Supporting Information for

Magnetic Circular Dichroism Studies of Iron(II) Binding to Human Calprotectin

Tessa M. Baker^a, Toshiki G. Nakashige^b, Elizabeth M. Nolan^{*,b}, and Michael L. Neidig^{*,a}

^a Department of Chemistry, University of Rochester, Rochester, New York 14627, United States ^b Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Table of Contents

1.	Supplementary Data	S2
	1.1 Sample Concentrations	S2
	1.2 MCD Spectra	S3

1. Supplementary Data

1.1 Sample Concentrations

Protein	[Protein] (mM)	[Fe(II)] (mM)	[Ca(II)] (mM)	Glassing agent ^a
CP-Ser	1.36	1.22	27.2	Glycerol
CP-Ser	1.68	1.51	33.6	Sucrose
H103A	1.44	1.30	28.8	Glycerol
H103A	1.84	1.66	36.8	Sucrose
АНА	1.81	1.63	36.2	Glycerol
AHA	1.74	1.57	34.8	Sucrose
AAA	1.36	1.22	27.2	Glycerol
AAA	2.24	2.01	44.8	Sucrose
ΔHis_3Asp	1.11	1.00	22.2	Glycerol
$\Delta His_3 Asp$	1.54	1.39	30.8	Sucrose
$\Delta His_3 Asp-H103A$	1.61	1.45	32.2	Sucrose
CP-Ser	1.68	0.50	33.6	Sucrose
CP-Ser	1.68	1.01	33.6	Sucrose
CP-Ser	1.68	2.02	33.6	Sucrose
ΔHis_4	1.59	1.43	29.8	Glycerol
ΔHis_4	1.58	1.42	31.2	Sucrose
∆His₃Asp	2.26	3.39	45.2	Sucrose
CP-Ser	1.85	1.11	0	Sucrose
ΔHis ₃ Asp	1.42	0.85	0	Sucrose

Table S1. Protein and Metal Concentrations of MCD Samples

^{*a*} Glycerol samples were prepared with 40% (v/v) 150 HEPES, 200 mM NaCl, pD 7.4 60% (v/v) glycerol d_8 in D₂O. Sucrose samples were prepared with 150 mM HEPES, 200 mM NaCl, pD 7.4 saturated with sucrose in D₂O.

1.2 MCD Spectra

Figure S1. 5 K, 7 T NIR MCD spectra of Δ His₃Asp/Ca(II)/Fe(II) in a glycerol glass. Gaussian fits are shown as dashed blue lines. Inset: Saturation magnetization data (dots) and best fit (lines) for Δ His₃Asp/Ca(II)/Fe(II) in glycerol collected at 10310 cm⁻¹.

Figure S2. 5 K, 7 T NIR MCD spectra of $\Delta His_3Asp(H103A)/Ca(II)/Fe(II)$ in a saturated sucrose buffer solution. Gaussian fits are shown as dashed green lines.