found: C, 23.44; H, 4.20; N, 15.99. ¹H NMR (D₂O): 3.03 (11H, m), 3.93 (2H, m), 4.37 (2H, m), 4.56 (2H, m), 5.93 (1H, s), 8.43 (1H, s).

 $[PtCl(N,N'-Me_2dien)]Cl.0.5H_2O - [Pt(N,N'-Me_2dien)Cl]Cl was prepared in the same manner as [PtCl(dien)]Cl.¹ Anal. Calcd for C₆H₁₇N₃Cl₂Pt: C 18.14; H, 4.31; N, 10.58. Found: C, 18.33; H, 3.84; N, 10.41. ¹H NMR (D₂O): 2.88 (14H, m). ¹⁹⁵Pt NMR: -2824 ppm.$

 $[Pt(N,N'-Me_2dien)(9EtG)](NO_3)_2.2H_2O - [Pt(N,N'-Me_2dien)(9EtG)](NO_3)_2$ was synthesized in a similar manner as $[Pt(dien)(9-EtGua)](NO_3)_2$. Anal. Calcd for $C_{13}H_{30}N_{10}O_9Pt$: C 23.46; H, 4.54; N, 21.05. Found: C, 23.07; H, 4.21; N, 20.73. ¹H NMR (D₂O): 1.50 (3H, t), 2.88 (14H, m), 4.21 (2H, q), 8.70 (1H, broad s). ¹⁹⁵Pt NMR: -2876, -2907 ppm.

 $[Pt(N,N'-Me_2dien)(Guo)](NO_3)_2$ 2.5H₂O- $[Pt(N,N'-Me_2dien)(Guo)](NO_3)_2$ was synthesized in a similar manner as $[Pt(dien)(9-EtGua)](NO_3)_2$. Anal. Calcd for $C_{16}H_{35}N_{10}O_{13.5}Pt$: C 24.68; H, 4.49; N, 17.99. Found: C, 24.27; H, 4.83; N, 17.71. ¹H

NMR (D₂O): 3.03 (14H, m), 3.90 (2H, m), 4.28 (2H, t), 4.43 (2H, t), 6.00 (1H, d), 8.88 (1H, d).¹⁹⁵Pt NMR: -2880, -2912.

[Pt(N,N'-Me₂dien)(Xan)](NO₃)₂. 2.5H₂O- [Pt(N,N'-Me₂dien)(Xan)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9EtG)](NO₃)₂. Anal. Calcd for $C_{16}H_{34}N_9O_{14.5}Pt$: C 24.65; H, 4.37; N, 16.17. Found: C, 24.36; H, 4.77; N, 15.71. ¹H NMR (D₂O): 3.03 (14H, m), 3.98 (2H, m), 4.43 (2H, m), 4.65 (2H, t), 6.02 (1H, s), 8.66 (1H, broad s). ¹⁹⁵Pt NMR -2900 ppm (br).

[PtCl(N,N'-Me₄dien)]Cl - [Pt(N,N'-Me₄dien)Cl]Cl was prepared in the same manner as [PtCl(dien)]Cl¹. Briefly, [PtCl₂(DMSO)₂] was suspended in acetone, N,N'-Me₄dien (1 mol. eq.) was added and the solution was refluxed for 3 hrs. The solution was cooled to room temperature and the solvent was reduced to near dryness. Ether was added to precipitate the final product and the solid was dried *in vacuo*. ¹H NMR (D₂O): 2.90 (20H, m). ¹⁹⁵Pt NMR: -2704 ppm.

[Pt(N,N'-Me₄dien)(9-EtGua)](NO₃)_{2.4} 3H₂O- [Pt(N,N'-Me₄dien)(9-EtGua)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for $C_{15}H_{36}N_{10}O_{10}Pt$: C 25.31; H, 5.06; N, 19.69. Found: C, 25.12; H, 4.83; N, 19.12. ¹H NMR (D₂O): 1.51 (3H, t), 2.90 (20H, m), 4.22 (2H, q), 8.69 (1H, d). ¹⁹⁵Pt NMR: -2758, -2773 ppm.

[Pt(N,N'-Me₄dien)(Guo)](NO₃)₂ $3H_2O$ – [Pt(N,N'-Me₄dien)(Guo)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for C₁₈H_{40.4}N_{10.4}O_{15.2}Pt: C 26.50; H, 4.90; N, 17.17. Found: C, 25.94; H, 4.36; N, 16.83. ¹H NMR (D₂O): 2.90 (20H, m), 3.92 (2H, m), 4.31 (2H, t), 4.46 (2H, t), 6.03 (1H, d), 8.90 (1H, d). ¹⁹⁵Pt NMR: -2763, -2778 ppm.

[Pt(N,N'-Me₄dien)(Xan)](NO₃)₂ 3H₂O - [Pt(N,N'-Me₄dien)(Xan)](NO₃)₂ was synthesized in a similar manner as [Pt(dien)(9-EtGua)](NO₃)₂. Anal. Calcd for $C_{16}H_{39}N_9O_{15}$ Pt: C 26.47; H, 4.78; N, 15.44. Found: C, 26.19; H, 5.19; N, 15.11. ¹H NMR (D₂O): 2.90 (20H, m), 4.00 (2H, m), 4.45 (2H, m), 4.66 (2H, t), 6.03 (1H, s), 8.97, 9.00 (1H, s). ¹⁹⁵Pt NMR: - 2750 ppm (br).

Cytotoxicity and Cellular Accumulation

Overall, procedures followed those published from our group (See Ref. 3) Four million cells were incubated in 10 mL of RMPI media (10% FBS, 1%Pen-Strep) with 50 μ M drug for 3 or 6 hours. The solutions were centrifuged at 1500 rpm at 4oC for 5 minutes, the media was removed and the cell pellet was washed with 2x10mL cold PBS. To digest samples for ICP-MS analysis, 1 mL of conc. HNO3 was added to the pellet and left to digest for 72 hours. Two mL of water were added, the solutions were filtered through a 0.45 _M GHP filter, and run on the ICP-MS to determine the concentration of platinum in each sample.

Cytotoxicity CCRF-CEM or Jurkat cells were seeded at a concentration of 2.5×10^4 cells/100 µL. Drugs 1a, 1b, 2a, and 3a were added at varying concentrations (100, 50, 25,

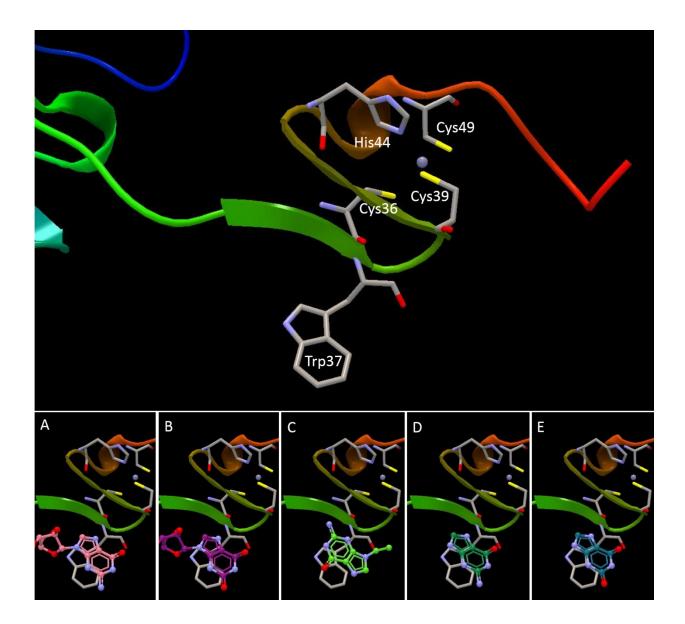
12.5, 6.25, 3.125, 1.6125 μ M) and the cells were incubated at 37°C for 72 hours. WST-1 (10 μ L of 100 commerical solution) was added and incubated for 4 hours. The absorbance at 405 nm was recorded and the IC₅₀ was determined. *Molecular Docking*

HIV1 NCp7 structure was retrieved from PDB (entry 1MFS). The first model from a set of 30 deposited NMR structures was used for docking with CLC Drug Discovery Workbench 2.4. Protein preparation: missing hydrogens were added and Glu (OE2) and His (ND1) protonation states were selected. Two different Cys protonation states were also evaluates, with no major differences observed on the final docking scores and poses. 10 poses were returned and manually inspected for each compound. No binding pockets were used as guides.

Theoretical Methods

Geometry optimizations of small models were performed using Gaussian 09⁴ with the B97-D semi-local generalized gradient approximation (GGA) DFT functional, a reparameterization of Becke's B97 functional with a semi-empirical dispersion correction. B97-D performs very well for non-bonded interactions and adequately models interactions found in biological systems. The D95V basis set with polarization functions was used for C, H, N and O. The Hay and Wadt effective core potential basis sets for S and Pt were augmented with polarization functions. Larger models were optimized using the ONIOM method and sub-dividing the model into semi-empirical (SE) and a quantum mechanical (QM, DFT(B-97D) regions. The SE region was constrained to the solution structure to preserve the steric effects of the surrounding protein, while the QM region was allowed to freely optimize. The SE regions was modeled with the PM6 method, which was parameterized to emphasize biochemical systems.⁵ Charge decomposition analysis (CDA), as implemented in the Multiwfn program,⁶ was used to quantify charge relocation between fragments in the π -stacked complex.⁷ The charge donation from the occupied (occ) orbitals of the donor to the virtual (vir) orbitals of acceptor is denoted by d (Equation 1) where i and η are the index and occupation number of the molecular orbitals (MO) of the complex, $C_{m,i}$ is the coefficient of fragment orbital (FO) *m* in MO *i* of the complex, and $S_{m,n}$ is the overlap integral between m and n.⁷

$$d_i = \sum_{m \in An \in B}^{occ} \sum_{i=1}^{bir} \eta_i \mathcal{C}_{m,i} \mathcal{C}_{n,i} \mathcal{S}_{m,n}$$
(1)⁷


$$b_i = \sum_{m \in An}^{vir} \sum_{e \in B}^{occ} \eta_i C_{m,i} C_{n,i} S_{m,n}$$

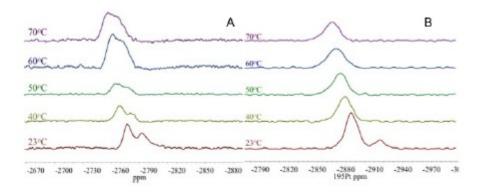
$$\tag{2}^7$$

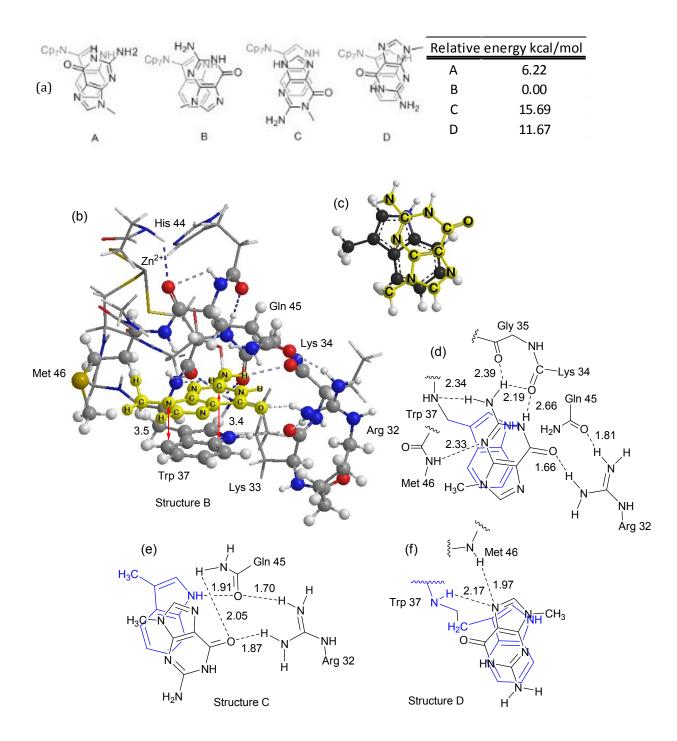
Back donation from the occupied orbitals of the acceptor to the virtual orbitals of the donor is denoted by b (Equation 2).⁷ The net electrons transferred is the difference of these values (d-b). Donor-acceptor energies ($\Delta E_{d\rightarrow a}$), Wiberg bond indices (WBIs)⁸(Equation 3) and the natural population analysis (NPA) charges on all atoms were calculated with Natural Bond Order (NBO) Version 3.1.^{9,10} WBIs measure the bonding interactions between two atoms¹¹ and were calculated as the sum of the squares of the off-diagonal elements of the density matrix P between atom pairs.⁸

$$_{AB}^{Wiberg} = \sum_{s \in At \in B} P_{st}^2$$
(3)⁸

Figures

Figure S1. Best-scored molecular poses returned for docking of (A) Guanosine, (B) Xanthosine, (C) 9-EtGua, (D) Guanine and (E) Xanthine in the structure of HIV-1 C-terminal ZF from NCp7 (retrieved from PDB entry 1MFS).





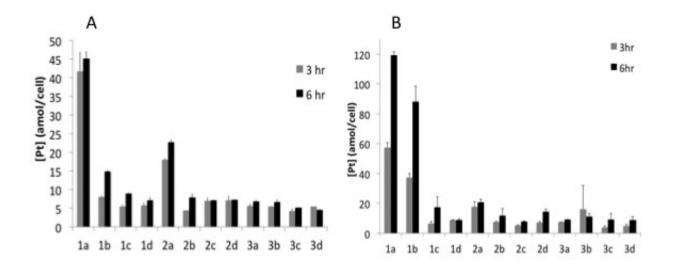

Figure S2. Temperature dependence of the 195 Pt NMR spectra of A – [Pt(N,N"-Me₄dien)(9-EtGua)]²⁺ and B- [Pt(N,N"-Me₂dien)(9-EtGua)]²⁺.

Figure S3. top) Numbering scheme for MeInd, MeGua, $[Pt(NH_3)_3(9MeGua)]^{2+}$, $[Pt(NH_3)_3(7MeGua)]^{2+}$ and $(NH_3)_3Pt(Xan)]^{2+}$. (bottom) Optimized structures for $[Pt(NH_3)_3(9MeGua)]^{2+}$, $[Pt(NH_3)_3(7MeGua)]^{2+}$]and $[Pt(NH_3)_3Xan]^{2+}$

Figure S4.(a) Orientations and relative energies of conformations A-D of MeGua in the binding site of NCp7. (b) Truncated optimized model B. (b) Top view of the π -stacking interaction in B. Key hydrogen-bonding interactions in conformations (d) B, (e) C, and (f) D.

Figure S5. Cellular accumulation of platinum-nucleobase compounds in (A) Jurkat and (B) CCRF-CEM cells.

 Table S1. Docking scores summary for free nucleobases (guanine and xanthine), alkyl-functionalized nucleobase (9-EtGua) and nucleosides (Gu0 and Xan).

Nucleobase	C-terminal finger			N-termir	N-terminal finger		
derivate	Score	H-bonding	Steric interaction	Score	H-bonding	Steric interaction	
Guanine	-26.93	-2.00	-24.93	-27.57	-12.72	-14.85	
9-EtGua	-34.62	-6.94	-28.28	-30.17	-6.00	-24.77	
Guanosine	-43.00	-9.60	-34.42	-40.13	-9.39	-31.6	
Xanthine	-26.83	-2.00	-24.83	-26.95	-9.74	-17.21	
Xanthosine	-43.02	-9.57	-34.47	-40.18	-9.55	-31.48	

Docking calculations also corroborate the fluorescence-based experiments regarding Trp tracking. In Figure 4, it is clear that Trp37 acts as a molecular recognition factor, with all final poses for the docked compounds (Figure 4) appearing in close proximity of Trp37, even though no ligand pockets were used as guides for docking.

Donor	q _D (e)	Acceptor	q _A (e)	d, Å	$\Delta E_{d \rightarrow a}$	WBI
		_			(kcal/mol	
Native A						
MeGau C=O	-0.697	M46 BB N-H	0.436	1.91	7.19	0.040
MeGau C=O	-0.697	W37 BB N-H	0.417	2.28	1.80	0.009
K34 BB C=0	-0.722	MeGua N-H	0.459	2.12	2.81	0.021
K34 BB C=0	-0.722	MeGau NH ₂ -Ha	0.431	1.94	9.69	0.035
Q45 SC C=0	-0.686	MeGau NH ₂ -	0.452	1.86	14.32	0.057
		Hb				
MeGau NH ₂	-0.925	R32 SC N-H	0.433	1.82	21.92	0.080
MeGau N ₃	-0.660	R32 SC N-H	0.439	1.96	12.07	0.057
В						
MeGau C=O	-0.685	R32 SC N-H	0.434	1.66	31.76	0.110
K34 BB C=0	-0.689	MeGau N ₁ -H	0.447	2.66	0.55	0.004
K34 BB C=0	-0.689	MeGau NH ₂ -Ha	0.429	2.19	2.24	0.018
W37 BB N	-0.705	MeGau NH ₂ -	0.428	2.34	2.77	0.013
		Hb				
G35 BB C=0	-0.693	MeGau NH ₂ -Ha	0.429	2.39	0.22	0.004
MeGau N ₃	-0.651	M46 BB N-H	0.416	2.33	2.34	0.017
С						
MeGau C=O	-0.731	Q45 SC N-H	0.431	2.05	7.95	0.029
MeGau C=O	-0.731	R32 SC N-H	0.437	1.87	14.37	0.048
D						
MeGau N ₇	-0.592	M46 BB N-H	0.415	1.97	8.70	0.026
MeGau N ₇	-0.592	W37 BB N-H	0.419	2.17	5.05	0.012
				· · · · · · · · · · · · · · · · · · ·		

Table S2. ONIOM(B97-D:PM6) results for orientations **A-D** of MeGua in the binding site of the NCp7 model. NPA charges of hydrogen bond donors (q_D) and acceptors (q_A) , distances and WBI values for the hydrogen bonded pairs

Table S3 Cellular Accumulation (A) and Cytotoxicity (B) of selected platinum-purine and nucleoside complexes

В

А

Compound	Log(P _{oct/water})
1a	-1.59 +/- 0.28
1b	-0.36 +/- 0.06
1c	0.22 +/- 0.09
1d	-0.36 +/- 0.04

	ΙC50 (μΜ)			
Compound	CCRF-CEM	Jurkat		
1a	>100	>100		
1b	>100	>100		
2a	>100	>100		
3a	>100	>100		

References

- 1. Annibale, G.; Brandolisio, M.; Pitteri, B. Polyhedron 1995, 3, 451-462.
- de Paula, Q. A.; Mangrum, J. B.; Farrell, N.P. J. Inorg. Biochem. 2009, 103, 1347-1354.
- Silva, H., Frézard, F., Peterson, E.J., Kabolizadeh, P., Ryan, J.J., Farrell, N.P.
 2012, *Mol. Pharm.* 9, 1795-1802.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X. H., H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M. E., M.; Toyota, K. F., R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O. N., H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R. P., C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01,*, Gaussian 09: Gaussian, Inc., Wallingford CT, 2009.
- 5. Stewart, J. P. J. Mol. Model. 2007, 13, 1173-1213.
- 6. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.
- 7. Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352-9362.
- 8. Wiberg, K. B. Tetrahedron 1968, 24, 1083-1096.
- 9. Glendening, A. E.; Reed, J. E.; Carpenter; Weinhold., F. *NBO Version 3.1*, Madison, 1980.
- 10. Reed, A. E.; Curtiss, L.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
- 11. Znamenskyi, V. S.; Green, M. E. J. Chem. Theory Comput. 2007, 3, 103-114.