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1 General Methods

All manipulations were performed using standard Schlenk techniques or in a nitrogen atmosphere glove-
box, unless otherwise stated. All reagents were purchased from Sigma Aldrich, Alfa Aesar or Strem
Chemicals. Basic alumina was dried by heating at 250 °C under dynamic vacuum for at least 4 days prior
to use. Solvents (EMD Chemicals) were either used as received or purified on a Glass Contour Solvent
Purification System built by SG Water USA, LLC. IR spectra were recorded on a Bruker Tensor 37 Fourier
transform IR (FTIR) spectrometer. Elemental analyses were performed by Robertson Microlit Laborato-
ries, Inc. NMR solvents were obtained from Cambridge Isotope Laboratories, degassed and dried over
4 A molecular sieves for at least 2 days prior to use. NMR spectra were obtained on a Bruker 400 MHz
or a Varian 500 MHz spectrometer. 'H NMR and '*C{'H} NMR chemical shifts are referenced to resid-
ual protio-solvent signals, and 31P{lH} NMR spectra are referenced to a 85% H3PO, external standard
(8§ = 0 ppm). Many of the '"H NMR and '3C NMR spectra display non first order multiplets; in those
cases, please be aware that the J values reported are only the apparent J values. The 3'P{!H} 2D EXSY
spectrum was acquired at 0 °C on a Varian 500 MHz spectrometer using typical 2D NOESY parameters,
64 t; increments, a spectral window of 180 to —90 ppm, and a mixing time of 50 ms. The cross peaks
observed have the same phase as the diagonal peaks, and were therefore attributed to chemical exchange

rather than NOE effects. !~

Low-temperature (100 K) X-ray diffraction data were collected on a Bruker X8 Kappa DUO four-circle
diffractometer coupled to a Bruker Smart APEX2 CCD detector with Mo Ka radiation (A = 0.71073 A)
from an IuS micro-source for the structures of I,-P,dmb; (I>-1) and (Cy,—DPC)Ni(CH,CH,COO) (13)
or on a Bruker D8 three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with
graphite-monochromated Cu Ka radiation (A = 1.54178 A) for the structures of [Me—P,(dmb),]I (2)
and Me,—DPC (5). Data reduction was done using SAINT" and absorption correction was done using
SADABS.® The structures were solved by direct methods using SHELXS” or intrinsic phasing using
SHELXT?® and refined against F2 on all data by full-matrix least squares with SHELXL-2013° using
established methods. '>!! All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were

included in the model at geometrically calculated positions and refined using a riding model.
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2 Summary of 31P{lH} NMR spectroscopic data for compounds 1—-13

Table S13'P{'H} NMR chemical shifts of compounds 1—13 and corresponding P-P coupling constants

Compound Solvent  Temp. & Pl (ppm) & P2 (ppm) Jpp (Hz)
P>(dmb), (1) CeDg 25°C —53.8 - —
[Me—P,(dmb), ]I (2) CDCl3 25°C +44.7 —69.3 276
[Bn—P5(dmb),]Br (3) CDCl; 25°C +50.8 -723 293
['Bu—P,(dmb),]Br (4) CDCl5 25°C +48.0 —70.9 286
Me,-DPC (5) CeDg 25°C —60.9 - -
Me,Cy-DPC (6) CeDg 25°C —38.9 —60.8 5
‘Bu,Cy-DPC (7) CeDg 25°C —38.9 —54.6 5
Bn,Cy-DPC (8) C¢Dg 25°C —38.9 —44.7 5
Bn,Ph-DPC (9) C¢D¢ 25°C —45.5 —46.1 6
Bn,Mes—DPC (10) CeDg 25°C —45.6 —47.5 9
Cl,P,(dmb), (11) CDCl; —40°C +143.4 —48.7 291
CyQ—DPC (12) C6D6 25°C —38.7 - -
(Cy»,-DPC)Ni(CH,CH,COO) (13) C¢Dg 25°C +21.6 —12.9 37
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3 [Me-P,>(dmb),]I (2)

3.1 Synthesis of [Me-P,(dmb),]I (2)

Inside the glovebox, P,dmb, (1.36 g, 6.0 mmol, 1 equiv) was dissolved in 100 mL of Et,O in a 200 mL
round bottom flask containing a stir bar. To this homogeneous solution, methyl iodide (0.5 mL, 1.14 g,
8.0 mmol, 1.33 equiv) was added by syringe. The reaction flask was capped with a septum and the
reaction mixture was allowed to stir at room temperature overnight. After ca. 14 h, the reaction mixture,
now heterogeneous, was put under vacuum to remove volatiles. The solids were slurried in ca. 20 mL
Et,0, then filtered and washed with 2 x 10 mL Et;O. After drying the solids, 1.985 g of white powder
were obtained (5.39 mmol, 90% yield).

3.2 Characterization of [Me-P,(dmb),]I (2)

'H NMR (400 MHz, CDCl3, 25 °C) §: 3.63 (t, J = 14.8 Hz, 2H), 3.45 (t, J = 15.0 Hz, 2H), 2.98 — 2.64
(m, 4H), 2.35 (dd, J = 13.6, 5.6 Hz, 3H), 1.88 (s, 6H), 1.80 (d, J = 5.8 Hz, 6H) ppm.

I3C NMR (101 MHz, CDCl3, 25 °C) §: 131.31 (dd, J = 13.0, 2.1 Hz), 122.46 (dd, J = 10.5, 4.6 Hz), 27.62
(dd, J =27.0, 5.3 Hz), 26.80 (dd, J = 29.4, 2.7 Hz), 21.35 (d, J = 2.0 Hz), 21.31 (d, J = 1.3 Hz), 9.07 (dd,
J =46.4,20.3 Hz) ppm.

3'P{TH} NMR (162 MHz, CDCl3, 25 °C) §: 44.71 (d, J = 276.0 Hz), —69.30 (d, J = 276.0 Hz) ppm.
ATR-IR: 2917, 1442, 1195, 1124, 1064, 937, 846, 815,703, 417 cm™!.

Elemental analysis [%] found (calculated for C;3Hy31P,): C 42.36 (42.41), H 5.78 (6.30), N < 0.02 (0).
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Figure S1 '"H NMR spectrum of [Me—P,(dmb); ]I in CDCl3 at 25 °C
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4 [Bn-P>(dmb),]Br (3)

4.1 Synthesis of [Bn—P,(dmb),]Br (3)

Inside the glovebox, Podmb; (1.195 g, 5.28 mmol, 1 equiv) was dissolved in 30 mL of dichloromethane
in a 200 mL round bottom flask containing a stir bar. To this homogeneous solution, benzyl bromide
(0.75 mL, 1.08 g, 6.34 mmol, 1.2 equiv) was added by syringe. The reaction flask was capped with
a septum and the reaction mixture was allowed to stir at room temperature. Even after 5 min, a visible
amount of white precipitate had formed. The mixture was allowed to stir for 2 hours, after which it was put
under vacuum to remove volatiles. The solids were triturated with Et;O. In order to remove the remaining
excess benzyl bromide, the solid was slurried in 15 mL pentane, filtered, then washed with 2 x 7 mL

pentane. After drying the solids, 2.019 g of white powder were obtained (5.08 mmol, 96% yield).

4.2 Characterization of [Bn—P,>(dmb),]Br (3)

'H NMR (400 MHz, CDCl3, 25 °C) &: 7.60 — 7.46 (m, 2H), 7.39 — 7.27 (m, 3H), 4.38 (dd, J = 14.5, 4.5
Hz, 2H), 3.45 (t, J = 14.9 Hz, 2H), 3.27 (t, J = 14.8 Hz, 2H), 2.87 — 2.49 (m, 4H), 1.75 (d, J = 5.5 Hz,
6H), 1.71 (s, 6H) ppm.

13C NMR (101 MHz, CDCl3, 25 °C) §: 130.85 (d, J = 2.6 Hz), 130.77 (dd, J = 7.0, 2.6 Hz), 129.37 (d,
J =3.3Hz), 129.03 (d, J/ = 9.1 Hz), 128.39 (d, J = 3.9 Hz), 122.25 (dd, J = 10.1, 4.4 Hz), 29.04 (dd, J =
37.5,16.2 Hz), 27.44 (dd, J =27.1, 5.3 Hz), 24.74 (dd, J = 27.6, 2.7 Hz), 21.47 (d, J = 3.3 Hz), 21.08 (dd,
J =438, 1.1 Hz) ppm.

3'P{TH} NMR (162 MHz, CDCl3, 25 °C) §: 50.84 (d, J = 292.5 Hz), —72.27 (d, J = 292.5 Hz) ppm.
ATR-IR: 2913, 1494, 1439, 1065, 796, 698, 480, 423 cm™~!.

Elemental analysis [%] found (calculated for Cj9H,7P,Br): C 57.18 (57.44), H 6.61 (6.85), N < 0.02 (0).
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Figure S5 '"H NMR spectrum of [Bn—P,(dmb),]Br in CDCl3 at 25 °C
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5 [‘Bu-P,(dmb),]Br (4)

5.1 Synthesis of [[Bu—P,(dmb),]Br (4)

Inside the glovebox, P,dmb; (807 mg, 3.57 mmol, 1 equiv) was dissolved in 15 mL of toluene and trans-
ferred to a 100 mL Schelnk tube. A stir bar was added, the tube was sealed and brought outside the
glovebox. The tube was then connected to the Schlenk line. Under positive pressure of nitrogen, isobutyl
bromide (4 mL, 5.06 g, 36.78 mmol, ca. 10 equiv) was added by syringe. The tube was sealed and heated
in an oil bath at 100 °C for 20 hours. After allowing it to cool down to room temperature, the tube was
connected to the Schlenk line and then set under vacuum. After removing all volatiles, the tube was sealed
and brought back into the glovebox. The solids were dissolved in ca. 10 mL DCM and transferred to a
vial. The solvent was removed under vacuum, then the residue triturated with Et;O (3 x 7 mL). 1.250 g of

white powder were obtained (3.44 mmol, 96% yield).

5.2 Characterization of [[Bu-P,(dmb),]Br (4)

'H NMR (400 MHz, CDCl3, 25 °C) §: 3.63 (t, J = 15.1 Hz, 2H), 3.41 (t, J = 14.5 Hz, 2H), 2.87 — 2.59
(m, 6H), 2.23 - 2.05 (m, 1H), 1.89 (s, 6H), 1.81 (d, J = 5.7 Hz, 6H), 1.12 (d, J = 6.6 Hz, 6H) ppm.
I3CNMR (101 MHz, CDCls, 25 °C) §: 130.84 (dd, J = 12.2, 2.1 Hz), 122.82 (dd, J = 10.4, 4.5 Hz), 31.39
(dd, J =38.0, 15.0 Hz), 27.59 (dd, J = 26.9, 5.5 Hz), 26.03 (dd, J = 27.6, 2.7 Hz), 25.35 (dd, / = 4.9, 2.5
Hz), 24.53 (dd, J =9.3, 3.0 Hz), 21.43 (dd, J = 3.5, 0.8 Hz), 21.33 (dd, J = 4.6, 1.3 Hz) ppm.

3'P{TH} NMR (162 MHz, CDCls, 25 °C) §: 48.02 (d, J = 285.5 Hz), —70.89 (d, J = 285.6 Hz) ppm.
ATR-IR: 2911, 2868, 1446, 1383, 1209, 1167, 1076, 1060, 839, 789, 440, 419 cm™!.

Elemental analysis [%] found (calculated for C;¢H9P>Br): C 52.77 (52.90), H 7.85 (8.05), N < 0.02 (0).
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6 Me,-DPC (5)

6.1 Synthesis of Me,—DPC (5)

Inside the glovebox, [Me—P,(dmb);]I (920 mg, 2.5 mmol, 1 equiv) was slurried in 60 mL of THF in a
200 mL round bottom flask containing a stir bar. To this slurry, methyllithium (2 mL of 1.6 M solution
in Et;O, 3.2 mmol, 1.3 equiv) was added dropwise by syringe. After the addition, the solution became
homogeneous and yellow. The mixture was allowed to stir at room temperature for 20 min, after which it
was placed under vacuum in order to remove THF. The residue was slurried in 100 mL Et,O, then filtered
through an alumina pad. The flask and alumina were rinsed with an additional 40 mL ether. The clear,
colorless, homogeneous filtrate was dried under vacuum and tritured with pentane to obtain 601 mg of
off-white powder (2.34 mmol, 94% yield). The product obtained through this synthetic route did not pass
elemental analysis and had some impurities in the baseline of its 3'P{'H} NMR spectrum.

Alternative synthesis: Inside the glovebox, [Me—P>(dmb), ]I (84 mg, 0.23 mmol, 1 equiv) was slurried
in 16 mL of Et;O in a 20 mL vial containing a stir bar. To this slurry, methyllithium (150 uL of 1.6 M
solution in Et, O, 0.24 mmol, 1.04 equiv) was added dropwise by syringe. Within 5 minutes of the addition,
the solution became colorless and homogeneous. The mixture was allowed to stir at room temperature for
4 hours, after which it was filtered through an alumina pad. The alumina was rinsed with an additional
2x20 mL ether. The clear, colorless, homogeneous filtrate was dried under vacuum, then ca. 10mL Et,O
were used to transfer the material into a vial. After drying under vacuum and triturating with pentane,

60 mg of white powder were obtained (0.23 mmol, quantitative yield).

6.2 Characterization of Me,-DPC (5)

'H NMR (400 MHz, C¢Dg, 25 °C) 8: 2.84 (dd, J = 12.7, 6.5 Hz, 4H), 1.86 (s, 12H), 1.84 (m, 4H), 0.84
(d, J =4.5 Hz, 3H) ppm.

13C NMR (101 MHz, CgDg, 25 °C) §: 125.54 (t, J = 5.4 Hz), 39.83 (dd, J = 12.2, 4.6 Hz), 20.36 — 19.25
(m), 13.24 (dt, J = 5.8, 2.6 Hz) ppm. 3'P{TH} NMR (162 MHz, C¢Dg, 25 °C) §: —60.94 ppm.

ATR-IR: 2941, 2923, 2890, 2861, 1420, 1381, 1284, 1041, 883, 843, 696 cm™ .

Elemental analysis [%] found (calculated for C14HpgP5): C 65.36 (65.61), H 10.14 (10.23), N < 0.02 (0).
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7 Me,Cy-DPC (6)

7.1 Synthesis of Me,Cy-DPC (6)

Inside the glovebox, [Me—P,(dmb);]I (920 mg, 2.5 mmol, 1 equiv) was slurried in 60 mL of THF in a
200 mL round bottom flask containing a stir bar. To this slurry, cyclohexylmagnesium chloride (4 mL of
1 M solution in 2-Me-THF, 4 mmol, 1.6 equiv) was added dropwise by syringe. After stirring overnight
at room temperature, the reaction mixture was still heterogeneous. An aliquot was taken and analyzed
by *'P{"H} NMR to confirm conversion to the desired product. After a total reaction time of 16 hours,
the mixture was placed under vacuum in order to remove THF. The residue was slurried in 100 mL Et, 0,
then filtered through an alumina pad. The flask and alumina were rinsed with an additional 40 mL ether.
The clear homogeneous filtrate was dried under vacuum, then ca. 10mL ether were used to transfer the
material into a vial. After drying under vacuum and triturating with pentane, 729 mg of white powder

were obtained (2.25 mmol, 90% yield).

7.2 Characterization of Me,Cy-DPC (6)

'H NMR (400 MHz, C¢Dg, 25 °C) &: 3.00 (dd, J = 12.6, 6.4 Hz, 2H), 2.90 (dd, J = 13.9, 7.2 Hz, 2H),
1.90 (m, 4H), 1.89 (s, 12H), 1.81 — 1.60 (m, SH), 1.28 — 1.09 (m, 6H), 0.88 (d, J = 4.7 Hz, 3H) ppm.

3C NMR (101 MHz, CgDg, 25 °C) §: 125.54 (dt, J = 6.8, 5.6 Hz), 39.96 (dd, J = 15.0, 1.4 Hz), 37.27 (d,
J =12.6 Hz), 34.16 (dd, J = 18.9, 1.5 Hz), 29.72 (d, J = 12.3 Hz), 27.53 (d, / = 9.3 Hz), 26.94 (d, / = 0.5
Hz), 20.17 (d, J = 4.8 Hz), 20.03 (d, J = 4.9 Hz), 13.39 (d, J = 15.0 Hz) ppm.

3'P{TH} NMR (162 MHz, C¢Dg, 25 °C) §: —38.94 (d, J = 5.1 Hz), —60.78 (d, J = 5.5 Hz) ppm.
ATR-IR: 2923, 2849, 1448, 1424, 1378, 882, 846, 696 cm ™.

Elemental analysis [%] found (calculated for Ci9H34P>): C 70.20 (70.34), H 10.51 (10.56), N < 0.02 (0).
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8 Bu,Cy-DPC (7)

8.1 Synthesis of '‘Bu,Cy-DPC (7)

Inside the glovebox, ['Bu—P,(dmb),]Br (1.090 g, 3.0 mmol, 1 equiv) was slurried in 40 mL of THF in a
200 mL round bottom flask containing a stir bar. To this slurry, cyclohexylmagnesium chloride (3.3 mL
of 1 M solution in 2-Me-THF, 3.3 mmol, 1.1 equiv) was added dropwise by syringe. Most solids had
dissolved after the addition was over. The reaction flask was capped with a septum and the reaction
mixture was allowed to stir at room temperature. After 1 hour, the homogeneous solution was placed
under vacuum in order to remove THF. The residue was slurried in 100 mL Et;O, then filtered through an
alumina pad. The flask and alumina were rinsed with an additional 40 mL ether. The filtrate was dried
under vacuum, then ca. 10 mL pentane was used to transfer the material to a vial. After drying the solution

under vacuum, 1.014 g of white powder were obtained (2.77 mmol, 92% yield).

8.2 Characterization of ‘Bu,Cy-DPC (7)

'H NMR (400 MHz, C¢Dg, 25 °C) §: 3.03 (dd, J = 12.8, 6.4 Hz, 2H), 2.92 (dd, J = 13.0, 6.7 Hz, 2H),
1.94 (d, J = 13.3 Hz, 4H), 1.90 (s, 12H), 1.86 — 1.53 (m, 6H), 1.32 — 1.12 (m, 8H), 1.05 (d, J = 6.6 Hz,
6H) ppm.

3C NMR (101 MHz, Cg¢Dg, 25 °C) &: 125.53 (dd, J = 8.0, 3.3 Hz), 40.29 (d, J = 14.3 Hz), 38.40 (dd, J
=16.4, 1.3 Hz), 37.37 (d, J = 12.6 Hz), 34.18 (dd, J = 18.8, 1.3 Hz), 29.75 (d, J = 12.3 Hz), 27.54 (d, J =
9.3 Hz), 26.95 (s), 26.71 (d, J = 13.8 Hz), 24.59 (d, J = 9.1 Hz), 20.20 (d, J = 3.3 Hz), 20.07 (d, J = 3.4
Hz) ppm.

3'P{'H} NMR (162 MHz, C¢Dg, 25 °C) §: —38.87 (d, J = 4.9 Hz), —54.58 (d, J = 5.3 Hz) ppm.
ATR-IR: 2947, 2921, 2849, 1445, 1380, 856, 849 cm™!.

Elemental analysis [%] found (calculated for CooHyoP2): C 71.83 (72.10), H 10.83 (11.00), N < 0.02 (0).
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9 Bn,Cy-DPC (8)

9.1 Synthesis of Bn,Cy—-DPC (8)

Inside the glovebox, [Bn—P,(dmb),]Br (1.00 g, 2.52 mmol, 1 equiv) was slurried in 40 mL of THF in a
200 mL round bottom flask containing a stir bar. To this slurry, cyclohexylmagnesium chloride (2.8 mL
of 1 M solution in 2-Me-THE, 2.8 mmol, 1.1 equiv) was added dropwise by syringe. The reaction flask
was capped with a septum and the reaction mixture was allowed to stir at room temperature. After ca.
30 min, most solids had dissolved. After 1.5 hours, the homogeneous solution was placed under vacuum
in order to remove THF. The residue was slurried in 100 mL Et;O, then filtered through an alumina pad.
The flask and alumina were rinsed with an additional 40 mL ether. The clear, homogeneous filtrate was
dried under vacuum, then ca. 10 mL pentane was used to transfer the material to a vial. After drying the
solution under vacuum, an oily residue was obtained. This was stored overnight in the freezer, after which
it solidified and could be broken up into a powder using a spatula. The solids were further dried under

vacuum to obtain 939 mg of off-white powder (2.34 mmol, 93% yield).

9.2 Characterization of Bn,Cy—-DPC (8)

'H NMR (400 MHz, CgDg, 25 °C) §: 7.23 — 7.12 (m, 4H), 7.10 — 7.00 (m, 1H), 3.08 — 2.81 (m, 4H), 2.63
(d, J =2.7 Hz, 2H), 2.06 — 1.83 (m, 10H), 1.83 — 1.52 (m, 11H), 1.28 — 1.08 (m, 6H) ppm.

13C NMR (101 MHz, C¢Dg, 25 °C) &: 138.71 (d, J = 4.6 Hz), 129.57 (d, J = 5.4 Hz), 128.65 (d, J = 0.9
Hz), 126.05 (d, J = 2.0 Hz), 125.88 (t, / = 5.6 Hz), 125.10 (t, J = 5.5 Hz), 37.32 (d, J = 12.7 Hz), 37.06 —
36.61 (m), 34.04 (dd, J = 19.0, 1.3 Hz), 29.70 (d, J = 12.1 Hz), 27.56 (d, J = 9.3 Hz), 26.96 (s), 20.07 (d,
J =13.0 Hz) ppm.

3'P{TH} NMR (162 MHz, C¢Dg, 25 °C) §: —38.92 (d, J = 5.0 Hz), —44.71 (d, J = 5.4 Hz) ppm.
ATR-IR: 2917, 2848, 1446, 856, 771, 698, 477 cm ™.

Elemental analysis [%] found (calculated for Co5H3gP;): C 74.88 (74.97), H 9.52 (9.56), N < 0.02 (0).
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10 Bn,Ph-DPC (9)

10.1 Synthesis of Bn,Ph-DPC (9)

Inside the glovebox, [Bn—P,(dmb);|Br (495 mg, 1.25 mmol, 1 equiv) was slurried in 30 mL of THF in
a 200 mL round bottom flask containing a stir bar. To this slurry, phenylmagnesium bromide (1.4 mL of
1 M solution in THF, 1.4 mmol, 1.1 equiv) was added dropwise by syringe. The reaction mixture became
homogeneous after a few minutes. After stirring for 1 hour at room temperature, the homogeneous solution
was placed under vacuum in order to remove THF. The residue was slurried in 60 mL Et,O, then filtered
through an alumina pad. The flask and alumina were rinsed with an additional 20 mL ether. The clear
homogeneous filtrate was dried under vacuum, then 10mL ether were used to transfer the material into
a vial. After drying under vacuum and triturating with pentane, 467 mg of white powder were obtained

(1.18 mmol, 94% yield).

10.2 Characterization of Bn,Ph-DPC (9)

'"H NMR (400 MHz, Cg¢Dg, 25 °C) 8: 7.54 — 7.47 (m, 2H), 7.22 — 7.08 (m, 7H), 7.08 — 7.02 (m, 1H), 3.38
(dd, J =13.2, 6.6 Hz, 2H), 2.88 (dd, J = 13.6, 6.3 Hz, 2H), 2.54 (d, J = 2.6 Hz, 2H), 2.12 (d, J/ = 13.1 Hz,
2H), 1.88 (m, 2H), 1.87 (d, J = 1.4 Hz, 6H), 1.75 (s, 6H) ppm.

3C NMR (101 MHz, C¢Dg, 25 °C) 8: 141.71 (d, J = 16.4 Hz), 138.60 (d, J = 4.5 Hz), 132.18 (d, J = 18.7
Hz), 129.59 (d, J = 5.3 Hz), 128.74 (d, J = 6.2 Hz), 128.63 (d, J = 0.9 Hz), 128.53 (s), 126.05 (m), 125.24
(t,J =6.0Hz), 37.86 (dd, J = 16.1, 1.3 Hz), 36.81 (dd, J = 18.0, 1.5 Hz), 36.47 (d, J = 16.7 Hz), 19.98 (t,
J =12.5 Hz) ppm.

3'P{TH} NMR (162 MHz, C¢Dg, 25 °C) §: —45.53 (d, J = 5.9 Hz), —46.14 (d, J = 6.0 Hz) ppm.
ATR-IR: 2902, 2857, 1431, 1382, 854, 766, 746, 723, 699, 692, 480, 440 cm ™!,

Elemental analysis [%] found (calculated for C,5H3,P5): C 75.69 (76.12), H 8.20 (8.18), N < 0.02 (0).
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11 Bn,Mes-DPC (10)

11.1 Synthesis of Bn,Mes-DPC (10)

Inside the glovebox, [Bn—P,(dmb);|Br (483 mg, 1.21 mmol, 1 equiv) was slurried in 30 mL of THF in
a 200 mL round bottom flask containing a stir bar. To this slurry, 2-mesitylmagnesium bromide (1.4 mL
of 1 M solution in THF, 1.4 mmol, 1.15 equiv) was added dropwise by syringe. After stirring for 2 hours
at room temperature, the now homogeneous solution was placed under vacuum in order to remove THF.
The residue was slurried in 70 mL Et,O, then filtered through an alumina pad. The flask and alumina
were rinsed with an additional 20 mL ether. The clear homogeneous filtrate was dried under vacuum,
then 10mL ether were used to transfer the material into a vial. After drying under vacuum and analyzing
by 3'P{'H} NMR, several impurities were apparent. The synthesis was repeated, and the two product
crops combined. This crude solid was washed with 2 x SmL pentane in an attempt to remove some of the
impurities seen in the baseline of the 3'P{'H} NMR. After drying the remaining powder, 486 mg of white

powder were obtained (1.11 mmol, 46% yield). The compound was still not spectroscopically pure.

11.2 Characterization of Bn,Mes-DPC (10)

"H NMR (400 MHz, C¢Dg, 25 °C) 8: 7.16 (m, 2H), 7.07 (m, 3H), 6.80 (s, 2H), 3.94 (dd, J = 13.5, 4.7 Hz,
2H), 2.97 (dd, J = 13.3, 6.2 Hz, 2H), 2.65 (s, 6H), 2.60 (d, J = 3.4 Hz, 2H), 2.12 (s, 3H), 1.93 (d, J = 12.6
Hz, 4H), 1.86 (s, 6H), 1.78 (d, J = 3.5 Hz, 6H) ppm.

13C NMR (101 MHz, Cg¢Dg, 25 °C) §: 144.24 (d, J = 15.9 Hz), 138.76 (d, J = 1.0 Hz), 138.36 (d, J = 3.6
Hz), 133.53 (d, J = 25.2 Hz), 130.18 (d, J = 3.7 Hz), 129.63 (d, J = 4.9 Hz), 128.56 (s), 127.07 (dd, J =
11.0, 6.1 Hz), 126.06 (d, J = 2.0 Hz), 125.94 — 125.75 (m), 37.33 (dd, J = 18.4, 2.1 Hz), 36.68 (d, / = 16.9
Hz), 34.58 (dd, J = 17.3, 1.4 Hz), 24.17 (d, J = 19.9 Hz), 20.95 (s), 20.17 (d, J = 12.4 Hz), 19.90 (d, J =
14.6 Hz) ppm.

3'P{1H} NMR (162 MHz, C¢Dg, 25 °C) §: —45.57 (d, J = 9.4 Hz), —47.50 (d, J = 9.4 Hz) ppm.
ATR-IR: 2975, 2877, 1491, 1452, 1429, 1377, 1213, 1027, 856, 844, 771, 704, 613, 478 cm™!.
Elemental analysis [%] found (calculated for CogH3gP>): C 76.19 (77.04), H 8.95 (8.77), N < 0.02 (0).
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12 Clsz(dmb)z (11)

12.1 Synthesis of Cl,P,(dmb), (11)

Inside the glovebox, P,dmb; (950 mg, 4.2 mmol, 1.05 equiv) was dissolved in 30 mL of dichloromethane
in a 200 mL round bottom flask containing a stir bar. To this homogeneous solution, a solution of hex-
achloroethane (945 mg, 4.0 mmol, 1 equiv) in 20 mL dichloromethane was added dropwise at room
temperature. The homogeneous reaction mixture was allowed to stir at room temperature for 15 min,
after which it was placed under vacuum to remove volatiles. The sticky residue was triturated with 2 x
10 mL Et,O. The solid was then slurried in 15 mL Et,O, filtered, then washed with 2 x 8 mL Et,O. After
drying the solids, 1.25 g of pale yellow powder were obtained (4.2 mmol, quantitative yield - extra mass

presumably due to a small amount of by-product(s) - see NMR data).

12.2 Characterization of Cl,P>(dmb), (11)

'H NMR (400 MHz, CDCl3, 25 °C) §: 4.87 (br s, 4H), 2.95 (br s, 4H), 1.84 (br s, 12H) ppm.

13C NMR (101 MHz, CDCls, 25 °C) §: 128.03 (br s), 32.56 (br s), 21.10 (s) ppm.

3'P{TH} NMR (162 MHz, CDCl3, 25 °C) §: 144.05 (br s), —47.12 (br s) ppm.

'"H NMR (400 MHz, CDCls, —40 °C) §: 5.30 (d, could not accurately determine J due to overlap with
CH,Cl,, 2H), 4.13 (dd, J = 26.2, 12.6 Hz, 2H), 3.20 (dd, J = 18.1, 16.6 Hz, 2H), 2.53 (ddd, J = 40.7, 22.6,
13.4 Hz, 2H), 1.81 (d with unresolved coupling, 6H), 1.79 (s, 6H) ppm.

3'P{TH} NMR (162 MHz, CDCl3, —40 °C) §: 143.40 (d, J = 291 Hz), —48.72 (d, J = 291 Hz) ppm.
3'P{TH} NMR (202 MHz, CDCl3, 0 °C) §: 145.01 (d, J = 295 Hz), —47.06 (d, J = 295 Hz) ppm.

"H NMR of Cl,P,(dmb), + GaCl; (400 MHz, CDCls, 25 °C) §: 3.65 — 3.43 (m, 4H), 3.06 — 2.66 (m,
4H), 1.97 (s, 6H), 1.92 (d, J = 8.1 Hz, 6H) ppm.

3IP{TH} NMR of Cl,P5(dmb), 4+ GaCls (162 MHz, CDCl3, 25 °C) §: 120.40 (d, J = 322.4 Hz), —48.93
(d, J =322.4 Hz) ppm.

ATR-IR: 2928, 2847, 1441, 1382, 1157, 1121, 1055, 905, 857, 835, 772, 718, 573, 543, 424 cm ™!
Elemental analysis [%] found (calculated for C1,Hy9ClLP,): C 46.15 (48.51), H 6.30 (6.78), N < 0.02 (0).
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13 Cy,-DPC (12)

13.1 Synthesis of Cy,—DPC (12)

Inside the glovebox, Cl,P(dmb), (1.04 g, 3.5 mmol, 1 equiv) was slurried in 60 mL of THF in a 200 mL
round bottom flask containing a stir bar. To this slurry, cyclohexylmagnesium chloride (7.5 mL of 1 M
solution in 2-Me-THEF, 7.5 mmol, 2.14 equiv) was added dropwise by syringe. After the addition was
complete, most solids has dissolved and the solution had turned yellow-orange. The mixture was stirred at
room temperature for 2 hours, time after which the mixture had become homogeneous and darker in color
(brown). The mixture was then placed under vacuum in order to remove THF. The residue was slurried in
100 mL Et,O, then filtered through an alumina pad. The flask and alumina were rinsed with an additional
40 mL ether. The yellow homogeneous filtrate was dried under vacuum, then ca. 10mL ether were used
to transfer the material into a vial. After drying under vacuum, a sticky solid was obtained. The colored
impurities were visibly oily (the sample did not look homogeneous). Hexanes (2mL) were added to the
sample in order to extract the colored impurities. The slurry was stirred vigorously for 5 min, then the
vial was then placed in the freezer for 1 hour. The sample was then filtered, and the solids washed with
ca. ImL hexanes. Care must be taken to use only a minimal ammount of solvent for washing as Cy,—DPC
is extremely soluble. After drying under vacuum, 646 mg of off-white powder were obtained (1.65 mmol,

47% yield).

Alternative synthesis: Inside the glovebox, Cl,P(dmb), (1.01 g, 3.41 mmol, 1 equiv) was slurried in
60 mL ether in a 200 mL round bottom flask containing a stir bar. To this slurry, cyclohexylmagnesium
chloride (7.0 mL of 1 M solution in 2-Me-THF, 7.0 mmol, 2.05 equiv) was added dropwise by syringe.
After the addition was complete, the reaction mixture remained heterogeneous. The mixture was stirred at
room temperature for 4 hours, time after which the mixture was filtered through an alumina pad. The flask
and alumina were rinsed with an additional 4 x 20 mL Et,O. The homogeneous filtrate was dried under
vacuum, then ca. 10mL ether were used to transfer the material into a vial. After drying under vacuum,
the solid was triturated with pentane and further dried under vacuum to afford 992 mg of off-white powder

(2.53 mmol, 74% yield).
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13.2 Characterization of Cy,-DPC (12)

'H NMR (400 MHz, C¢Dg, 25 °C) 8: 3.06 (dd, J = 12.9, 5.9 Hz, 4H), 1.97 (d, J = 13.1 Hz, 4H), 1.92 (s,
12H), 1.87 = 1.59 (m, 10H), 1.33 — 1.08 (m, 12H) ppm.

13C NMR (101 MHz, C¢Dg, 25 °C) §: 125.56 (t, J = 5.6 Hz), 37.45 (d, J = 12.8 Hz), 34.26 (d, J = 20.4
Hz), 30.15 - 29.37 (m), 28.06 — 27.20 (m), 26.94 (s), 20.45 — 19.93 (m) ppm.

3IP{H} NMR (162 MHz, C¢Dg, 25 °C) §: —38.68 ppm.

ATR-IR: 2921, 2849, 1447, 1376, 904, 883, 848 cm ™!,

Elemental analysis [%] found (calculated for Cy4Hy4,P>)(calculated for a mixture of 98% Cy,—DPC and

2% P>dmby): C 73.70 (73.43)(73.32), H 10.62 (10.78)(10.76), N < 0.02 (0)(0).
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14 (Cy,-DPC)Ni(CH,CH,COO) (13)

14.1 Synthesis of (Cy,-DPC)Ni(CH,CH,COO) (13)

Prep 1: A similar procedure to that used by Fischer et al. to prepare various nickelalactones by ligand
exchange was used. 13 (TMEDA)Ni(CH,CH,COO) (38 mg, 0.154 mmol, 1 equiv) was slurried in 1 mL
diethyl ether. The ligand, Cy,—DPC (66 mg, 0.168 mg, 1.1 equiv), was dissolved in 6 mL diethyl ether and
added to the (TMEDA)Ni(CH,CH,COO). The color of the slurry turned from greenish to yellow, but the
mixture remained heterogeneous. After 5 hours of stirring at room temperature, the mixture was placed un-
der vacuum and all volatiles were removed. Pentane (4 mL) was added and the resulting slurry was filtered.
The product was washed with an additional 2 mL pentane, then dried under vacuum. A yellow powder
(56 mg, 0.107 mmol, 69% yield if pure) was obtained. This product was analyzed by 3'P{'H} NMR
spectroscopy and proved to be contaminated with several impurities. Purification by crystallization was
unsuccessful in obtaining a batch of spectroscopically clean material. However, crystallization by slow
vapor diffusion of pentane into a toluene solution of this product yielded single crystals that allowed us to

obtain the X-ray structure of 13.

Prep 2: This procedure was adapted from the one used by Limbach et al. to prepare the nickelalactone
of (R,R)-BenzP* from CO; and ethylene. 14 Inside the glovebox, Ni(COD); (110 mg, 0.4 mmol, 1 equiv)
and Cy,—-DPC (157 mg, 0.4 mmol, 1 equiv) were dissolved in 10 mL of THF and transferred to the glass
liner of a 50 mL Parr pressure vessel. The Parr reactor was then assembled, sealed, and taken outside of
the glovebox, where it was placed inside a heating mantle that was then filled with aluminum shot, and the
entire setup was connected to a temperature controller. The reaction vessel was pressurized with ethylene
(10 bar), then carbon dioxide (30 bar) at room temperature (total 40 bar). The temperature controller
was set to 70 °C and the reaction mixture was heated overnight at this temperature. After 18 hours, the
vessel was allowed to cool to room temperature for ca. 30 min, then it was placed in an ice-water bath for
ca. 30 min. The Parr reactor was slowly vented, briefly purged with nitrogen, sealed, and brought back
inside the glovebox. After opening the reactor, the dark reaction mixture was transferred to a vial and

diluted with 10 mL THF. This solution was filtered through glass microfibre filter paper in order to remove
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the black precipitate (likely nickel black). The resulting orange, homogeneous solution was placed under
vacuum and concentrated to ca. 0.5 mL, then 20 mL pentane were added to precipitate the product. The
mixture was then filtered, and the yellow precipitate washed with 2 x 3 mL pentane. After drying under
vacuum, (Cy,—DPC)Ni(CH,CH,COO) (97 mg, 0.19 mmol, 47% yield if pure) was obtained as a yellow
powder. Although 3'P{'H} NMR spectroscopy shows that (Cy,—~DPC)Ni(CH,CH,COO) is the major
species, the product is not spectroscopically pure. The material obtained through this CO,/ethylene route

was used for catalytic testing as a starting nickel source (Table 1).

14.2 Characterization of (Cy,-DPC)Ni(CH,CH,COO) (13)

'H NMR (400 MHz, CgDg, 25 °C) 0: 3.7 — 0.6 (broad, unresolved signals) ppm.

3'P{TH} NMR (162 MHz, C¢Dg, 25 °C) §: Prep 1: 21.55 (brd, J = 37.1 Hz), —12.85 (br d, J = 36.1 Hz)
ppm; Prep 2: 21.50 (brd, J =41.2 Hz), —12.88 (br d, J = 40.1 Hz) ppm.

ATR-IR: 2920, 2847, 1627 (vs, C=0), 1445, 1320 cm™ .
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Figure S51 'H NMR spectrum of (Cy,—DPC)Ni(CH,CH,COO) in C¢Dg from Prep 1 at 25 °C
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15 Experimental details for CO,/C,H, coupling catalytic tests

Method A (adapted from Vogt et al. 15): Ni(COD); (13.8 mg, 0.05 mmol, 1 equiv) and one equivalent of
ligand were dissolved in 2 mL chlorobenzene. The resulting solution was added to a 10 mL vial, equipped
with a small stirring bar, containing Zn (163.5 mg, 2.5 mmol, 50 equiv) and Lil (167 mg, 1.25 equiv,
25 equiv). To the solution was added triethylamine (0.35 mL, 2.5 mmol, 50 equiv), the vial was capped
with a septum seal and the septum was perforated with a needle that was kept in place. The vial was
placed in a Parr autoclave together with 3-5 other vials of other experiments, the autoclave was closed
and heated to 50 °C by placing the autoclave in an oil bath kept at that temperature. Subsequently, the
autoclave was pressurized first to 25 bar using ethylene, and subsequently further pressurized to 30 bar
with carbon dioxide. The solution was stirred for 24 hours at this pressure and temperature. After 24
hours, the heating was turned off, and the reactor slowly vented over a 30 minute period by cracking open
one of the needle valves. The reactor was opened and the samples removed from the autoclave. The
reaction mixture (solution) typically had an orange-red color over a grey powder.

The vial was opened, and 20.0 mg lithium acetate dihydrate (LiOAc-2H,0) was added, followed by ca. 1
mL of D,0. The contents of the vial were vigorously shaken to dissolve all the salts in the D,O layer.
The solution was transferred to a centrifuge tube and centrifuged (5000 rpm) to precipitate all solids,
and the D,O layer was separated from the chlorobenzene layer. The D,0O layer was transferred to an
NMR tube and analyzed by NMR spectroscopy. 'H NMR and '*C NMR spectra were recorded on a
Bruker 400 Mz spectrometer. In the spectra, the only products that can be observed are acrylate (several
multiplets between 6.1 and 5.6 ppm; 3H), D,0 (residual solvent signal and H,O from the internal standard;
4.73 ppm), a quartet and a triplet for triethylamine (3.12 ppm and 1.22 ppm) and lithium acetate (1.86
ppm, methyl group, 3H). Significant vertical expansion of the spectrum shows some minor multiplets in
the baseline. The amount of acrylate produced is determined by integrating the total area of the acrylate
signals (Aacr) and the area of the methyl signal of the internal standard (ALA) and calculating the amount
of acrylate from:

(mmol acrylate) = (Aacr) / (ALA) x ((20 mg LiOAc-2H,0) / (102.01 mg / mmol)) x (3H / 3H)

The turnover number (TON) then follows from:

TON = (mmol acrylate) / ((13.8 mg Ni(cod),) / (275.08 mg / mmol))

S46



Table S2 Catalytic acrylate production from CO, and ethylene using the procedure described in Method A

Ligand TON (test #1) TON (test #2) TON (average)
Me,-DPC (5) n/al“ 1.6 1
Me,Cy-DPC (6) 5.7 2.8 4
‘Bu,Cy-DPC (7) 10.1 9.2 10
Bn,Cy-DPC (8) 10.0 7.9 9
Bn,Ph-DPC (9) 9.8 14.7 12
Bn,Mes-DPC (10) 0.3 0.2 0
Cy,-DPC (12) 10.9 12.5 12
dicyclohexylphosphinoethane (dcpe) 9.0 7.0 8
dicyclohexylphosphinopropane (dcpp) 19.2 16.6/") 18
dicyclohexylphosphinobutane (dcpb) 6.2 6.0 6

[a] acrylate signals could not be reliably integrated; [b] no zinc.

Method B (adapted from Limbach et al. 14): Ni(COD), (20 mg, 0.07 mmol, 1 equiv) was weighed into the
glass liner of a 50 mL Parr vessel. A stir bar and a solution of the ligand (0.077 mmol, 1.1 equiv) in 4 mL
THF were added. Sodium 2-fluorophenoxide (469 mg, 3.5 mmol, 50 equiv) and Zn (229 mg, 3.5 mmol,
50 equiv) were added as solids to this solution, followed by 6 mL THF (total 10 mL THF). The liner
was carefully placed inside the Parr vessel, which was then sealed and taken outside the glovebox. The
vessel was placed inside a heating mantle that was then filled with aluminum shot, and the entire setup
was connected to a temperature controller. Ethylene was introduced first, up to 10 bar, then CO, (10 bar)
was added (total 20 bar). The temperature controller was set to 100 °C and the reaction heated overnight.
After 20 hours, the reaction was cooled down for 1 hour, then put in an ice-water bath to help with cooling.
The pressure was released carefully, then the reaction mixture was transferred to a 50 mL tube. The liner
was washed with 5 mL DO, which was added to the tube with the reaction mixture. The internal standard,
sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (25.8 mg, 0.15 mmol) in 2 mL. D,O was then added, then
that vial washed with 1 mL D,O and everything consolidated. Diethyl ether (20 mL) was added, the tube
was closed, shaken, vented, shaken twice more, then allowed to settle so the layers separated. A syringe
with a long needle was used to take a 2 mL aliquot of the aqueous layer. This was then filtered (to remove
the Zn) and analyzed by '"H NMR (64 scans). The internal standard integral was set to 9.0 (as there are 9
protons per internal standard), then the three acrylate protons were integrated separately, and the average
of these integrals (A) was used as the ratio of acrylate to internal standard. The TON was obtained by

multiplying the ratio A by the mmols of internal standard used, then divided by the mmols of Ni used.
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16 Crystallographic details

Colorless needles of [Me—P,(dmb), ]I (2) were grown from THF. The compound crystallized in the mono-
clinic space group P21/c, with one [Me—P,(dmb);]I and one THF in the asymmetric unit. The THF solvent
molecule was disordered and was modeled over two positions. The ratio of the two components converged

to 0.497(17):0.503(17).

Colorless plates of Me,—DPC (5) were grown from toluene. The diphosphine crystallized in the mono-
clinic space group P2/n, with one molecule of Me;—DPC in the asymmetric unit, no disorders and no

crystallization solvent.

Colorless blocks of Ir-P>(dmb), (Io-1) were grown from chloroform. The complex crystallized in the mon-
oclinic space group C2/c, with one I,-1 and two molecules of CHCl3 per asymmetric unit. The chloroform
solvent molecules were disordered and modeled over two positions. The ratio of the two components
converged to 0.65(4):0.35(4) for one molecule, and 0.58(4):0.42(4) for the other one. One of the iodine

atoms was also disordered over two positions, with an occupancy ratio of 0.71(4):0.29(4).

Note: While the identity of this adduct (I-1) was established through X-ray crystallography, adequate
NMR spectroscopic data could not be acquired for this compound as it is extremely insoluble in common

organic solvents.
Gold needles of (Cy,—DPC)Ni(CH,CH,COO) (13) were grown by slow vapor diffusion of pentane into

a toluene solution of the complex. The compound crystallized in the orthorhombic space group P2122,

with one molecule of 13 in the asymmetric unit, no disorders and no crystallization solvent.
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